a.

$$
\frac{d[A]}{d t}=-k_{1}-k_{2}[A]^{2}
$$

b.

$$
\begin{gathered}
\int \frac{d[A]}{\frac{k_{1}}{k_{2}}+[A]^{2}}=\int-k_{2} d t \\
\sqrt{\frac{k_{2}}{k_{1}}} \tan ^{-1}\left(\sqrt{\frac{k_{2}}{k_{1}}}[A]\right)=-k_{2} t+C \\
{[A]=\sqrt{\frac{k_{1}}{k_{2}}} \tan \left(-\sqrt{k_{1} k_{2}} t+C\right)}
\end{gathered}
$$

Since $[A]$ at $t=0$ is equal to 1 molar, $C=\tan ^{-1}\left(\sqrt{\frac{k_{2}}{k_{1}}}\right)$
c. This is when $[A]=0$ which happens when $-\sqrt{k_{1} k_{2}} t+C=0$ or when

$$
t_{f}=\frac{\tan ^{-1}\left(\sqrt{\frac{k_{2}}{k_{1}}}\right)}{\sqrt{k_{1} k_{2}}}
$$

d. The concentration of $[B]$ after a certain time is $k_{1} t$. The total amount of $[A]$ decomposed after a time is $1-\sqrt{\frac{k_{1}}{k_{2}}} \tan \left(-\sqrt{k_{1} k_{2}} t+C\right)$, so the concentration of $[C]$ after a certain time is

$$
1-\sqrt{\frac{k_{1}}{k_{2}}} \tan \left(-\sqrt{k_{1} k_{2}} t+C\right)-k_{1} t .
$$

After the time found in part c elapses, the ratio of B to C is $\frac{k_{1} t_{f}}{1-k_{1} t_{f}}$.

