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Abstract. We consider a data-structural problem motivated by version
control of a hierarchical directory structure in a system like Subversion.
The model is that directories and files can be moved and copied be-
tween two arbitrary versions in addition to being added or removed in
an arbitrary version. Equivalently, we wish to maintain a confluently per-
sistent trie (where internal nodes represent directories, leaves represent
files, and edge labels represent path names), subject to copying a subtree
between two arbitrary versions, adding a new child to an existing node,
and deleting an existing subtree in an arbitrary version.

Our first data structure represents an n-node degree-∆ trie with
O(1) “fingers” in each version while supporting finger movement (nav-
igation) and modifications near the fingers (including subtree copy) in
O(lg ∆) time and space per operation. This data structure is essentially
a locality-sensitive version of the standard practice—path copying—
costing O(d lg ∆) time and space for modification of a node at depth d,
which is expensive when performing many deep but nearby updates. Our
second data structure supporting finger movement in O(lg ∆) time and
no space, while modifications take O(lg n) time and space. This data
structure is substantially faster for deep updates, i.e., unbalanced tries.
Both of these data structures are functional, which is a stronger property
than confluent persistence. Without this stronger property, we show how
both data structures can be sped up to support movement in O(lg lg ∆),
which is essentially optimal. Along the way, we present a general tech-
nique for global rebuilding of fully persistent data structures, which is
nontrivial because amortization and persistence do not usually mix. In
particular, this technique improves the best previous result for fully per-
sistent arrays and obtains the first efficient fully persistent hash table.

1 Introduction

This paper is about a problem in persistent data structures motivated by an
application in version control. We begin by describing the motivating application,
then our model of the underlying theoretical problem, followed by our results.
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Version control. Increasingly many creative works on a computer are stored in
a version control system that maintains the history of all past versions. The
many motivations for such systems include the ability to undo any past mistake
(in the simplest form, never losing a file), and the ability for one or many peo-
ple to work on multiple parallel branches (versions) that can later be merged.
Source code has been the driving force behind such systems, ranging from old
centralized systems like RCS and CVS, to the increasingly popular centralized
system Subversion, to recent distributed systems like Bazaar, darcs, GNU arch,
Git, Monotone, and Mercurial. By now version control is nearly ubiquitous for
source code and its supporting documentation. We also observe a rise in the use
of the same systems in academic research for books, papers, figures, classes, etc.3

In more popular computer use, Microsoft Word supports an optional form of ver-
sion control (“change tracking”), Adobe Creative Suite (Photoshop, Illustrator,
etc.) supports optional version control (“Version Cue”), and most Computer
Aided Design software supports version control in what they call Product Data
Management (e.g., Autodesk Productstream for AutoCAD and PDMWorks for
SolidWorks). Entire modern file systems are also increasingly version controlled,
either by taking periodic global snapshots (as in AFS, Plan 9, and WAFL), or
by continuous change tracking (as in Apple’s new Time Machine in HFS+, and
in experimental systems CVFS, VersionFS, Wayback, and PersiFS [PCD05]). As
repositories get larger, even to the point of entire file systems, high-performance
version control is in increasing demand. For example, the Git system was built
simply because no other free system could effectively handle the Linux kernel.

Requirements for version control. Most version control systems mimic the struc-
ture of a typical file system: a tree hierarchy of directories, each containing any
number of linear files. Changes to an individual file can therefore be handled
purely locally to that file. Conceptually these changes form a tree of versions
of the file, though all systems represent versions implicitly by storing a delta
(“diff”) relative to the parent. In this paper, we do not consider such file version
tracking, because linear files are relatively easy to handle.

The more interesting data structural challenge is to track changes to the hi-
erarchical directory structure. All such systems support addition and removal
of files in a directory, and creation and deletion of empty subdirectories. In ad-
dition, every system since Subversion’s pioneering innovation supports moving
or copying an entire subdirectory from one location to another, possibly span-
ning two different versions. This operation is particularly important for merging
different version branches into a common version.

