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Abstract

In this paper, we present novel constructions of matrices with the restricted isometry property
(RIP) that support fast matrix-vector multiplication. Our guarantees are the best known, and
can also be used to obtain the best known guarantees for fast Johnson Lindenstrauss transforms.

In compressed sensing, the restricted isometry property is a sufficient condition for the ef-
ficient reconstruction of a nearly k-sparse vector x ∈ Cd from m linear measurements Φx. It
is desirable for m to be small, and further it is desirable for Φ to support fast matrix-vector
multiplication. Among other applications, fast multiplication improves the runtime of iterative
recovery algorithms which repeatedly multiply by Φ or Φ∗.

The main contribution of this work is a novel randomized construction of RIP matrices
Φ ∈ Cm×d, preserving the `2 norms of all k-sparse vectors with distortion 1+ε, where the matrix-
vector multiply Φx can be computed in nearly linear time. The number of rows m is on the order
of ε−2k log d log2(k log d), an improvement on previous analyses by a logarithmic factor. Our
construction, together with a connection between RIP matrices and the Johnson-Lindenstrauss
lemma in [Krahmer-Ward, SIAM. J. Math. Anal. 2011], also implies fast Johnson-Lindenstrauss
embeddings with asymptotically fewer rows than previously known.

Our construction is actually a recipe for improving any existing family of RIP matrices.
Briefly, we apply an appropriate sparse hash matrix with sign flips to any suitable family of RIP
matrices. We show that the embedding properties of the original family are maintained, while at
the same time improving the number of rows. The main tool in our analysis is a recent bound for
the supremum of certain types of Rademacher chaos processes in [Krahmer-Mendelson-Rauhut,
Comm. Pure Appl. Math. to appear].
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1 Introduction

The goal of compressed sensing [CRT06a,Don06] is to efficiently reconstruct sparse, high-dimensional
signals from a small set of linear measurements. The idea is that if a signal x ∈ Cd has at most
k � d “large” entries (i.e. is “nearly k-sparse”), then we should be able to recover it with far fewer
than d measurements.

Organizing the m measurements as the rows of a matrix Φ ∈ Cm×d, one wants an efficient
recovery algorithm R which approximately recovers x from Φx. Subject to the requirement that
the recovery algorithm work—that is, R(Φx) should approximate x—there are two primary goals
in the design of Φ and R. First, we would like the number of measurements m to be as small as
possible. Second, we would like for the recovery algorithm R be as efficient as possible.

In this paper, we improve the trade-off between these goals, by constructing matrices Φ which
allow for very efficient recovery, and which use asymptotically fewer measurements than existing
constructions with the same recovery properties. Our results (which will be explained in more
detail below) are summarized in Figure 1.

Our work also implies more efficient dimension reducing maps. A Johnson Lindenstrauss (JL)
embedding is a linear map that approximately preserves the geometry of a fixed set of points. JL
embeddings have important algorithmic applications, where it is desirable that they be efficient to
apply; if this is the case, they are known as fast JL transforms (FJLTs). Exploiting a connection
of Krahmer and Ward [KW11] between compressed sensing and JL transforms, our results for
compressed sensing matrices also imply improved FJLTs, resulting in the best known constructions.
Further, recent work [YWR12] has established a similar connection to efficient stable manifold
embeddings, and our constructions also give the best known embeddings in this setting.

1.1 The Restricted Isometry Property

In this paper, we construct matrices Φ which satisfy the restricted isometry property (RIP), support
fast matrix-vector multiplication, and which require fewer measurements than previous analyses.
The RIP is a popular way to obtain recovery guarantees in compressed sensing. We say that a
matrix Φ ∈ Cm×d has the (ε, k)-RIP if for all k-sparse x ∈ Cd,

(1− ε)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + ε)‖x‖22. (1)

It is known that if Φ satisfies the (ε, k)-RIP for appropriately small ε, then it is possible to recover
x from Φx [Can08, CRT06b, CT05]. Furthermore, the recovery can be done efficiently by solving
a linear program [CRT06b, CDS01, DET06], or by one of several iterative recovery algorithms, for
example those in [BD08,GK09,NT09,Fou11,TG07,DTDS12,NV09,NV10].

It is important for the measurement matrix Φ to allow for fast matrix-vector multiplication—
ideally, in time nearly linear in d—because most of the algorithms above multiply repeatedly by
either Φ or Φ∗. Usually, this multiplication is the bottleneck in the running time of the recovery
algorithm.

There is a gap of several logarithmic factors between what one can do quickly and what one can
do slowly, and our work shrinks this gap. If fast matrix-vector multiplication is not required, then
RIP matrices exist with m = Θ(k log(d/k)), and this is known to be optimal [Kaš77, GG84]. On
the other hand, if fast multiplication is required, the best constructions require polylogarithmically
more measurements. A series of important contributions—discussed in detail in Section 1.3—have
removed several successive log factors from this gap, and our work continues in this tradition. The
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state-of-the-art constructions [RV08,KMR13] require three extraneous logarithmic factors. In this
paper, we remove one log factor, leaving only two between our construction and the lower bounds.
Moreover, the two remaining log factors come from a single source of slackness in our proof that
also appears in both [RV08, KMR13]. Thus it seems likely that any future improvement would
achieve an optimal result.

1.2 Johnson-Lindenstrauss embeddings

As mentioned above, our improved RIP matrices also imply the best known fast Johnson-Lindenstrauss
transforms. The Johnson-Lindenstrauss (JL) lemma of [JL84] states that one can embed N points
in `d2 into a linear subspace of dimension approximately logN , with very little distortion.1

Lemma 1. For any 0 < ε < 1/2 and any x1, . . . , xN ∈ Rd, there exists a linear map A ∈ Rm×d for
m = O(ε−2 logN) such that for all 1 ≤ i < j ≤ N ,

(1− ε)‖xi − xj‖2 ≤ ‖Axi −Axj‖2 ≤ (1 + ε)‖xi − xj‖2. (2)

This guarantee is nearly optimal, in the sense that there are sets of N vectors for which m =
Ω((ε−2/ log(1/ε)) logN) is required [Alo03].

The JL lemma is a useful tool for speeding up solutions to several problems in high-dimensional
computational geometry; see for example [Ind01,Vem04]. Often, one has an algorithm which is fast
in terms of the number of points but slow as a function of dimension; a good strategy to approximate
a solution quickly is to first reduce the input dimension via the JL lemma before running the
algorithm. This strategy has recently found applications in approximate numerical algebra problems
such as linear regression and low-rank approximation [Sar06,CW09,CW12,MM12,NN12a], and for
the k-means clustering problem [BZMD11]. Going back to our original problem, the JL lemma also
implies the existence of (ε, k)-RIP matrices with O(ε−2k log(d/k)) rows [BDDW08].

