A certain natural product (represented as \mathbf{S} in the schemes below) can be synthesized racemically as follows:
 cat. MeLi, PhOEt
210 C , Microwav e Irridiation

$\xrightarrow[\text { 2) Mel }]{\text { 1) } \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}} P \xrightarrow{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{8}} \mathrm{Q} \xrightarrow[\text { 2) } \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}]{\text { 1) } \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}} \mathrm{R} \xrightarrow{\mathrm{TsOH}}$ raC-S
$\mathrm{Cp}=-\mathrm{C} 5 \mathrm{H} 5, \mathrm{Bz}=-\mathrm{COPh}$,
Alternatively, the natural product can be enantioselectively synthesized as follows:

1. Draw the structures of intermediates $\mathbf{A}-\mathbf{R}$ (no stereochemistry required).

Hints:
The formula of B is $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$.
The formula of I is $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$.
The NMR spectrum of \mathbf{A} is as follows:
13C NMR: 155.02, 129.79, 121.09, 115.48
1H NMR: $7.240(1 \mathrm{H}), 6.931(2 \mathrm{H}), 6.838(2 \mathrm{H}), 5.35\left(1 \mathrm{H}\right.$, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right)$
Compound \mathbf{R} contains 2 aromatic cycles.
rac-S is a more stable isomer of Compound \mathbf{R}.

A	B	C	D
		F	

2. Draw the structures of Z-W (with stereochemistry) and \mathbf{S} (you may draw rac-S without penalty).

Hints:
Compound \mathbf{Z} has \mathbf{R} configuration.
Compound \mathbf{W} is tetracyclic and contains two oxygen atoms.

\mathbf{Z}		\mathbf{Y}

3. Draw the mechanism of the reaction between \mathbf{Y} and \mathbf{Z} that produces \mathbf{X}. What is this reaction known as?