Persistent trie model. Theoretically, we can model version control of a hierar-
chical directory structure as a confluently persistent trie, which we now define.

A trie is a rooted tree with labeled edges. In the version-control application,
internal nodes represent directories, leaves represent files, and edge labels repre-
sent file or directory names.4 The natural queries on tries are navigation: placing
3 For example, this paper is maintained using Subversion.
4 We assume here that edge labels can be compared in constant time; in practice, this

property is achieved by hashing the file and directory name strings.



a finger at the root, moving a finger along the edge with a specified label, and
moving a finger from a node to its parent. We assume that there are O(1) fingers
in any single version of the trie; in practice, two fingers usually suffice. Each node
has some constant amount of information which can be read or written via a
finger; for example, each leaf can store a pointer to the corresponding file data
structure. The structural changes supported by a trie are insertion and deletion
of leaves attached to a finger (corresponding to addition and removal of files),
copying the entire subtree rooted at one finger to become a new child subtree of
another finger (corresponding to copying subdirectories), and deleting an entire
subtree rooted at one finger (enabling moving of subdirectories). Subtree copy-
ing propagates any desired subset of the fingers of the old subtree into the new
subtree, provided the total number of fingers in the resulting trie remains O(1).

The trie data structure must also be “confluently persistent”. In general,
persistent data structures preserve old versions of themselves as modifications
proceed. A data structure is partially persistent if the user can query old versions
of the structure, but can modify only the most recent version; in this case, the
versions are linearly ordered. A data structure is fully persistent if the user can
both query and modify past versions, creating new branches in a tree of ver-
sions. The strongest form of persistence in confluent persistence, which includes
full persistence but also supports certain “meld” operations that take multiple
versions of the and produce a new version; then the version dependency graph
becomes a directed acyclic graph (DAG). The version-control application de-
mands confluent persistence because branch merging requires the ability to copy
subdirectories (subtrees) from one version into another.

Related work in persistence. Partial and full persistence were mostly solved in
the 1980’s. In 1986, Driscoll et al. [DSST89] developed a technique that converts
any pointer-based data structure with bounded in-degree into an equivalent fully
persistent data structure with only constant-factor overhead in time and space
for every operation. In 1989, Dietz [Die89] developed a fully persistent array
supporting random access in O(lg lg m) time, where m is the number of updates
made to any version. This data structure enables simulation of an arbitrary RAM
data structure with a log-logarithmic slowdown. Furthermore, this slowdown
is essentially optimal, because fully persistent arrays have a lower bound of
Ω(lg lg n) time per operation in the powerful cell-probe model.5

More relevant is the work on confluent persistence. The idea was first posed as
an open problem by [DSST89]. In 1994, Driscoll et al. [DST94] defined confluence
and gave a specific data structure for confluently persistent catenable lists. In
2003, Fiat and Kaplan [FK03] developed the first and only general methods for
making a pointer-based data structure confluently persistent, but the slowdown
is often suboptimal. In particular, their best deterministic result has a linear
worst-case slowdown. Although their randomized result has a polylogarithmic
amortized slowdown, it can take a linear factor more space per modification,

5 Personal communication with Mihai Pǎtraşcu, 2008. The proof is based on the pre-
decessor lower bounds of [PT07].



and furthermore the answers are correct only with high probability; they do not
have enough time to check the correctness of their random choices.

Fig. 1. This version
DAG has exponen-
tially many paths
from top to bottom,
and can result in a
structure with an
exponential data.

Fiat and Kaplan [FK03] also prove a lower bound
on confluent persistence. They essentially prove that
most interesting confluently persistent data structures
require Ω(lg p) space per operation in the worst case,
even with randomization, where p is the number of
paths in the version DAG from the root version to the
current version. Note that p can be exponential in the
number m of versions, as in Figure 1, resulting in a lower
bound of Ω(m) space per operation. The lower bound
follows from the possibility of having around p address-
able nodes in the data structure; in particular, it is easy
to build an exponential amount of data (albeit with sig-
nificant repetition) using a linear number of confluent
operations. However, their Ω(lg p) lower bound requires
a crucial and unreasonable assumption: that all nodes
of the structure can be addressed at any time. From
the perspective of actually using a data structure, it is
much more natural for the user to have to locate the
data of interest using a sequence of queries. For this
reason, our use of trie traversals by a constant number
of fingers is both natural and critical to our success.