Due to its algorithmic importance, it is of interest to obtain JL matrices (that is, matrices which
satisfy (2)), which allow for fast embedding time. Ideally, the matrix-vector product Ax should be
computed in time nearly linear in d.

As with the RIP, when a fast embedding time is required, there is a gap of several logarithmic
factors between the upper and lower bounds on the target dimension m; a second contribution of
this paper is to reduce this gap. If the embedding time may be slow, there are many construc-
tions of dense JL matrices with m = Θ(ε−2 log(N)) [Ach03,AV06,DG03,FM88,IM98,JL84,Mat08].
On the other hand, there has been extensive work (discussed in detail below in Section 1.3) con-
structing JL matrices with fast embedding time and a small target dimension. One line of work
demands an optimal number of measurements and has been improving the runtime; another line
of work demands a fast runtime and has been improving the required number of measurements.
In this paper, we add to the second line of work, removing a logarithmic factor in the number of
measurements, while offering near-linear runtime. After our work, there are only three extraneous
logarithmic factors remaining.

1.3 Previous Work on Fast RIP/JL

Above, we saw the importance of constructing RIP and JL matrices which not only have few rows
but also support fast matrix-vector multiplication. Below, we review previous work in this direction.

1The JL lemma is most commonly stated over R, so we state it this way here. However, as in [KW11], all of our
results extend to complex vectors and complex matrices.
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We then state our contributions and improvements, which are summarized in Figure 1.
We stress that in this work, we are primarily interested in the case that the sparsity parameter

k is large, for example k >
√
d. This is the regime most of interest to compressed sensing, as we see

from the theoretical attention paid to log d vs log(d/k) [CRT06b, BDDW08] and from the experi-
mental regimes generally studied [DT09,LDSP08]. It is also the regime where the problem remains
open: the case when k <

√
d was solved optimally in [AC09, AL09], with recent improvements

by [AR13], and in fact follows easily from [RV08] by considering the matrix G · Φ, where G is a
dense JL matrix (e.g., a Gaussian) with O(k log d) rows and Φ is a subsampled Fourier matrix that
satisfies the RIP and has k logc d rows.2 Finally, the large k regime is of interest for applications
to JL: when constructing JL matrices from RIP matrices via the aforementioned connection of
Krahmer and Ward [KW11], constructions which restrict to small k result in JL matrices which
restrict the size N of the set of vectors which is preserved, and this is undesirable in applications.

The best known construction of RIP matrices with fast multiplication (which work for large k)
come from either subsampled Fourier matrices (or related constructions) or from partial circulant
matrices. Candès and Tao showed in [CT06] that a matrix whose rows are m = O(k log6 d) random
rows from the Fourier matrix satisfies the (O(1), k)-RIP with positive probability. The analysis
of Rudelson and Vershynin [RV08] and an optimization of it by Cheraghchi, Guruswami, and Vel-
ingker [CGV13] improved the number of rows required for the (ε, k)-RIP tom = O(ε−2k log d log3 k).
For circulant matrices, initial works required m� k3/2 to obtain the (ε, k)-RIP [HBRN10,RRT12];
Krahmer, Mendelson and Rauhut [KMR13] recently improved the number of rows required to
m = O(ε−2k log2 d log2 k).

The first work on JL matrices with fast multiplication was by Ailon and Chazelle [AC09], which
had m = O(ε−2 logN) rows and embedding time O(d log d + m3). In certain applications N can
be exponentially large in a parameter of interest, e.g. when one wants to preserve the geometry of
an entire subspace for numerical linear algebra [CW09,Sar06] or k-means clustering [BZMD11], or
the set of all sparse vectors in compressed sensing [BDDW08]. Thus, while the number of rows in
this construction is optimal, for some applications it is important to improve the dependence on m
in the running time. Ailon and Liberty [AL09] improved the running time to O(d logm + m2+γ)
for any desired γ > 0 (with the same number of rows). More recently the same authors gave a
construction with m = O(ε−4 logN log4 d) supporting matrix-vector multiplies in time O(d log d)
[AL11]. Krahmer and Ward [KW11] improved the target dimension to m = O(ε−2 logN log4 d).

As mentioned above, this last improvement of [KW11] is actually a more general result, which
constructs a fast JL matrix from an RIP matrix which supports fast multiplication. The reported
bound on m is the result of applying their theorem to subsampled Fourier matrices and using the
result of [RV08] cited above. We will use the same machinery to obtain improved JL matrices, from
our improved construction of RIP matrices.

Another way to obtain JL matrices which support fast matrix-vector multiplication is to con-
struct sparse JL matrices [WDL+09, DKS10, KN10, BOR10, KN12]. These constructions allow for
very fast multiplication Ax when the vector x is itself sparse. However, these constructions have
an Ω(ε) fraction of nonzero entries, and it is known that any JL transform with O(ε−2 logN) rows
requires an Ω(ε/ log(1/ε)) fraction of nonzero entries [NN12b]. Thus, for constant ε and dense x,

2Indeed, this matrix satisfies the RIP with optimal O(k log d) rows by [BDDW08]. Further, it supports O(d log d+
k2 logc+1 d) matrix-vector multiplication time, which is nearly linear since k ≤

√
d. The only caveat is that the

running time has a sub-optimal dependence on ε, at ε−4 rather than ε−2; in the standard compressed sensing regime
of constant ε this is irrelevant.
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multiplication still requires time Θ(dm).

1.4 Our contributions

In this work we propose and analyze a new method for constructing RIP matrices that support
fast matrix-vector multiplication. Loosely speaking, our method takes any “good” ensemble of RIP
matrices, and produces an ensemble of RIP matrices with fewer rows by multiplying by a suitable
hash matrix. We can apply our method to either subsampled Fourier matrices or partial circulant
matrices to obtain our improved RIP matrices.

Our construction follows a natural intuition. For example, let A be the discrete Fourier matrix,
and suppose that S is an m × d matrix with i.i.d. Rademacher (±1) entries, appropriately renor-
malized. If m = Θ(ε−2k log(d/k)), then SA satisfies the (ε, k)-RIP with high probability, because
S has the RIP, and A is an isometry. Unfortunately, this construction has slow matrix-vector mul-
tiplication time. On the other hand, if S′ is an extremely sparse random sign matrix, with only one
non-zero per row, then S′A is a subsampled Fourier matrix, supporting fast multiplication. Unfor-
tunately, in order to show that S′A satisfies the RIP with high probability, m must be increased
by polylog(k) factors. This raises the question: can we get the best of both worlds? How sparse
must the sign matrix S be to ensure RIP with few rows, and can it be sparse enough to maintain
fast matrix-vector multiplication? In some sense, this question, and our results, connects the two
lines of research—structured matrices and sparse matrices—on fast JL matrices mentioned above.
Our results imply we can improve the number of rows over previous work by using such a sparse
sign matrix with only polylog(d) non-zeroes per row.

