A Chemically Reacting System

- Molecules of N chemical species S_1, \ldots, S_N.
 - In a volume Ω, at temperature T.
 - Different conformations or excitation levels are considered different species if they behave differently.

- M “elemental” reaction channels R_1, \ldots, R_M.
 - each R_j describes a single instantaneous physical event, which changes the population of at least one species. Thus, R_j is either
 $\emptyset \rightarrow S_i$,
 or
 $S_i \rightarrow$ something else,
 or
 $S_i + S_r \rightarrow$ something else.
Question: How does this system evolve in time?

The traditional answer, for *spatially homogeneous* systems:

“According to the *reaction rate equation* (RRE).”

- A set of coupled, first-order ODEs.
- Derived using ad hoc, phenomenological reasoning.
- Implies the system evolves *continuously* and *deterministically*.
- Empirically accurate for large systems.
- Often not adequate for small systems.

* * *

The question deserves a more carefully considered answer.

Molecular Dynamics (MD)

- The most exact way of describing the system’s evolution.
- Tracks the position and velocity of *every* molecule in the system.
- Simulates *every* collision, *non-reactive* as well as *reactive*.
- Shows changes in species populations and their spatial distributions.
- *But* . . . it’s *unfeasibly slow* for nearly all realistic systems.
A great simplification occurs if successive reactive collisions tend to be separated in time by very many non-reactive collisions.

- The overall effect of the non-reactive collisions is to randomize the positions of the molecules (and also maintain thermal equilibrium).
- The non-reactive collisions merely serve to keep the system well-stirred or spatially homogeneous for the reactive collisions.
- Can describe the state of the system by $X(t) \triangleq (X_1(t), \ldots, X_N(t))$,
 $$X_i(t) \triangleq \text{the number of } S_i \text{ molecules at time } t.$$

But this well-stirred simplification, which . . .

- ignores the non-reactive collisions,
- truncates the definition of the system’s state,
 . . . comes at a price:

 $X(t)$ must be viewed as a stochastic process.

- In fact, the system was never deterministic to begin with!
 Even if molecules moved according to classical mechanics . . .
 - monomolecular reactions always involve QM.
 - bimolecular reactions require collisions, whose extreme sensitivity to initial conditions renders them essentially random.
 - bimolecular reactions usually involve QM too.
- But stochastic processes can be handled.
For well-stirred systems, each R_j is completely characterized by:

- a **propensity function** $a_j(\mathbf{x})$: Given the system in state \mathbf{x},

 $a_j(\mathbf{x}) \, dt \triangleq \text{the probability that one } R_j \text{ event will occur in the next } dt$.

 - The existence and form of $a_j(\mathbf{x})$ follow from kinetic theory.

 - $a_j(\mathbf{x})$ is roughly equal to, but is not derived from, the RRE “rate”.

- a **state change vector** $\nu_j \equiv (v_{ij}, \ldots, v_{iN_j})$: $v_{ij} \triangleq \text{the change in the number of } S_i \text{ molecules caused by one } R_j \text{ event}$.

 - R_j induces $\mathbf{x} \to \mathbf{x} + \nu_j$.

 \[\{ v_{ij} \} \equiv \text{the “stoichiometric matrix.”} \]

E.g.

\[
S_1 + S_2 \xrightarrow{c_2} 2S_1 \quad \Rightarrow \quad \begin{cases}
 a_1(\mathbf{x}) = c_1 x_1 x_2, & \mathbf{v}_1 = (+1,-1,0,...,0) \\
 a_2(\mathbf{x}) = c_2 \frac{x_1(x_1-1)}{2}, & \mathbf{v}_2 = (-1,+1,0,...,0)
\end{cases}
\]
Two exact, rigorously derivable consequences . . .