Functional data structures. Given the current lack of general transformations
into confluently persistent data structures, efficient such structures seem to re-
quire exploiting the specific problem. One way to attain confluent persistence
is to design a functional data structure, that is, a read-only (pointer-based)
data structure. Such a data structure can create new cells with new initial
contents, but cannot modify the contents of old cells. Each modifying opera-
tion requires a pointer to the new version of the data structure, described by a
newly created cell. Functional data structures have many useful properties other
than confluent persistence; for example, multiple threads can use functional data
structures without locking. Pippenger [Pip97] proved a logarithmic-factor sep-
aration between the best pointer-based data structure and the best functional
data structure for some problems. On the other hand, many common data struc-
tures can be implemented functionally with only a constant-factor overhead; see
Okasaki [Oka98]. One example we use frequently is a functional catenable deque,
supporting insertion and deletion at either end and concatenation of two deques
in constant time per operation [Oka98].

Path copying. Perhaps the simplest technique for designing functional data struc-
tures is path copying [Oka98]. This approach applies to any tree data structure
where each node modification depends on only the node’s subtree. Whenever we
would modify a node v in the ephemeral (nonpersistent) structure, we instead
create new copies of v and all ancestors of v. Because nodes depend on only their
subtrees and the data structure becomes functional (read only), we can safely re-



v1

insert 6

v1 v2

3

5

1

2

3

5

4 1

2

4

3

5

6

Fig. 2. Path copying in a binary search
tree. The old version (v1) consists of white
and grey nodes; the new version (v2) con-
sists of black and grey nodes.

use all other nodes. Figure 2 shows
an example of path copying in a bi-
nary search tree (which achieves log-
arithmic worst-case performance).

Version control systems includ-
ing Subversion effectively implement
path copying. As a result, modifica-
tions to the tree have a factor-Θ(d)
overhead, where d is the depth of
the modified node. More precisely,
for a pointer-based data structure,
we must split each node of degree ∆
into a binary tree of height O(lg ∆), costing O(d lg ∆) time and space per update.

Imbalance. The O(d lg ∆) cost of path copying is potentially very large because
the trie may be extremely unbalanced. For example, if the trie is a path of length
n, and we repeatedly insert n leaves at the bottommost node, then path copying
requires Ω(n2) time and space.

Douceur and Bolosky [DB99] studied over 10,000 file systems from nearly
5,000 Windows PCs in a commercial environment, totaling 140 million files and
10.5 terabytes. They found that d roughly follows a Poisson distribution, with
15% of all directories having depth at least eight. Mitzenmacher [Mit03] studies
a variety of theoretical models for file-system creation which all imply that d is
usually logarithmic in n.

Our results. We develop four trie data structures, two of which are functional
and two of which are efficient but only confluently persistent; see Table 1. All
four structures effectively break through the lower bound of Fiat and Kaplan.

Our first functional trie enables exploiting locality of reference among any
constant number of fingers. Both finger movement (navigation) and modifica-
tions around the fingers (including subtree copy) cost O(lg ∆) time and space
per operation, where ∆ is the average degree of the nodes directly involved. Note
that navigation operations require space as well, though the space is permanent
only if the navigation leads to a modification; stated differently, the space cost
of a modification is effectively O(t lg ∆) where t is the distance of the finger from
its last modification. This data structure is always at least as efficient as path

Method
Finger movement Modifications
Time Space Time Space

Path copying lg ∆ 0 d d
Locality-sensitive (functional) lg ∆ lg ∆ lg ∆ lg ∆
Locality-sensitive (fully persistent) lg lg ∆ lg lg ∆ lg lg ∆ lg lg ∆
Globally balanced (functional) lg ∆ 0 lg n lg n
Globally balanced (fully persistent) lg lg ∆ 0 lg n lg n

Table 1. Time and space complexity of data structures described in this paper. Op-
erations are on an n-node trie at a node of depth d and degree ∆.



copying, and much more efficient in the case of many deep but nearby modifica-
tions. In particular, the quadratic example of inserting n leaves at the bottom
of a length-n path now costs only O(n lg ∆) time and space.

