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Abstract

In previous work the notion of input to state sta-
bility (ISS) has been generalized to systems with
outputs, yielding a number of useful concepts.
When considering a system whose output is to
be kept small (i.e. an error output), the notion
of input to output stability (IOS) arises. Alterna-
tively, when considering a system whose output
is meant to provide information about the state
(i.e. a measurement output), one arrives at the
detectability notion of output to state stability
(OSS). Combining these concepts, one may con-
sider a system with two outputs, an error and
a measurement. This leads naturally to a notion
of partial detectability we call measurement to er-
ror stability (MES). This property characterizes
systems in which the error signal is detectable
through the measurement signal. This paper
provides a partial Lyapunov characterization of
the MES property. A closely related property of
stability in three measures (SIT) is introduced,
which characterizes systems for which the error
decays whenever it dominates the measurement.
The SIT property is shown to imply MES, and
the two are shown to be equivalent under an ad-
ditional boundedness assumption. A nonsmooth
Lyapunov characterization of the SIT property
is provided, which yields the partial character-
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ization of MES. The analysis is carried out on
systems described by differential inclusions – im-
plicitly incorporating a disturbance input with
compact value-set.

1 Introduction

The notion of input to state stability (ISS), in-
troduced in [19], provides a theoretical frame-
work in which to formulate questions of ro-
bustness with respect to inputs (seen as distur-
bances) acting on a system. An ISS system is,
roughly, one which has a “finite nonlinear gain”
with respect to inputs and whose transient be-
havior can be bounded in terms of the size of
the initial state and inputs; the precise defini-
tion is in terms of K-function gains. ISS sys-
tems have been treated by a number of authors
(e.g. [9, 10, 11, 12, 14, 16, 21, 27]).

In light of the duality between input/state and
state/output behaviour which is common in con-
trol theory, it is natural to ask whether an ISS-
like notion of output to state stability can be for-
mulated. This concept, called OSS, is the subject
of [13, 22, 23]. The definition given is precisely
the same as that of ISS with outputs in the place
of inputs. In the case of linear systems this prop-
erty is equivalent to detectability. (When applied
to nonlinear systems, OSS is more properly de-
scribed as zero-detectability).

The paper [23] contains a discussion of various
definitions of detectability for nonlinear systems
which have appeared in the literature. Several



of these definitions are given in terms of the exis-
tence of a Lyapunov or “storage” function for the
system. The main result of [22] is the fact that
the OSS property is equivalent to the existence of
an appropriate Lyapunov function. These papers
also contain a discussion of a generalized notion
in which both inputs and outputs are considered
(input-output to state stability, or IOSS). This
property is addressed more completely in [13]
where a Lyapunov characterization is provided
and the construction of nonlinear observers is dis-
cussed.

This work addresses a generalization of the OSS
property to a notion of “partial detectability”.
When discussing systems with outputs, the out-
put signal typically plays one of two roles. A
common situation is when the outputs are consid-
ered as measurements. Here, one supposes that
knowledge of the whole state is not available, but
rather that only partial knowledge of the state
can be used. (Most commonly the output map
is a projection, which corresponds simply to the
ability to measure some, but not all, of the com-
ponents of the state. More generally, one may
only have access to some function of the state
variables – e.g. the sum of two components – and
so we allow for more general output mappings in
the theory). This is the role of the output in OSS,
and in the theory of detectability and observers
in general.

A second role for outputs occurs when the goal
of the control design is not to regulate the be-
haviour of the entire state, but rather only to
regulate the output signal. The theory of out-
put regulation addresses precisely this situation
(see e.g. [8]). In the case of systems with no in-
puts, the problem of stability of a subset of the
state variables (i.e. stability of an output sig-
nal which is a projection) has been addressed in
the ordinary differential equations literature un-
der the name “partial stability” [28]. Within the
ISS framework, the notion of stability of the out-
put signal has been described by input to output
stability (IOS) [5, 24, 25].

Consider now the case in which both the above
situations occur. That is, there are two output
signals, one which is measured, and the other
which must be regulated. A special case of this
situation has been addressed in the output regu-
lation theory, under the name “error feedback”.
This theory formulates the question of regulating
an output of the system (the error) with knowl-
edge of that output only. The more general case
is when there are two distinct channels playing

these two roles. In this paper we generalize the
notion of OSS to this situation by introducing the
concept of measurement to error stability (MES),
which can be viewed as a notion of partial de-
tectability through the measurement channel.