Our Main Contribution: We give randomized constructions of (ε, k)-RIP matrices with

m = O(ε−2k log d log2(k log d))

and which support matrix-vector multiplication in time O(d log d) +m · logO(1) d. When combined
with [KW11], we obtain a JL matrix with a number of rows

m = O(ε−2 logN log d log2((logN) log d)) = O(ε−2 logN log3 d)

and same embedding time. Thus for both RIP and JL, our constructions support fast matrix-vector
multiply using the fewest rows known.

Our RIP and JL matrices have multiplication time at most d · logO(1) d for any value of k, and
further maintain the O(d log d) running time of the sampled discrete Fourier matrix as long as
k < d/polylog d. Our results are given in Figure 1.

1.5 Notation and Preliminaries

We set some notation. We use [n] to denote the set {1, . . . , n}. We use ‖·‖2 denote the `2 norm
of a vector, and ‖·‖, ‖·‖F to denote the operator and Frobenius norms of a matrix, respectively.
For a set S and a norm ‖·‖X , d‖·‖X (S) denotes the diameter of S with respect to ‖·‖X . We say

that x ∈ Cd is k-sparse if ‖x‖0 ≤ k, where ‖x‖0 denotes the number of non-zero entries. The
set of k-sparse vectors x ∈ Cd with ‖x‖2 ≤ 1 is denoted Tk. In addition to O(·) notation, for two
functions f, g, we use the shorthand f . g (resp. &) to indicate that f ≤ Cg (resp. ≥) for some
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Ensemble # rows m needed for RIP Matrix-vector
multiplication time

Reference

Partial Fourier O(ε−2k log d log3 k) O(d log d) [RV08,CGV13]

Partial Circulant O(ε−2k log2 d log2 k) O(d logm) [KMR13]

Hash ×
Partial Fourier

O(ε−2k log d log2 k) O(d log d) + mpolylog d this work

Hash ×
Partial Circulant

O(ε−2k log d log2 k) O(d logm) + mpolylog d this work

Figure 1: Table of results. The results above assume k ≥ polylog(d); as discussed in Section 1.3,
we are interested in the case of large k, so this restriction is innocuous.

absolute constant C. We use f h g to mean cf ≤ g ≤ Cf for some constants c, C. For clarity, we
have made no attempt to optimize the values of the constants in our analyses.

Once we define the randomized construction of our RIP matrix Φ, we will control |‖Φx‖22−‖x‖22|
uniformly over Tk, and thus will need some tools for controlling the supremum of a stochastic process
on a compact set. For a metric space (T, d), the δ-covering number N (T, d, δ) is the size of the
smallest δ-net of T with respect to the metric d. One way to control a stochastic process on T is
simply to union bound over a sufficiently fine net of T ; a more powerful way to control stochastic
processes, due to Talagrand, is through the γ2 functional [Tal05].

Definition 2. For a metric space (T, d), an admissible sequence of T is a sequence of nets
A0, A1, A2, . . . of T so that |A0| = 1 and |An| ≤ 22n for n ≥ 1. Then

γ2(T, d) := inf sup
t∈T

∞∑
n=1

2n/2d(An, t),

where the infimum is taken over all admissible sequences {An}.

Intuitively, γ2(T, d) measures how “clustered” T is with respect to d: if T is very clustered,
then the union bound over nets above can be improved by a chaining argument. A similar idea is
used in Dudley’s integral inequality [LT91, Theorem 11.1], and indeed they are related (see [Tal05],
Section 1.2) by

γ2(T, d) .
∫ diamd(T )

0

√
logN (T, d, u) du. (3)

It is this latter form that will be useful to us.

1.6 Organization

In Section 2 we define our construction and give an overview of our techniques. We also state
our most general theorem, Theorem 6, which gives a recipe for turning a “good” ensemble of RIP
matrices into an ensemble of RIP matrices with fewer rows. In Section 3, we apply Theorem 6 to
obtain the results listed in Figure 1. Finally, we prove Theorem 6 in Appendices A and B.
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2 Technical Overview

Our construction is actually a general method for turning any “good” RIP matrix with a suboptimal
number of rows into an RIP matrix with fewer rows. Many previous constructions of RIP matrices
involve beginning with an appropriately structured matrix (a DFT or Hadamard matrix, or a
circulant matrix, for example), and keeping only a subset of the rows. In this work we propose a
simple twist on this idea: each row of our new matrix is a linear combination of a small number of
rows from the original matrix, with random sign flips as the coefficients. Formally, we define our
construction as follows.

Let AM be a distribution on M × d matrices, defined for all M , and fix parameters m and B.
Define the injective function h : [m]× [B]→ [mB] as h(b, i) = B(b− 1) + i to partition [mB] into
m buckets of size B, so h(b, i) denotes the ith element in bucket b. We draw a matrix A from AmB,
and then construct our m× d matrix Φ(A) by using h to hash the rows of A into m buckets of size
B.

Definition 3 (Our construction). Let AM be as above, and fix parameters m and B. Define a new
distribution on m× d matrices by constructing a matrix Φ ∈ Cm×d as follows.

1. Draw A ∼ AmB, and let ai denote the rows of A.

2. For each (b, i) ∈ [m]× [B], choose a sign σb,i ∈ {±1} independently, uniformly at random.

3. For b = 1, . . . ,m let

ϕb =
∑
i∈[B]

σb,iah(b,i),

and let Φ = Φ(A, σ) be the matrix with rows ϕb.

We use Ab to denote the B × d matrix with rows ah(b,i) for i ∈ [B].

Equivalently, Φ may be obtained by writing Φ = HA, where A ∼ AmB, and H is the m×mB
random matrix with columns indexed by (b, i) ∈ [m]× [B], so that

Hj,(b,i) =

{
σb,i b = j

0 b 6= j
.

Note that there are two sources of randomness in the construction of Φ: there is the choice of
A ∼ AmB, and also the choice of the sign flips which determine the matrix H. Our RIP matrix
will be the appropriately normalized matrix Φ/

√
mB.

We consider two example distributions for AM . First, we consider a bounded orthogonal en-
semble.