Our second functional trie guarantees O(lg n) time and space per modifica-
tion, with no space required by navigation, while preserving O(lg ∆) time per
navigation. This data structure is substantially more space-efficient than the first
data structure whenever modifications are deep and dispersed. For example, if
we insert n leaves alternately at the top and at the bottom of a length-n path,
then the time cost from navigation is Θ(n2), but the space cost is only O(n lg n).
The only disadvantage is that nearby modifications still cost Θ(lg n) time and
space, whereas the O(t lg ∆) cost of the first data structure can be a bit smaller.

Our two confluently persistent trie data structures are based on the functional
data structures, replacing each height-O(lg ∆) binary tree representation of a
degree-∆ trie node with a new log-logarithmic fully persistent hash table. For
the first structure, we obtain an exponentially improved bound of O(lg lg ∆) time
and space per operation. For the second structure, we improve the movement cost
to O(lg lg ∆) time (and no space). These operations have matching Ω(lg lg ∆)
time lower bounds because in particular they implement fully persistent arrays.

To our knowledge, efficient fully persistent hash tables have not been obtained
before. The obvious approach is to use standard hash tables while replacing
the table with the fully persistent array of Dietz [Die89]. There are two main
problems with this approach. First, the time bound for fully persistent arrays is
O(lg lg m), where m is the number of updates to the array, but this bound can be
substantially larger than even the size ∆ of the hash table. Second, hash tables
need to dynamically resize, and amortization does not mix well with persistence:
the hash table could be put in a state where it is about to pay a huge cost, and
then the user modifies that version repeatedly, each time paying the huge cost.

The solution to both problems is given by a new general technique for global
rebuilding of a fully persistent data structure. The classic global rebuilding tech-
nique from ephemeral data structures, where the data structure rebuilds itself
from scratch whenever its size changes by a constant factor, does not apply in the
persistent context. Like the second problem above, we cannot charge the linear
rebuild cost to the elements that changed the size, because such elements might
get charged many times, even with de-amortized global rebuilding. Nonetheless,
we show that clever choreography of specific global rebuilds works in the fully
persistent context. As a result, we improve fully persistent arrays to support
operations in O(lg lg ∆) time and space, where ∆ is the current size of the array,
matching the Ω(lg lg ∆) lower bound. We also surmount the amortization and
randomization issues with this global rebuilding technique.

2 Locality-Sensitive Functional Data Structure

Our first functional data structure represents a trie T with a set F of O(1) fingers
f1, f2, . . . , fk while supporting finger movements, leaf insertion and deletion, and
subtree copies and removals in O(lg ∆) time and space per operation.



Let T ′ be the Steiner tree with terminals fi, that is, the union of shortest
paths between all pairs of fingers. Let PF be the set of nodes with degree at
least 3 in T ′ that are not in F . The elements of PF are called prosthetic fingers
and will be maintained dynamically. Let F ′ = F ∪ PF . Note that |F ′| ≤ 2k =
O(1). Let T ′′ be the compressed Steiner tree obtained from T ′ by contracting
every vertex not in F ′ (each of degree 2). For any two fingers in F ′ that are
adjacent in T ′′, the shortest path in T ′ connecting them is called a tendon. A
subtree of T that does not contain any finger of F ′ is called a knuckle.

We represent a tendon by a deque, where each element of the deque corre-
sponds to a vertex of T and is represented by a balanced tree of depth O(lg ∆)
containing the neighbors of that vertex in T other than those in the deque. Each
of the nodes in that tree contains a knuckle. The tendon also contains the labels
of the two fingers to which it is attached. We represent a knuckle either by a
vertex containing a balanced tree of depth O(lg ∆), where each node of the tree
represents a neighbor of that vertex in T ′, or by a deque representing a path
starting at the root, whose structure is identical to that of the tendon.