1. The chemical master equation (CME):
\[
\frac{\partial P(x,t|x_0,t_0)}{\partial t} = \sum_{j=1}^{M} \left[a_j(x - \nu_j)P(x - \nu_j,t|x_0,t_0) - a_j(x)P(x,t|x_0,t_0) \right].
\]
- Gives \(P(x,t|x_0,t_0) \doteq \text{Prob}\{X(t) = x \text{ given } X(t_0) = x_0\} \) for \(t \geq t_0 \).
- The CME follows from the probability statement
\[
P(x,t+dt|x_0,t_0) = P(x,t|x_0,t_0) \times \left[1 - \sum_{j=1}^{M} (a_j(x)dt) \right] \]
\[
+ \sum_{j=1}^{M} P(x - \nu_j,t|x_0,t_0) \times (a_j(x - \nu_j)dt).
\]
- But it’s practically always intractable (analytically and numerically).

- With \(\langle f(X(t)) \rangle \doteq \sum_x f(x)P(x,t|x_0,t_0) \), can show from CME that
\[
\frac{d}{dt} \langle X(t) \rangle = \sum_{j=1}^{M} \nu_j \langle a_j(X(t)) \rangle.
\]
- If there were no fluctuations, we would have
\[
\langle f(X(t)) \rangle = f\left(\langle X(t) \rangle \right) = f(X(t)),
\]
and the above would reduce to the reaction-rate equation (RRE):
\[
\frac{dX(t)}{dt} = \sum_{j=1}^{M} \nu_j a_j(X(t)).
\]
(Usually written in terms of the concentration \(Z(t) \doteq X(t)/\Omega \).)
- But as yet, we have no justification for ignoring fluctuations.
2. The stochastic simulation algorithm (SSA):
 - A procedure for constructing sample paths or realizations of $X(t)$.
 - Approach: Generate the time to the next reaction and the index of that reaction.
 - Theoretical justification: With $p(\tau, j|x, t)$ defined by
 $$p(\tau, j|x, t) d\tau \triangleq \text{prob, given } X(t) = x, \text{that the next reaction will occur in } [t+\tau, t+\tau+d\tau], \text{and will be an } R_j,$$
 can prove that
 $$p(\tau, j|x, t) = a_j(x) \exp\left(-a_0(x) \tau\right), \quad \text{where } a_0(x) \triangleq \sum_{j=1}^{M} a_j(x).$$
 This implies that the time τ to the next reaction event is an exponential random variable with mean $1/a_0(x)$, and the index j of that reaction is an integer random variable with prob $a_j(x)/a_0(x)$.

The “Direct” Version of the SSA

1. With the system in state x at time t, evaluate $a_0(x) \triangleq \sum_{j=1}^{M} a_j(x)$.
2. Draw two unit-interval uniform random numbers r_1 and r_2, and compute τ and j according to
 - $\tau = \frac{1}{a_0(x)} \ln \left(\frac{1}{r_1}\right)$,
 - $j = \text{the smallest integer satisfying } \sum_{j=1}^{j} a_j(x) > r_2 a_0(x)$.
3. Replace $t \leftarrow t + \tau$ and $x \leftarrow x + \nu_j$.
4. Record (x, t). Return to Step 1, or else end the simulation.
A Simple Example: \(S_1 \rightarrow 0 \).

\[a_1(x_i) = c_1 x_i, \quad \nu = -1. \text{ Take } X_i(0) = x_i^0. \]

RRE: \(\frac{dX_i(t)}{dt} = -c_1 X_i(t) \). Solution is \(X_i(t) = x_i^0 e^{-c_1 t} \).

CME: \(\frac{\partial P(x,t|x_i^0,0)}{\partial t} = c_1 \left[(x_i + 1) P(x_i + 1,t|x_i^0,0) - x_i P(x_i,t|x_i^0,0) \right] \).

Solution: \(P(x,t|x_i^0,0) = \frac{x_i^0!}{x_i! (x_i^0 - x_i)!} e^{-c_1 t} \left(1 - e^{-c_1 t} \right)^{x_i^0 - x_i} \) (\(x_i = 0,1,\ldots,x_i^0 \))

which implies \(\langle X_i(t) \rangle = x_i^0 e^{-c_1 t}, \text{ sdev} \{ X_i(t) \} = \sqrt{x_i^0 e^{-c_1 t} \left(1 - e^{-c_1 t} \right)} \).