Definition 4 (Bounded orthogonal ensembles). Let 1√
d
U ∈ Cd×d be any unitary matrix with

|Uij | ≤ 1 for all entries Uij of U . Let ui denote the ith row of U . A matrix A ∈ CM×d is drawn
from the bounded orthogonal ensemble associated with U as follows. Select, independently and
uniformly at random, a multi-set Ω = {t1, . . . , tM} with ti ∈ [d]. Then let A ∈ CM×d be the matrix
with rows ut1 , . . . , utM .
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Popular choices (and our choices) for U include the d-dimensional discrete Fourier transform
(resulting in the Fourier ensemble), or the d×d Hadamard matrix, both of which support O(d log d)
time matrix-vector multiplication.

The second family we consider is the partial circulant ensemble.

Definition 5 (Partial Circulant Ensemble). For z ∈ Cd, the circulant matrix Hz ∈ Cd×d is given
by Hzx = z ∗ x, where ∗ denotes convolution. Fix Ω ⊂ [d] of size M arbitrarily. A matrix A is
drawn from the partial circulant ensemble as follows. Choose ε ∈ {±1}d uniformly at random, and
let A be the rows of Hε indexed by Ω.

As long as the original matrix ensemble A supports fast matrix-vector multiplication, so does
the resulting matrix Φ. Indeed, writing Φx = HAx as above, we observe that there are mB nonzero
entries in H, so computing the product HAx takes time O(mB), plus the time it takes to compute
Ax. When A is drawn from the partial Fourier ensemble, Ax may be computed in time O(d log d)
via the fast Fourier transform. We will choose B = polylog(d), and so Φx may be computed in
time O(d log d + mpolylog d). When A is the partial circulant ensemble, Ax may be computed in
time d log(mB) by breaking it up into d/(mB) blocks, each of which is a mB×mB Toeplitz matrix
supporting matrix-vector multiplication in time O(mB log(mB)). Thus, in this case Φx may be
computed in time O(d log(mB) +mB) = O(d logm) +mpolylog d.

Having established the “multiplication time” column of Figure 1, we turn to the more difficult
task of establishing the bounds on m, the number of rows. We note that Φ/

√
mB has the (ε, k)-RIP

if and only if

sup
x∈Tk

∣∣∣∣ 1

mB
‖Φx‖22 − ‖x‖

2
2

∣∣∣∣ ≤ ε,
and so our goal will be to establish bounds on supx∈Tk

∣∣∣‖Φx‖22 /(mB)− ‖x‖22
∣∣∣. We will show that

if A satisfies certain properties, then in expectation this quantity is small. Specifically we require
the following two conditions. First, we require a random matrix from A to have the RIP with a
reasonable, though perhaps suboptimal, number of rows:

E
A∼A

sup
x∈Tk

∣∣∣∣ 1

M
‖Ax‖22 − ‖x‖

2
2

∣∣∣∣ .
√

L

M
(?)

for some quantity L, for suitably large M > M0. Recall Tk is the set of unit-norm k-sparse vectors.
Second, the matrices Ab whose rows are the rows of A indexed by h(b, i) for i ∈ [B] should be

well-behaved. Define (†) to be the event that

max
b∈[m]

sup
x∈Ts
‖Abx‖2 ≤ `(s) (†)

for some function `(s) and all s ≤ 2k. We require that (†) happen with constant probability:

PA∼A [(†) holds] ≥ 7/8. (??)

for some sufficiently small function `.
As long as these two requirements on A are satisfied, and all matrices in the support of A

have entries of bounded magnitude, the construction of Definition 3 yields a RIP matrix, with
appropriate parameters. The following is our most general theorem.
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Theorem 6. Fix ε ∈ (0, 1), and fix integers m and B. Let A = AmB be a distribution on mB × d
matrices so that ‖ai‖∞ ≤ 1 almost surely for all rows ai of A ∼ A. Suppose that (?) holds with

L ≤ mBε2,

and M = mB > M0. Suppose further that (??) holds, with

`(s) ≤ Q1

√
B +Q2

√
s

and that
B ≥ max{Q2

2 log2m,Q2
1 logm log k}, and k ≥ Q2

1 log2m.

Finally, suppose that m > m0, for

m0 =
k log d log2(Bk)

ε2
.

Let Φ be drawn from the distribution of Definition 3. Then

sup
x∈Tk

∣∣∣∣ 1

mB
‖Φx‖22 − ‖x‖

2
2

∣∣∣∣ . ε,
that is, 1√

mB
Φ satisfies the (O(ε), k)-RIP, with 3/4 probability.

In Section 3, we will show how to use Theorem 6 to prove the results reported in Figure 1, but
first we will outline the intuition of the proof of Theorem 6 (which is fleshed out in Appendix A).

By construction, the expectation of ‖Φx‖22 over the sign flips σ is simply ‖Ax‖22, and (?) guaran-
tees that this expectation is under control, uniformly over x ∈ Tk. The trick is that A has mB rows,
rather than m, and this provides slack to handle the fact that the guarantee (?) is not optimal.

The problem is then to argue that for all x ∈ Tk, ‖Φx‖22 is close to its expectation. The proof
of Theorem 6 proceeds in two steps. First, we condition on A and control the deviation

E
σ

sup
x∈Tk

∣∣∣‖Φx‖22 − E
σ
‖Φx‖22

∣∣∣ . (4)

Second, we take the expectation with respect to A ∼ AmB.
In Theorem 11 we carry out the first step and bound the deviation (4) by Talagrand’s γ2

functional γ2(Tk, ‖·‖X), where ‖x‖X := maxb ‖Abx‖2 is a norm which measures the contribution
to ‖Φx‖2 of the worst bucket b of the partition function h. Our strategy is to write ‖Φx‖22 as
‖X(x)σ‖22, for an appropriate matrix X(x) that depends on A. Finally we use a result of Krahmer,
Mendelson, and Rauhut [KMR13] to control the Rademacher chaos, obtaining an expression in
terms of γ2(Tk, ‖·‖X).

In the second step, we unfix A, and γ2(Tk, ‖·‖X) becomes a random variable. In Theorem 12,
we show that, as long as (??) holds, γ2(Tk, ‖·‖X) is small with high probability over the choice of
A ∼ AmB. By (3), it is sufficient to bound the covering numbers N (Tk, ‖·‖X , u). This is similar
to [RV08], which must bound the same N (Tk, ‖·‖X , u) but in a setting where B = 1. Both papers
use Maurey’s empirical method to relate the covering number to E[maxb ‖Abg‖2] for a Gaussian
process g. But while [RV08] loses a

√
logm factor in a union bound over b, we only lose a constant

factor as long as B ≥ polylog d. This difference is what gives our log k improvement in m. It is
also the most technical piece of our proof, and is presented in Appendix B.

