A certain natural product (represented as **S** in the schemes below) can be synthesized racemically as follows:

Cp = -C5H5, Bz = -COPh,

Alternatively, the natural product can be enantioselectively synthesized as follows:

1. Draw the structures of intermediates A-R (no stereochemistry required).

Hints: The formula of **B** is $C_7H_6O_2$. The formula of **I** is $C_{13}H_{14}O_3$. The NMR spectrum of **A** is as follows: 13C NMR: 155.02, 129.79, 121.09, 115.48 1H NMR: 7.240 (1H), 6.931 (2H), 6.838 (2H), 5.35 (1H, exchanges with D₂O)

Compound R contains 2 aromatic cycles.

rac-S is a more stable isomer of Compound R.

A	В	C	D
E	F	G	H
1	J	К	L
M	N	0	Ρ
Q	R	Scratch Work. Nothing writte	n here will be graded.

2. Draw the structures of **Z-W** (with stereochemistry) and **S** (you may draw *rac-S* without penalty).

Hints:

Compound **Z** has R configuration.

Compound **W** is tetracyclic and contains two oxygen atoms.

Z	Y	X
W	S	Scratch Work.
W	S	Scratch Work. Nothing written here will be graded.
W	S	Scratch Work. Nothing written here will be graded.
W	S	Scratch Work. Nothing written here will be graded.
W	S	Scratch Work. Nothing written here will be graded.
W	S	Scratch Work. Nothing written here will be graded.
W	S	Scratch Work. Nothing written here will be graded.
W	S	Scratch Work. Nothing written here will be graded.

3. Draw the mechanism of the reaction between **Y** and **Z** that produces **X**. What is this reaction known as?

 $A = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad C = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad D = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad MH_2$ OF CHO F= one one H= R one H= R E: $J = \bigcup_{k=1}^{M} K = 1$ I= I HOY N = Q= 10 Co one NNHTR 7= 5 X =