SSA: Given \(X_i(t) = x_i \), generate \(\tau = \frac{1}{c_1 x_i} \ln \left(\frac{1}{r} \right) \), then update:

\[t \leftarrow t + \tau, \quad x_i \leftarrow x_i - 1. \]
$\hat{S}_1 \to 0$
$c_1 = 1, \ X(0) = 100$
The SSA . . .

- Is **exact**.
- Is equivalent to (but is not derived from) the CME.
- Does **not** entail approximating “dt” by “Δt”.
- Is **procedurally simple**, even when the CME is intractable.
- Has been redesigned to be faster and more efficient for very large systems (though more complicated to code) by Gibson and Bruck.

- **Remains too slow for most practical problems**: Simulating every reaction event, **one** at a time, is just too much work if any reactant is present in very large numbers.
We would be willing to sacrifice a little exactness . . .

. . . if that would buy us a faster simulation.

One way of doing this: **Tau-Leaping**

- **Approximately** advances the process by a *pre-selected* time \(\tau \), which may encompass *more than one* reaction event.
- The size of \(\tau \) is limited by the **Leap Condition**: *The changes induced in the propensity functions during \(\tau \) must be “small”.*
- If \(\tau \) can also be taken large enough to encompass many reaction events, tau-leaping will be faster than the SSA.
- Real speed-ups of 100× obtained for some simple model systems.
- **But must use with care.** Not as automatic and foolproof as the SSA.

Basics of Tau-Leaping

- Some math: The *Poisson random variable* \(\mathcal{P}(a, \tau) \triangleq \) the number of events that will occur in time \(\tau \), given that the probability of an event occurring in any \(dt \) is \(adt \).
- So, with \(\mathbf{X}(t) = \mathbf{x} \), if \(\tau \) is such that \(a_j(\mathbf{x}) = \) constant in \([t, t+\tau]\), then the number of \(R_j \) reactions that will occur in \([t, t+\tau]\) is *approximately* \(\mathcal{P}\left(a_j(\mathbf{x}), \tau \right) \); hence,

\[
\mathbf{X}(t+\tau) \triangleq \mathbf{x} + \sum_{j=1}^{M} \mathcal{P}\left(a_j(\mathbf{x}), \tau \right) \mathbf{v}_j .
\]

- Often feasible because . . .
 - Reliable procedures exist for generating samples of \(\mathcal{P}(a, \tau) \).
 - A way has been found to estimate in advance the *largest* \(\tau \) for a specified degree of adherence to the Leap Condition.
The Tau-Leap Simulation Algorithm

1. In state x at time t, choose τ so that the expected change in every propensity function in $[t,t+\tau]$ is $\leq \epsilon a_j(x)$. (This can be done.)

2. Generate the number of firings k_j of channel R_j in $[t,t+\tau]$ as $k_j = P \left(a_j(x), \tau \right)$ ($j = 1, \ldots, M$).

3. Leap: Replace $t \leftarrow t + \tau$ and $x \leftarrow x + \sum_{j=1}^{M} k_j \nu_j$.

4. Record (x,t). Then return to Step 1, or else end the simulation.
Decaying-Dimerizing Reaction Set

- $S_1 \rightarrow 0 \quad c_1 = 1$
- $S_1 + S_1 \rightarrow S_2 \quad c_2 = 0.002$
- $S_2 \rightarrow S_1 + S_1 \quad c_3 = 0.5$
- $S_2 \rightarrow S_3 \quad c_4 = 0.04$

- Explicit Tau Leaping Run ($\epsilon = 0.03$)
- 1 leap per plotted dist.
- Initially: $X_1 = 100,000; \quad X_2 = X_3 = 0.$
- Last reaction at $T = 44.52.$
- Final $X(3) = 17,033.$
- 592 leaps total.