Finally, we put all of the pieces together. As long as mB is large enough and the condition
(?) holds, Eσ ‖Φx‖2 /

√
mB will be close to ‖x‖2 in expectation over A. At the same time as long

as the condition (??) holds, the deviation (4) is small in expectation over A ∼ AmB. Choosing B
appropriately controls the restricted isometry constant of Φ.
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3 Main Results

Due to space constraints, we defer the proof of Theorem 6 to Appendix A. In the meantime, let us
show how we may use it to conclude the results in Figure 1. To do this, we must compute L and
`(s) from the conditions (?) and (??), when A is the Fourier ensemble (or any bounded orthogonal
ensemble), and when A is the partial circulant ensemble.

3.1 Bounded orthogonal ensembles

Suppose A is a bounded orthogonal ensemble. The RIP analysis of [RV08,CGV13] shows

E
A∼A

sup
x∈Tk

∣∣∣∣ 1

M
‖Ax‖22 − ‖x‖

2
2

∣∣∣∣ .
√
k log3 k log d

M
,

provided that M & k log3 k log d, so we may take L . k log3 k log d. Further, the analysis of [RV08]
(see Lemma 17 in the Appendix) implies that

PA∼A
[
∃s ∈ [2k] : max

b∈[m]
sup
x∈Ts
‖Abx‖2 ≥ `(s)

]
≤ 2km max

s∈[2k]
PA∼A

[
sup
x∈Ts
‖A1x‖2 ≥ `(s)

]
≤ 1/8

when

`(s) h (logm)1/4
√
B + (logm)1/4

√
s log2 k log d logB.

Thus, we may take Q1 . log1/4m and

Q2 . (logm)1/4 log k
√

log d logB . log2.5 d.

With these parameter settings, Theorem 6 implies the following theorem.

Theorem 7. Let ε ∈ (0, 1). Let A be a bounded orthogonal ensemble (for example, the Fourier
ensemble), and suppose that Φ is as in Definition 3. Further suppose B ≥ log7 d and k ≥ log2.5m.
Then for some value

m = O

(
k log d log2(k log d)

ε2

)
,

we have that
sup
x∈Tk

∣∣∣‖Φx‖22 − ‖x‖22∣∣∣ ≤ ε
with 3/4 probability.

3.2 Circulant Matrices

Suppose that A is the partial circulant ensemble. By the analysis in [KMR13],

E
A∼A

sup
x∈Tk

∣∣∣∣ 1

M
‖Ax‖22 − ‖x‖

2
2

∣∣∣∣ .
√
k log2 k log2 d

M
,

for M & k log2 k log2 d. Concentration also follows from the analysis in [KMR13], as a corollary of
Theorem 10 (see [KMR13, Theorem 4.1]).
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Lemma 8. (Implicit in [KMR13])

PA∼A
[
∃s ∈ [2k] : max

b∈[m]
sup
x∈Ts
‖Abx‖2 ≥ `(s)

]
≤ 1

8

when
`(s) h

√
B +

√
s log k log d.

Thus, we may take Q1 . 1 and Q2 . log k log d. Then Theorem 6 implies the following theorem.

Theorem 9. Let ε ∈ (0, 1). Let A be the partial circulant ensemble, and suppose Φ is constructed
as in Definition 3. Further suppose B ≥ log2m log2 k log2 d and k ≥ log2m. Then, for some value

m = O

(
k log d log2(k log d)

ε2

)
,

we have that, as long as m < d/B,

sup
x∈Tk

∣∣∣‖Φx‖22 − ‖x‖22∣∣∣ ≤ ε
with 3/4 probability.

We remark that the condition m ≤ d/B does not actually affect the results reported in Figure 1.
Indeed, if mB > d, we may artificially increase d to d′ = mB by embedding Tk in Cd′ by zero-
padding. Applying Theorem 9 with d = d′ implies an RIP matrix with O(ε−2k log d′ log2(k log d))
rows and embedding time O(d′ log d′) + mpolylog d′. Because B = polylog d, we have d′ =
dpolylog d, and there is no asymptotic loss in m by extending d to d′. Further, in this param-
eter regime, d′ log d′ = mB log d′ = m polylog d.

4 Conclusion

In compressed sensing, it is of interest to obtain RIP matrices Φ supporting fast (i.e. nearly linear
time) matrix-vector multiplication, with as few rows as possible, since doing so speeds up many
iterative recovery algorithms, which are based on repeatedly multiplying by Φ or Φ∗. Similarly,
because of applications in computational geometry, numerical linear algebra, and others, one wants
to obtain JL matrices with few rows and fast matrix-vector multiplication. In this work, we have
shown how to construct RIP matrices supporting fast matrix-vector multiplication, with fewer
rows than was previously known. Combined with the work of [KW11], this also implies improved
constructions of fast JL matrices.

Our work leaves the obvious open question of removing the two O(log(k log d)) factors separating
our constructions from the lower bounds. It seems that both logarithmic factors come from the
estimation (3). It would be interesting to see if they could be removed by more sophisticated
chaining techniques such as majorizing measures.

Acknowledgments
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A Proof of Theorem 6

We will use the following theorem from [KMR13].

Theorem 10. [KMR13, Theorem 1.4] Let S ⊂ Cm×M be a symmetric set of matrices, S = −S.
Let σ ∈ {±1}M uniformly at random. Then

E sup
X∈S

∣∣∣‖Xσ‖22 − E ‖Xσ‖22
∣∣∣ . (dF (S)γ2(S, ‖·‖) + γ2

2(S, ‖·‖)
)

=: E′.

Furthermore, for all t > 0,

P
[

sup
X∈S

∣∣∣‖Xσ‖22 − E ‖Xσ‖22
∣∣∣ > C1E

′ + t

]
≤ 2 exp

(
−C2 min

{
t2

V 2
,
t

U

})
,

where C1 and C2 are constants,

V = d2→2(S)(γ2(S, ‖·‖) + dF (S)),

and
U = d2

2→2(S).

The first step in proving Theorem 6 is to bound the restricted isometry constant of Φ in terms
of the γ2 functional, removing the dependence on σ.

Theorem 11. Suppose A = AM is a distribution on M × d matrices so that (?) holds, and let Φ
be as in Definition 3. Then

E sup
x∈Tk

∣∣∣∣ 1

mB
‖Φx‖22 − ‖x‖

2
2

∣∣∣∣
.

1

mB

(
E
A

sup
x∈Tk
‖Ax‖2 γ2(Tk, ‖·‖X) + E

A
γ2

2(Tk, ‖·‖X)

)
+

√
L

mB
.

where
‖x‖X := max

b∈[m]
‖Abx‖2 .