The functional data structure stores all fingers in F ′ in a balanced binary
search tree called the hand, where all fingers are ordered by the label of the
corresponding node. Every finger stores a balanced tree of depth O(1) for the
tendons attached to this finger, and another balanced tree of depth O(lg ∆) for
the knuckles attached to this finger.

To complete this description, it remains to show how to perform update
operations and how to move fingers. When performing an update at a finger, we
modify the balanced tree attached to that finger: adding a neighbor for a leaf
insertion or subtree copy, and deleting a neighbor for a leaf deletion or subtree
removal. Then we use the path-copying technique on both that tree and the
hand. To move a finger, we essentially transfer vertices between its neighboring
nodes, knuckles, and tendons:

1. If a finger enters a neighboring knuckle (stored in a node of its balanced tree),
we will move the finger to its new position. This might involve extracting
the new finger from a deque and modifying a constant number of neighbors
in its balanced tree. We have two cases:
(a) If the finger has degree 1 in T ′′, then it is attached to exactly one ten-

don τ . We insert into τ the vertex at the previous position of the finger.
(b) If the finger has degree 2 or more in T ′′, then after the move that vertex

has degree at least 3 and we create a new prosthetic finger at that po-
sition. The hand must then be modified so that the tendons that were
adjacent to the finger now point to the prosthetic finger. This costs O(1).

2. If a finger moves along a tendon, we proceed similarly, but now, the previous
finger is either transferred to a neighboring knuckle or tendon, or becomes
a new prosthetic finger. The new vertex for the finger is extracted from the
tendon, or if the tendon is empty, two fingers become equal.

The operations change only O(1) nodes from the balanced trees or the deques
outside the hand, for a cost of O(lg ∆), and modify the hand, which has size O(1).



3 Globally Balanced Functional Data Structure

Our second functional data structure represents the trie as a balanced binary
tree, then makes this tree functional via path copying. Specifically, we will use
a balanced representation of tries similar to link-cut trees of Sleator and Tar-
jan [ST83]. This representation is natural because the link and cut operations are
essentially subtree copy and delete.6 Sleator and Tarjan’s original formulation
of link-cut trees cannot be directly implemented functionally via path copying,
and we explain how to address these issues in Section 3.1. In addition to being
able to modify the trie, we need to be able to navigate this representation as we
would the original trie. We discuss how to navigate in Section 3.2.

A key element of our approach is the finger. In addition to the core data
structure representing a trie, we also maintain a constant number of locations in
the trie called fingers. A finger is a data structure in itself, storing more than just
a pointer to a node. Roughly speaking, a finger consists of pointers to all ances-
tors of that node in the balanced tree, organized to support several operations
for computing nearby fingers. These pointers contrast nodes in the balanced
tree representation, which do not even store parent pointers. Modifications to
our data structure must preserve fingers to point to the same location in the
new structure, but fortunately there are only finitely many fingers to maintain.
Section 3.4 details the implementation of fingers.

3.1 Functional Link-Cut Trees. In the original link-cut trees [ST83],
nodes store pointers to other nodes outside of their subtree, which prevents us
from applying path copying. We show how to modify link-cut trees to avoid such
pointers and thereby obtain functional link-cut trees via path copying.