In this paper we will present a partial Lyapunov
characterization of the MES property. This will
be accomplished by first comparing the MES
property to a notion of output stability relative
to a set. This notion, which will be called sta-
bility in three measures (SIT) (cf. [15]) will be
characterized by the existence of a lower semi-
continuous Lyapunov function. It will be shown
that the SIT property implies MES, and that the
converse holds under an additional boundedness
assumption.

All stability notions discussed in this paper are
defined “robustly” with respect to disturbances.
Disturbances are incorporated implicitly into the
model by describing the dynamics of the system
by a differential inclusion.

2 Basic Definitions and Notations

We consider the differential inclusion

ẋ(t) ∈ F (x(t)) (1)

with two output maps

y(t) = h(x(t)), w(t) = g(x(t)),

and a map ω : Rn → R≥0. We take the state
x ∈ Rn. We assume that the set-valued map F
from Rn to subsets of Rn is locally Lipschitz (pre-
cise definitions to follow) with nonempty com-
pact values. In addition, we assume that the dif-
ferential inclusion (1) is forward complete. We
assume that the output maps h : Rn → Rpy and
g : Rn → Rpw are locally Lipschitz. The map ω is
assumed to be continuous and proper; it will be
used as a measurement of the magnitude of the
state vector. We will denote |·|ω := ω(·). The
use of |·|ω allows a framework which includes the
Euclidean norm, distance to a compact set, and
more general measures of the magnitude of the
state.

The Euclidean norm in a space Rk is denoted
simply by |·|. If z is a function defined on a real
interval containing [0, t], ‖z‖[0,t] is the sup norm

of the restriction of z to [0, t], that is ‖z‖[0,t] =

ess sup {|z(t)| : t ∈ [0, t]}. For each p ∈ Rn

and r ≥ 0 let B(p, r) := {x ∈ Rn : |x − p| ≤ r},



the ball of radius r centered at p. Let B denote
the unit ball B(0, 1).

To formulate the statement that a nonsmooth
function decreases in an appropriate manner, we
will make use of the notion of the viscosity sub-
gradient (cf. [1]).

Definition 2.1 A vector ζ ∈ Rn is a viscosity
subgradient of the function V : Rn → R at ξ ∈ Rn

if there exists a function g : Rn → R satisfying

limh→0
g(h)
|h| = 0 and a neighbourhood O ⊂ Rn of

the origin so that

V (ξ + h) − V (ξ) − ζ · h ≥ g(h)

for all h ∈ O.

The (possibly empty) set of viscosity subgradi-
ents of V at ξ is called the viscosity subdifferen-
tial and is denoted ∂DV (ξ). We remark that if V
is differentiable at ξ, then ∂DV (ξ) = {∇V (ξ)}.

A function γ : R≥0 → R≥0 is of class K (denoted
γ ∈ K) if it is continuous, positive definite, and
strictly increasing; and is of class K∞ if in addi-
tion it is unbounded. A function β : R≥0×R≥0 →
R≥0 is of class KL if for each fixed t ≥ 0, β(·, t)
is of class K and for each fixed s ≥ 0, β(s, t)
decreases to zero as t → ∞.

2.1 Differential Inclusions

We review some standard concepts from set-
valued analysis (See e.g. [1, 2, 3]). The following
statements apply to a map F from Rn to subsets
of Rn.

Definition 2.2 Let 0 < T ≤ ∞. A function
x : [0, T ) → Rn is said to be a solution of the
differential inclusion (1) if it is absolutely con-
tinuous and satisfies

ẋ(t) ∈ F (x(t)),

for almost every t ∈ [0, T ). A function x :
[0, T ) → Rn is called a maximal solution of
the differential inclusion (1) if it does not have
an extension which is a solution. That is, ei-
ther T = ∞ or there does not exist a solution
x̂ : [0, T+) → Rn with T+ > T so that x̂(t) = x(t)
for all t ∈ [0, T ).

Definition 2.3 The differential inclusion (1) is
said to be forward complete on Rn if every max-
imal solution is defined for all t ≥ 0.