Decaying-Dimerizing Reaction Set

$R_1: \quad S_1 \rightarrow 0 \quad A_1 = C_1^* X_1$
$R_2: \quad S_1 + S_1 \rightarrow S_2 \quad A_2 = C_2^* X_1(X_1-1)/2$
$R_3: \quad S_2 \rightarrow S_1 + S_1 \quad A_3 = C_3^* X_2$
$R_4: \quad S_2 \rightarrow S_3 \quad A_4 = C_4^* X_2$

Plots of A_j/A_0, where $A_0 = A_1 + A_2 + A_3 + A_4.$
Exact SSA run. 500 reactions per plotted point.
3 x 10,000 Simulation Runs

$t=0$: $X_1=4150$, $X_2=39565$, $X_3=3445$

Gaussian-windowed histograms of X_1 at $t=10$

- Exact SSA (32 hours).
- Tau-leaping, $\epsilon=0.02$, (11 minutes).
- Tau-leaping, $\epsilon=0.03$, (6.5 minutes).

3 x 10,000 Simulation Runs

$t=0$: $X_1=4150$, $X_2=39565$, $X_3=3445$

Gaussian-windowed histograms of X_2 at $t=10$

- Exact SSA
- Tau-leaping ($\epsilon=0.02$)
- Tau-leaping ($\epsilon=0.03$)
We can push Tau-Leaping further . . .

• Some more math: $\mathcal{P}(a, \tau)$ has mean and variance $a\tau$. And when $a\tau \gg 1$, can approximate $\mathcal{P}(a, \tau) \approx \mathcal{N}(a\tau, a\tau) \equiv a\tau + \sqrt{a\tau}\mathcal{N}(0,1)$.

• So, with $X(t) = x$, suppose we can choose τ to satisfy the Leap Condition, and also the conditions $a_j(x) \tau \gg 1$, $\forall j$. Then

$$X(t + \tau) \approx x + \sum_{j=1}^{M} \mathcal{P}(a_j(x), \tau) \nu_j$$

can be further approximated to

$$X(t + \tau) \approx x + \sum_{j=1}^{M} \nu_j a_j(x) \tau + \sum_{j=1}^{M} \nu_j \sqrt{a_j(x)} \mathcal{N}_j(0,1) \sqrt{\tau}.$$

• Valid iff τ is chosen small enough to satisfy the Leap Condition, yet large enough that every R_f fires many more times than once in τ.

• It’s not always possible to find such a τ! But it usually is if all the reactant populations are “sufficiently large”.
\[X(t + \tau) = x + \sum_{j=1}^{M} \nu_j a_j(x) \tau + \sum_{j=1}^{M} \nu_j \sqrt{a_j(x)} \mathcal{N}_j(0,1) \sqrt{\tau} \]

- Is called the **Langevin leaping formula**.
- It’s **faster** than ordinary tau-leaping.
- It **directly implies** (and is entirely equivalent too) a SDE called the **chemical Langevin equation** (CLE):

\[\frac{dX(t)}{dt} = \sum_{j=1}^{M} \nu_j a_j(X(t)) + \sum_{j=1}^{M} \nu_j \sqrt{a_j(X(t))} \Gamma_j(t). \]

\(\Gamma_j \)'s are “Gaussian white noises”, \(\mathbb{E}[\Gamma_j(t) \Gamma_j(t')] = \delta_{jj'} \delta(t - t') \).

- Our **discrete stochastic** process \(X(t) \) has now been **approximated** as a **continuous stochastic** process.
- Again, the CLE can’t always be invoked. But it usually can **if all the reactant molecular populations are “sufficiently large”**.

The Thermodynamic Limit

Def: All \(X_i \to \infty \), and \(\Omega \to \infty \), with \(X_i/\Omega \) constant.

- Can prove that, in this limit, **all** propensity functions **grow linearly** with the system size.
- So as we approach this limit, in the CLE

\[\frac{dX(t)}{dt} = \sum_{j=1}^{M} \nu_j a_j(X(t)) + \sum_{j=1}^{M} \nu_j \sqrt{a_j(X(t))} \Gamma_j(t), \]

the **deterministic** term grows like (system size), while the **stochastic** term grows like \(\sqrt{\text{system size}} \).

