Statistical Thermodynamics

Statistical thermodynamics aims to describe the properties of thermodynamic systems simply by looking at the most probable state of a system of *N* molecules. The most probable state can be found by considering all arrangements of the molecules, and looking at the arrangement with the highest *weight*.

The *weight* of a system of molecules is the total number of arrangements of a particular distribution, and is defined as $W = \frac{N!}{n_1!n_2!\cdots n_k!}$ where n_1, n_2, \ldots, n_k are the number of molecules in each respective state. Using methods from mathematics, one can approximate that $\ln W = N \ln N - \sum_i n_i \ln n_i$.

Additionally, the molecules are subject to two additional constraints: conservation of energy and conservation of mass. These imply that $\sum_i n_i \varepsilon_i = E_{tot}$ and $\sum_i n_i = N$, where ε_i is the energy of the *i*th state.

Finally, one can show that the population of each state is given by the Boltzmann distribution:

$$n_i = N \cdot \frac{e^{-\beta \varepsilon_i}}{\sum_i e^{-\beta \varepsilon_i}}$$

where the energy levels are in ascending order, and $\beta = \frac{1}{k_B T}$. We call the denominator $\sum_i e^{-\beta \varepsilon_i}$ the *partition function* and denote it *q*.

1. Consider a two-state system, with one state at zero energy and the other at an energy of ε . Find the proportion of molecules at each state at arbitrary temperature.

2. What are the proportions of molecules in each state when temperature approaches 0 or infinity?

 $T \rightarrow 0$:

 $T \to \infty$:

3. Find the total energy of the two-state system at arbitrary temperature. What is its maximum and at what temperature is this maximum achieved?

E = Max energy = Achieved at T =

The electronic energy levels in a hydrogen atom are given by $E_n = -\frac{R_H}{n^2}$ where $R_H = 2.178 \cdot 10^{-1}$ J.

4. Calculate the theoretical number of hydrogen atoms at the n = 2 energy state in one mol of hydrogen atoms at T = 4000 K.

Hint: It is reasonable to assume that there are essentially no hydrogen atoms at higher energy states.

The vibrational energy levels of a molecule are given by $E_n = h\left(n + \frac{1}{2}\right)\nu$ where ν is the vibrational wavenumber.

5. Find the vibrational partition function for a molecule with vibrational wavenumber ν . Hint: $\sum_{i\geq 0} x^i = \frac{1}{1-x}$. The previous problems have shown how to manipulate and calculate *q*. Our next goals will be to use statistical thermodynamics express fundamental thermodynamic aspects, in terms of *q*.

6. Show that the total energy of the system is given by $E = -\frac{N}{q} \cdot \frac{dq}{d\beta}$. Hint: $\frac{d}{d\beta} (e^{-\beta \varepsilon}) = -\varepsilon e^{-\beta \varepsilon}$.

7. Show that the entropy of the system is given by $S = \frac{E}{T} + Nk \ln q$. Hint: $S = k \ln W$.

Finally, we will try to understand a theoretical negative temperature scale.

8. Find the ratio of populations in a two-state system. In terms of the ratio of populations, when would temperature theoretically be negative?

9. Consider the energy of a general system. Does a system have more energy as $T \rightarrow 0$ from a negative temperature or a positive temperature? Justify your answer.