For each C ⊆ Rn we let S(C) denote the set
of maximal solutions of (1) satisfying x(0) ∈ C
equipped with the topology of uniform conver-
gence on compact intervals. If C is a single-
ton {ξ} we will use the shorthand S(ξ). We set
S := S(Rn), the set of all maximal solutions.
Given a trajectory x(·) ∈ S(ξ) for some ξ ∈ Rn,
we denote

y(t) = h(x(t)) w(t) = g(x(t)),

for all t ≥ 0.

Definition 2.4 Let O be an open subset of Rn.
The set-valued map F is said to be locally Lip-
schitz on O if, for each ξ ∈ O, there exists a
neighbourhood U ⊂ O of ξ and an L > 0 so that
for any η, ζ in U ,

F (η) ⊆ F (ζ) + L |η − ζ| B.

3 Stability and Detectability Properties

The following definitions are given for a forward
complete system with two output channels as
in (1). The outputs y and w are considered as
error and measurement signals, respectively.

Our primary motivation is the following notion.

Definition 3.1 We say that the system (1) is
measurement to error stable (MES) if there exist
β ∈ KL and γ ∈ K so that

|y(t)| ≤ max{β(|x(0)|ω , t), γ(‖w‖[0,t])}

for each x(·) ∈ S, and all t ≥ 0.

In the investigation of the MES property, the fol-
lowing notion of relative stability of the error will
be useful. This is a notion of output stability
which is applicable to systems with a single out-
put y.

Definition 3.2 Given a closed subset D of the
state space Rn, we say that the system (1) is
relatively error stable (RES) with respect to D
if there exists β ∈ KL so that for any solution
x(·) ∈ S, if there exists t1 > 0 so that x(t) /∈ D
for all t ∈ [0, t1], then

|y(t)| ≤ β(|x(0)|ω , t) ∀t ∈ [0, t1].

A special case of this property occurs for a system
with two outputs when the set D is defined by
an inequality involving the two output maps, as
follows.



Definition 3.3 Let ρ ∈ K. We say that the
system (1) satisfies the stability in three mea-
sures (SIT) property (with gain ρ) if there ex-
ists β ∈ KL so that for any solution x(·) ∈ S, if
there exists t1 > 0 so that |y(t)| > ρ(|w(t)|) for
all t ∈ [0, t1], then

|y(t)| ≤ β(|x(0)|ω , t) ∀t ∈ [0, t1].

It is immediate that SIT is equivalent to relative
error stability with respect to the set D := {ξ ∈
Rn : |h(ξ)| ≤ ρ(|g(ξ)|)}.

The following relative stability property will also
be considered.

Definition 3.4 We say the system (1) satisfies
the relative measurement to error bounded prop-
erty (RMEB) if there exist K functions ρ1, σ1,
and σ2 so that for any solution x(·) ∈ S, if there
exists t1 > 0 so that |y(t)| > ρ1(|w(t)|) for all
t ∈ [0, t1], then for all t ∈ [0, t1],

|y(t)| ≤ max{σ1(|h(x(0))|), σ2(‖w‖[0,t])}. (2)

Remark 3.5 The RMEB property is equivalent
to the following seemingly stronger property:
there exist K functions ρ2 and σ so that for any
solution x(·) ∈ S, if there exists t1 > 0 so that
|y(t)| > ρ2(|w(t)|) for all t ∈ [0, t1], then

|y(t)| ≤ σ(|h(x(0))|) ∀t ∈ [0, t1].

The equivalence can be shown by setting ρ2(r) =
max{ρ1(r), σ2(r)} and σ(r) = σ1(r). 2

In the next section we provide a Lyapunov char-
acterization for the relative error stability prop-
erty.

4 Lyapunov Functions

We give definitions of the appropriate Lyapunov
functions.

Definition 4.1 Given an open set E ⊆ Rn,
we say that a lower semicontinuous function
V : Rn → R≥0 is a lower semicontinuous RES-
Lyapunov function for system (1) on E if

• there exist α1, α2 ∈ K∞ so that for all ξ ∈
E,

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|ξ|ω), (3)

• there exists α3 : R≥0 → R≥0 continuous
positive definite so that for each ξ ∈ E,

ζ · v ≤ −α3(V (ξ)) (4)

for all ζ ∈ ∂DV (ξ) and all v ∈ F (ξ).