- This establishes the well know rule-of-thumb: **Relative fluctuations scale as the inverse square root of the system size**.
- **Very near** the thermodynamic limit, the CLE approximates to

\[\frac{dX(t)}{dt} = \sum_{j=1}^{M} \nu_j a_j(X(t)), \]

the **reaction rate equation** (RRE)! \(X(t) \) has now become a **continuous deterministic** process. And we’ve **derived** the RRE!
Summarizing . . .

Start with Molecular Dynamics
- The Gold Standard.
- “State” = positions and velocities of all the molecules.
- Simulates all collisions, non-reactive as well as reactive.
- But is way too slow.

The “well-stirred” simplification gives the CME/SSA
- Assumes the non-reactive collisions occur frequently enough to keep the system well-stirred (spatially homogeneous) for the reactive collisions.
- Simulates only the reactive collisions.
- “State” = the molecular populations of all the species, \(X(t) \).
- \(X(t) \) is a discrete stochastic process.

The Spectrum of Analytical Approaches for Well-Stirred Systems

\[
\begin{align*}
a_j(x) &= \text{const} \\
\forall j \in [t, t+\tau], \forall j &\quad \tau \gg 1 \\
X_i &\to \infty, \Omega \to \infty \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>CME/SSA</th>
<th>Tau-Leaping</th>
<th>CLE</th>
<th>RRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact</td>
<td>approximate</td>
<td>approximate</td>
<td>approximate</td>
</tr>
<tr>
<td>discrete</td>
<td>discrete</td>
<td>continuous</td>
<td>continuous</td>
</tr>
<tr>
<td>stochastic</td>
<td>stochastic</td>
<td>stochastic</td>
<td>deterministic</td>
</tr>
</tbody>
</table>

Is it simply a matter of picking the “right tool” from this spectrum?
Not quite.
Complications from “Multiscale”

- Some R_j occur very much more frequently than others.
- Some X_i are very much larger than others.
- Fast & slow & small & large usually all occur coupled – not easy to separate.
- Leads to dynamical stiffness, which usually restricts τ to the smallest time scale in the system.
- One recently proposed fix: Implicit tau-leaping – a stochastic adaptation of the implicit numerical solution method for stiff ODEs.
- Other proposed fixes: stochastic versions of the quasi-steady state and partial equilibrium approximation methods of deterministic chemical kinetics.

Spatially Inhomogeneous Systems

- Spatial homogeneity does not require that all equal-size subvolumes of Ω contain the same number of molecules!
- The CME and SSA require only that the center of a randomly chosen S_i molecule be found with equal probability at any point inside Ω.
- A system consisting of only one molecule can be “well-stirred”.

 - But the well-stirred assumption can’t always be made.

In that case, we must do something different; however, the traditional reaction-diffusion equation (RDE) is not always the answer:

- The RDE (like the RRE) is continuous and deterministic.
- It assumes that each $d\Omega$ contains a spatially homogeneous mixture of infinitely many molecules.
- Not the case in most cellular systems, where spatial inhomogeneity arises not from slow mixing but rather from compartmentalization caused by highly heterogeneous structures within the cell.
We can formulate a spatially inhomogeneous CME/SSA: Subdivide Ω into K spatially homogeneous subvolumes $\{\Omega_k\}$. Mathematically is the same as in the homogeneous case, except now we have

- KN species $\{S_{ik}\}$, and KM chemical reactions $\{R_{jk}\}$,
- plus a whole bunch of diffusive transfer reactions $\{R_{diff}^{i,j,k}\}$.

Challenges:

- Enormous increases in the numbers of species and reactions, so simulations will run orders of magnitude slower.
- No unambiguous definition of spatial homogeneity, hence no clear criterion for making the partitioning $\Omega \rightarrow \{\Omega_k\}$.
- Dynamically altering the $\{\Omega_k\}$ will probably be necessary, and will require bookkeeping that is complicated and time-consuming.
- Conflicting ways to compute the diffusive transfer rate constants.