Proof. Let H(b) = { h(b, i) : i ∈ [B] } be the multiset of indices of the rows of A in bucket b, and
as above let Ab denote the B × d matrix whose rows are indexed by H(b). Let σb =

∑B
i=1 σb,iei

denote the vector of sign flips associated with bucket b. Notice that, by construction, conditioning
on A ∼ A, we have

E
σ
‖Φx‖22 = ‖Ax‖22 , (5)

and so

E sup
x∈Tk

∣∣∣∣ 1

mB
‖Φx‖22 − ‖x‖

2

∣∣∣∣
≤ EA

[
1

mB
Eσ sup

x∈Tk

∣∣∣‖Φx‖22 − Eσ ‖Φx‖22
∣∣∣+ sup

x∈Tk

∣∣∣∣ 1

mB
Eσ ‖Φx‖22 − ‖x‖

2
2

∣∣∣∣
]

=
1

mB
EAEσ sup

x∈Tk

∣∣∣‖Φx‖22 − ‖Ax‖22∣∣∣+ EA sup
x∈Tk

∣∣∣∣ 1

mB
‖Ax‖22 − ‖x‖

2
2

∣∣∣∣
.

1

mB
EAEσ sup

x∈Tk

∣∣∣‖Φx‖22 − ‖Ax‖22∣∣∣+

√
L

mB
, (6)
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where we have used (?) in the last line and (5) in the penultimate line.
Condition on the choice of A until further notice, and consider the first term. We may write

E := E
σ

sup
x∈Tk

∣∣∣‖Φx‖22 − E
σ
‖Φx‖22

∣∣∣ = E
σ

sup
x∈Tk

∣∣∣∣∣∑
b

|〈σb, Abx〉|2 − E
σ

∑
b

|〈σb, Abx〉|2
∣∣∣∣∣ .

Now, we apply Theorem 10 to S = {X(x) ∈ Cm×mB | x ∈ Tk}, where X(x) is defined as follows:

X(x) =



−(A1x)∗− 0 0 · · · 0

0 −(A2x)∗− 0 · · · 0

0 0 −(A3x)∗− · · · 0
...

...
...

...

0 0 0 · · · −(Amx)∗−


.

Let σ be the vector in {−1, 1}M defined as (σ∗1, . . . , σ
∗
m)∗. By construction, ‖X(x)σ‖22 =

∑
b |〈σb, Abx〉|

2,
and so by Theorem 10, it suffices to control dF (S) and γ2(S, ‖·‖). The Frobenius norm of X(x) is

‖X(x)‖2F =
∑
b∈[m]

‖Abx‖22 = ‖Ax‖22 .

For the γ2 term, notice that for any x, y ∈ Tk,

‖X(x)−X(y)‖ = max
b∈[m]

‖Ab(x− y)‖2 = ‖x− y‖X .

Thus, γ2(S, ‖·‖) = γ2(Tk, ‖·‖X). Then Theorem 10 implies that

E . max
x∈Tk

‖Ax‖2 γ2(Tk, ‖·‖X) + γ2
2(Tk, ‖·‖X).

Plugging this into (6), we conclude

E sup
x∈Tk

∣∣∣∣ 1

mB
‖Φx‖22 − ‖x‖

2
2

∣∣∣∣ . 1

mB

(
E
A

sup
x∈Tk
‖Ax‖2 γ2(Tk, ‖·‖X) + E

A
γ2

2(Tk, ‖·‖X)

)
+

√
L

mB
. (7)

�

Theorem 11 leaves us with the task of controlling γ2(Tk, ‖·‖X), which we do in the following
theorem.

Theorem 12. Suppose that A is a matrix such that (†) holds, with

`(s) ≤ Q1

√
B +Q2

√
s.

Suppose further that ‖ai‖∞ ≤ 1 for all i, and suppose that

B ≥ max{Q2
2 log2m,Q2

1 logm log k}, and k ≥ Q2
1 log2m.

Then
γ2(Tk, ‖·‖X) .

√
kB log d · log(Bk).
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Proof. By (3),

γ2(Tk, ‖·‖X) .
∫ Q

u=0

√
logN (Tk, ‖·‖X , u) du, (8)

where Q = supx∈Tk ‖x‖X . Notice that we can bound

Q2 = sup
x∈Tk

max
b
‖Abx‖22 = sup

x∈Tk
max
b

∑
i∈[B]

∣∣〈ah(b,i), x
〉∣∣2 ≤ B sup

x∈Tk
‖x‖21 ≤ Bk

using the fact that each entry of ah(b,i) has magnitude at most 1. We follow the approach of [RV08]
and estimate the covering number using two nets, one for small u and one for large u.

For small u, we use a standard `2 net of B2: we have

‖x‖X ≤ Q ‖x‖2

so N (Tk, ‖·‖X , u) ≤ N (Tk, ‖·‖2 , u/Q). Observing that Tk is the union of
(
d
k

)
=
(
d
k

)O(k)
copies of

Bk
2 (the unit `2-ball of dimension k), we may cover Tk by covering cover each copy of Bk

2 with a
net of width u/Q. By a standard volume estimate [Pis89, Eqn. (5.7)], the size of each such net is
(1 + 2Q/u)k, and so√

logN (Tk, ‖·‖X , u) .
√
k log(d/k) + k log(1 + 2Q/u) .

√
k log(dQ/u).

For large u the situation is not as simple. We show in Lemma 13 that, as long as (†) holds,√
logN (Tk, ‖·‖X , u) .

√
kB log d

u
.

We plug these bounds into (8) and integrate, using the first net for u ∈ (0, 1) and the second
for u > 1. We find∫ Q

u=0

√
logN (Tk,max

b
‖Fb · ‖, u) du .

∫ 1

u=0

√
k log(dQ/u) du+

∫ Q

u=1

√
kB log d

u
du

.
√
k log(dQ) +

√
kB log d logQ

.
√
kB log d logQ

≤
√
kB log d log(Bk)

as claimed. �

It remains to put Theorem 11 and Theorem 12 together to prove Theorem 6.
Proof. (Proof of Theorem 6.) We need to show that

∆ := sup
x∈Tk

∣∣∣∣ 1

mB
‖Φx‖22 − ‖x‖

2
2

∣∣∣∣ . ε
with 3/4 probability. We have by (??) that (†) holds with 7/8 probability over A, and we will
show that ∆ . ε with 7/8 probability when A is drawn from the distribution A′ = (A | (†) holds).
Together, this will imply the conclusion of Theorem 6.
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Note that as long as (?) holds for A, (?) holds for A′ as well. Indeed,

E
A∼A′

sup
x∈Tk

∣∣∣∣ 1

mB
‖Ax‖22 − ‖x‖

2
2

∣∣∣∣ ≤ (8

7

)
E

A∼A
sup
x∈Tk

∣∣∣∣ 1

mB
‖Ax‖22 − ‖x‖

2
2

∣∣∣∣ . ε,
so (?) holds for A′. For the rest of the proof, we consider A ∼ A′, so we have

1√
mB

E
A

sup
x∈Tk
‖Ax‖2 ≤

√
1 +O(ε) . 1.