We say that V is a lower semicontinuous ex-
ponential decay RES-Lyapunov function for sys-
tem (1) on E if in addition (4) holds with α3(r) =
r.

We specialize the above definitions for the notion
of stability in three measures as follows.

Definition 4.2 Let ρ ∈ K. We say that a lower
semicontinuous function V : Rn → R≥0 is a lower
semicontinuous SIT-Lyapunov function for sys-
tem (1) with gain ρ if

• there exist α1, α2 ∈ K∞ so that for each ξ
so that |h(ξ)| > ρ(|g(ξ)|), it follows that

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|ξ|ω),

• there exists α3 : R≥0 → R≥0 continuous
positive definite so that for each ξ so that
|h(ξ)| > ρ(|g(ξ)|),

ζ · v ≤ −α3(V (ξ)) (5)

for all ζ ∈ ∂DV (ξ) and all v ∈ F (ξ).

We say that V is a lower semicontinuous ex-
ponential decay SIT-Lyapunov function for sys-
tem (1) with gain ρ if in addition (5) holds with
α3(r) = r.

We next remark that the decrease statements (4)
and (5) can be written equivalently in an integral
formulation. Using a standard result (a minor
extension of Theorem 4.6.3 in [1], see e.g. [18]
for details) the decrease statements (4) and (5)
above can be written equivalently as (after pos-
sibly replacing α3 by a locally Lipschitz function
dominated by the original α3)

V (x(t)) − V (x(0)) ≤ −

∫ t

0

α3(V (x(s))) ds, (6)

for all x(·) ∈ S which remain in the appropriate
set on the interval [0, t].

The Lyapunov characterizations are as follows.

Theorem 1 Let a system of the form (1) and a
closed set D ⊂ Rn be given. Let E = Rn\D. The
following are equivalent.



1. The system is relatively error stable with
respect to D.

2. The system admits a lower semicontinuous
RES-Lyapunov function on E.

3. The system admits a lower semicontinuous
exponential decay RES-Lyapunov function
on E.

The implication (3) ⇒ (2) is immediate. In the
interests of space, proofs of the other implications
are omitted.

Corollary 4.3 Let a system of the form (1) and
a function ρ ∈ K be given. The following are
equivalent.

1. The system satisfies the SIT property with
gain ρ.

2. The system admits a lower semicontinuous
SIT-Lyapunov function with gain ρ.

3. The system admits a lower semicontinuous
exponential decay SIT-Lyapunov function
with gain ρ.

2

The corollary follows immediately by setting D =
{ξ ∈ Rn : |h(ξ)| ≤ ρ(|g(ξ)|)}.

5 Relationships between Notions

Having given a characterization of the SIT prop-
erty, we now indicate how this notion is related to
measurement to error stability. Proofs are omit-
ted due to space requirements.

Lemma 5.1 If the system (1) satisfies the MES
property, then it satisfies the SIT property.

Lemma 5.2 If the system (1) satisfies the SIT
property and the RMEB property, then it satis-
fies the MES property.

It is easy to give an example to show that the
converse of Lemma 5.1 does not hold in general.

The following partial characterization of MES is
an immediate consequence of Corollary 4.3 and
the two preceding lemmas.

Corollary 5.3 If the system (1) satisfies MES,
then it admits a lower semicontinuous exponen-
tial decay SIT-Lyapunov function. If the system
satisfies the RMEB property and admits a lower
semicontinuous SIT-Lyapunov function, then it
satisfies MES. 2

6 Discussion

As previously mentioned, the MES property (or
more precisely IMES – partial detectability un-
der explicit inputs) is a natural combination of
the notions of IOS and IOSS. As such, one would
hope that a Lyapunov characterization of the
IMES property would include as special cases the
existing characterizations for IOS and IOSS (de-
rived in [25] and [13], respectively). The work
presented here is a first step toward such a single
unifying result.

Several extensions to this result will be needed
to complete this program. Firstly, an explicit
input can be included by modelling the system
as a forced differential inclusion. Secondly, a
complete Lyapunov characterization is needed,
with no recourse to an additional boundedness
assumption. Finally, one would hope to prove
that the stability property implies the existence
of a smooth Lyapunov function, rather than the
discontinuous case described here. When and if
these problems are addressed, there will be a sin-
gle characterization which would encompass the
Lyapunov results on ISS, IOS and IOSS.
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