Under the parameters of Theorem 6 and because (†) holds for all A ∼ A′, Theorem (12) implies

γ2(Tk, ‖·‖X) ≤
√
kB log d · log(Bk).

Then

1

mB
E
A

[
sup
x∈Tk
‖Ax‖2 · γ2(Tk, ‖·‖X)

]
.

√
k log(d) · log(Bk)√

m
≤ ε.

Similarly,

1

mB
E
A
γ2

2(Tk, ‖·‖X) .
k log(d) log2(Bk)

m
≤ ε2.

By Theorem 11, and using the above bounds,

E
A

[∆] .
1

mB

(
E
A

sup
x∈Tk
‖Ax‖2 γ2(Tk, ‖·‖X) + E

A
γ2

2(Tk, ‖·‖X)

)
+

√
L

mB

. ε+ ε2 + ε

. ε.

Therefore by Markov’s inequality, we have ∆ . ε with arbitrarily high constant probability over
A ∼ A′. In particular, we may adjust the constants so that ∆ . ε with probability at least 7/8
over A ∼ A′, which was our goal. �

B Covering number bound

In this section, we prove the covering number lemma needed for the proof of Theorem 12. Recall
the definition ‖x‖X = maxb∈[m] ‖Abx‖2, and that Tk is the set of k-sparse vectors in Cd with `2
norm at most 1.

Lemma 13. Suppose that the conditions of Theorem 12 hold. Then

N (Tk/
√
k, ‖·‖X , u) ≤ (2d+ 1)O(B/u2).

We will prove this under the assumption that x ∈ Tk is real, using only that (†) holds for
s ≤ k and that A has bounded entries. The extension to complex vectors follows from a simple
transformation: by Proposition 16 in the Appendix, we have N (Tk/

√
k, ‖·‖X , u) over the complex
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numbers is less than N (T2k/
√

2k, ‖·‖X̃ , u) over the reals, where ‖·‖X̃ denotes a version of the ‖·‖X
for a real matrix Ã of bounded entries that satisfies (†) for s ≤ 2k. Adjusting the constants by a
factor of 2 gives the final result.

As in [RV08], we use Maurey’s empirical method (see [Car85]). Consider x ∈ Tk/
√
k, and choose

a parameter s. For i ∈ [s], define a random variable Zi, so that Zi = ejsign(xj) with probability
|xj | for all j ∈ [d], and 0 with probability 1 − ‖x‖1. Notice that by the assumption that x is real,
sign(xj) is well defined. Further, because Tk/

√
k ⊂ B1, this is a valid probability distribution. We

want to show for every x that

E
∥∥∥∥x− 1

s

∑
Zi

∥∥∥∥
X

.

√
B

s
. (9)

This would imply that the right hand side is at most u for s . B/u2. If this holds, then the set of
all possible 1

s

∑
Zi forms a u-covering. As there are only 2d+ 1 choices for each Zi, there are only

(2d+ 1)s different vectors of the form 1
s

∑s
i=1 Zi. These form a u-covering, so Eq. (9) will imply

N (Tk, ‖·‖X , u) ≤ (2d+ 1)O(B/u2).

We now show Eq. (9). Draw a Gaussian vector g ∼ N(0, Is), and define

G(x) = E
g,Z

∥∥∥∑Zigi

∥∥∥
X

By a standard symmetrization argument followed by a comparison principle (Lemma 6.3 and
Eq. (4.8) in [LT91] respectively, or the proof of Lemma 3.9 in [RV08]),

E
∥∥∥∥x− 1

s

∑
Zi

∥∥∥∥
X

.
1

s
G(x),

so it suffices to bound G(x) by O(
√
Bs).

Let L = {i : |xi| > logm
k } be the set of coordinates of x with “large” value in magnitude. Then

G(x) ≤ G(xL) + G(xL)

by partitioning the Zi into those from L and those from L and applying the triangle inequality.
Notice that xL is “spiky” and xL is “flat:” more precisely, we have

‖xL‖1 ≤
1

logm
and

∥∥xL∥∥∞ ≤ logm

k
, (10)

using Cauchy-Schwarz to bound the `1 norm. To bound G(xL) and G(xL) we use the following
lemma.

Lemma 14. Suppose that (†) holds. Then the following inequalities hold for all x:

G(x) .
√
Bs ‖x‖1 logm (11)

G(x) .
√
Bs+

√
logm

(
Q1

√
B +Q2

√
min(k, s)

)√
s‖x‖∞ + log k (12)
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Proof. Let Z ∈ {−1, 0, 1}d×s have columns Zi, and Z =
∑

i Zi. Then

G(x) = E max
b∈[m]

‖AbZg‖2

Consider ‖AbZg‖2 for a single b ∈ [m]. This is a C-Lipschitz function of a Gaussian for C =
‖AbZ‖2→2. Therefore [LT91, Eq. (1.4)],

Pg[‖AbZg‖2 > E
g
‖AbZg‖2 + t ‖AbZ‖2→2] < e−Ω(t2).

Hence by a standard computation for subgaussian random variables [LT91, Eq. (3.13)]),

G(x) . E
Z

max
b∈[m]

E
g
‖AbZg‖2 +

√
logm ‖AbZ‖2→2 .

Now,

E
g
‖AbZg‖2 ≤

√
E
g
‖AbZg‖22 = ‖AbZ‖F =

√
B ‖Z‖1 (13)

and

E
Z

√
B ‖Z‖1 ≤

√
B E

Z
‖Z‖1 =

√
Bs ‖x‖1 ≤

√
Bs. (14)

Thus

G(x) ≤
√
Bs ‖x‖1 +O

(
E
Z

max
b∈[m]

√
logm ‖AbZ‖2→2

)
. (15)

Thus it suffices to bound ‖AbZ‖2→2 in terms of ‖x‖1 and ‖x‖∞. First, we have

‖AbZ‖2→2 ≤ ‖AbZ‖F

and so by Equations (13) and (14) we have

G(x) ≤
√
Bs ‖x‖1 logm,

as desired for Equation (11).
Second, we turn to Equation (12). For a matrix A ∈ m × d and a set S ⊂ [d], let A|S denote

the m× d matrix with all the columns not indexed by S set to zero. Then, we have

‖AbZ‖2→2 ≤
∥∥∥Ab|supp(Z)

∥∥∥
2→2
‖Z‖2→2 ≤ max

|S|≤min(k,s)
‖Ab|S‖2→2 ‖Z‖

1/2
∞ . (16)

In the final step, we used the fact that for any matrix A, ‖A‖2→2 ≤
√
‖A‖1→1‖A‖∞→∞ (see

Lemma 15 in the Appendix). By the assumption (†) and the choice of `,

max
b∈[m]

sup
x∈Tmin(k,s)

‖Abx‖2 ≤ Q1

√
B +Q2

√
min(k, s),

so
max
b∈[m]

‖AbZ‖2→2 ≤ ‖Z‖
1/2
∞

(
Q1

√
B +Q2

√
min(k, s)

)
.
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Finally, we bound EZ ‖Z‖∞. By a Chernoff bound, for any j ∈ supp(x), we have

P
[ ∣∣∣∣(∑Zi

)
j

∣∣∣∣ > s |xj |+ t

]
≤ e−Ω(t).

Integrating, we have
E ‖Z‖∞ . s ‖x‖∞ + log k.

Thus
E
Z

max
b∈[m]

‖AbZ‖2→2 . (s ‖x‖∞ + log k)1/2
(
Q1

√
B +Q2

√
min(k, s)

)
.

Combining this with Equation (15) gives (12). �

We return to the proof of Lemma 13. Recall that the goal was to bound

G(xL) + G(xL) .
√
Bs.

By (10) and (11), G(xL) .
√
Bs. Furthermore,

G(xL) .
√
Bs+

√
logm

(
Q1

√
B +Q2

√
min(k, s)

)√
s‖xL‖∞ + log k

≤
√
Bs+

√
logm

(
Q1

√
B +Q2

√
min(k, s)

)(√s logm

k
+
√

log k

)

=
√
Bs

(
1 +Q1

(
logm√

k
+

√
logm log k

s

)
+Q2

(√
min(k, s) logm√

kB
+

√
logm log k

B

min(k, s)

s

))
.

Since we have assumed B & Q2
2 log2m, the Q2 term is bounded by a constant. Further, k &

Q2
1 log2m, and s ≥ B & Q2

1 logm log k, and so the Q1 term is also constant. Thus, we conclude

G(x) ≤ G(xL) + G(xL) .
√
Bs,

which was our goal.

C Minor Technical Lemmata

Lemma 15. For any complex matrix A, ‖A‖22→2 ≤ ‖A‖1→1 · ‖A‖∞→∞.

Proof. First we consider the case of Hermitian A, then arbitrary A. For Hermitian A, let λ be
the largest (in magnitude) eigenvalue of A and v be the associated eigenvector. We have

‖A‖1→1 ≥
‖Av‖1
‖v‖1

=
‖λv‖1
‖v‖1

= |λ| = ‖A‖2→2 .

For arbitrary A,

‖A‖22→2 = ‖A∗A‖2→2 ≤ ‖A
∗A‖1→1 ≤ ‖A

∗‖1→1 · ‖A‖1→1 = ‖A‖∞→∞ · ‖A‖1→1

as desired. In the last inequality we used the fact that ‖ · ‖∞→∞ is equal to the largest `1 norm of
any row, and ‖ · ‖1→1 is equal to the largest `1 norm of any column. �
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Proposition 16. Let f : Cd → R2d act entrywise by replacing a + bi with (a, b). For any integer
r, define F : Cr×d → R2r×2d to act entrywise by replacing an entry a+ bi by the 2× 2 matrixa −b

b a

 .
Recall that Tk ⊂ Cd is the set of unit norm k-sparse complex vectors, and let Ss ⊂ Rs be the set of
unit norm s-sparse real vectors. Recall that ‖·‖X is a norm on Cd given by ‖x‖X = maxb ‖Abx‖2,
and let ‖·‖X̃ be a norm on R2d given by ‖x‖X̃ = maxb ‖F (Ab)x‖2. Then

1. If (†) holds, then maxb supx∈Ss
‖F (Ab)x‖2 ≤ `(s) for s ≤ 2k.

2. With ‖·‖X̃ as above, we have

N (Tk, ‖·‖X , u) ≤ N (S2k, ‖·‖X̃ , u).

Proof. By construction, we have f(Ax) = F (A)f(x), and also ‖f(x)‖2 = ‖x‖2. Further, f(Tk) ⊂
S2k and f−1(Ss) ⊂ Ts. Thus, item 1 follows because

max
b

sup
x∈Ss

‖F (Ab)x‖2 ≤ max
b

sup
y∈Ts
‖F (Ab)f(y)‖2 = max

b
sup
y∈Ts
‖Aby‖2 ≤ l(s)

Similarly, item 2 follows because for any x, y ∈ Tk,

‖x− y‖X = max
b∈[m]

‖Ab(x− y)‖2

= max
b∈[m]

‖F (Ab)f(x− y)‖2

= max
b∈[m]

‖F (Ab)(f(x)− f(y))‖2

= ‖f(x)− f(y)‖X̃ .

Hence
N(Tk, ‖·‖X , u) = N(f(Tk), ‖·‖X̃ , u) ≤ N(S2k, ‖·‖X̃ , u).

�

Lemma 17. Let F denote the d×d Fourier matrix. Let Ω with |Ω| = B be a random multiset with
elements in [d], and for S ⊆ [d] let FΩ×S denote the |Ω| × |S| matrix whose rows are the rows of F
in Ω, restricted to the columns in S. Then for any t > 1,

max
|S|=k

‖FΩ×S‖ .
√
t(B + kβ)

with probability at least
1−O

(
exp

(
−min

{
t2, tβ

}))
,

where
β = log2 k log d logB.
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Proof. (Implicit in [RV08]). Let X = sup|S|=k
∥∥Ik − 1

BF
∗
Ω×SFΩ×S

∥∥, where Ik is the k× k identity
matrix. It is shown in [RV08] that

E
Ω
X .

√
k log2 k log d logB

B
(EX + 1) =:

√
kβ

B
(EX + 1).

This implies that

EX ≤ 1 +
O(kβ)

B
=: α. (17)

Indeed, whenever x2 ≤ A(x+ 1), we have x < A+ 1 or else we conclude (A+ 1)2 ≤ A2 + 2A. Let
α denote the right hand side of (17). We may plug this expectation into the proof of Theorem 3.9
in [RV08], and we obtain

P [X > Ctα] ≤ 3 exp(−C ′tαB/k) + 2 exp(−t2)

for constants C and C ′. In the case X ≤ Ctα, we have

max
|S|=k

‖FΩ×S‖ ≤
√
B(1 + Ctα) ≤

√
B +

√
BCtα,

and so we conclude that
max
|S|=k

‖FΩ×S‖ ≤
√
B +O

(√
t(B + kβ)

)
with probability at least

1− 3 exp(−C ′t(β +B/k))− 2 exp(−t2).

�
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