There are multiple kinds of link-cut trees; we follow the worst-case logarith-
mic link-cut trees of [ST83, Section 5]. These link-cut trees decompose the trie
into a set of “heavy” paths, and represent each heavy path by a globally biased
binary tree [BST85], tied together into one big tree which we call the represen-
tation tree. An edge is heavy if more than half of the descendants of the parent
are also descendants of the child. A heavy path is a contiguous sequence of heavy
edges. Because any node has at most one heavy child, we can decompose the trie
into a set of heavy paths, connected by light (nonheavy) edges. Following a light
edge decreases the number of nodes in the subtree by at least a factor of two, so
any root-to-leaf path intersects at most lg n heavy paths. The weight wv of a node
v is 1 plus the number of descendants of v through a light child of v. The depth
of a node v in its globally biased search tree T is at most lg

[(∑
u∈T wu

)
/wv

]
. If

the root-to-leaf path to a node v intersects k heavy paths and wi is the weight
of the last ancestor of v in the ith heavy path down to v, then the total depth
of v is dlg(n/w1)e + dlg(w1/w2)e + · · · + dlg(wk−1/wk)e, or O(lg n).

Link-cut trees augment each node in a globally biased search tree to store
substantial extra information. Most of this information depends only on the sub-
tree of the node, which fits the path-copying framework. The one exception is
the parent of the node, which we cannot afford to store. Instead, we require a
6 Euler-tour trees are simpler, but linking multiple occurrences of a node in the Eule-

rian tour makes path copying infeasible.



parent operation on fingers, which returns a finger pointing to the parent node in
the representation tree. For this operation to suffice, we must always manipulate
fingers, not just pointers to nodes. This restriction requires one other change to
the augmentation in a link-cut tree. Namely, instead of storing pointers to the
minimum (leftmost) and maximum (rightmost) descendants in the subtree, each
node stores relative fingers to these nodes. Roughly speaking, such a relative
finger consists of the nodes along the path from the node to the minimum (max-
imum). We require the ability to concatenate partial fingers, in this case, the
finger of the node with a relative finger to the minimum or maximum, resulting
in a (complete) finger to the latter.

To tie together the globally biased search trees for different heavy paths, the
link-cut tree stores, for each node, an auxiliary globally biased tree of its light
children. More precisely, leaves of the auxiliary tree point to (the root of) the
globally biased search tree representing the heavy path starting at such light
children. In addition, the top node in a heavy path stores a pointer to its parent
in the trie, or equivalently, the root of the tree of light children of that parent.
We cannot afford to store this parent pointer, so instead we define the finger
to ignore the intermediate nodes of the auxiliary tree, so that the parent of the
current finger gives us the desired root. Nodes in an auxiliary tree also contain
pointers to their maximum-weight leaf descendents; we replace these pointers
with relative fingers. Sleator and Tarjan’s link-cut trees order auxiliary trees by
decreasing weight; this detail is unnecessary, so we instead order the children by
key value to speed up navigation.

With these modifications, the link-cut trees of Sleator and Tarjan can be
implemented functionally with path copying. To see that path copying induces
no slowdown, note that although the finger makes jumps down, the finger is
shortened only one node at a time. Each time we take the parent of a finger,
the node at the end can be rebuilt from the old node and the nodes below it
in constant time. Furthermore, because the maximum finger length is O(lg n),
at the end of the operation, one can repeatedly take the parent of the finger to
get the new root. Another way to see that path copying induces no slowdown is
that the link-cut trees in the original paper also involved augmentation, so every
ancestor of a modified node was already being rebuilt.

These functional link-cut trees let us support modification operations in
O(lg n) time given fingers to the relevant nodes in our trie. It remains to see
how to navigate a finger, the topic of Section 3.2, and how to maintain other
fingers as the structure changes, the topic of Section 3.3.

3.2 Finger Movement. In this section, we describe three basic finger-
movement operations: finding the root, navigating to the parent, and navigating
to the child with a given label. In all cases, we aim simply to determine the
operations required of our finger representation.

The root of the trie is simply the minimum element in the topmost heavy
path, a finger for which is already stored at the root of the representation tree.
Thus we can find the root of the trie in constant time.



The parent of a node in the trie is the parent of the node within its heavy
path, unless it is the top of its heavy path, in which case it is the node for which
this node is a light child. Equivalently, the parent of a node in the trie is the
predecessor leaf in the globally biased search tree, if such a predecessor exists,
or else it is the root of the auxiliary tree containing the node. We also defined
the parent operation on fingers to solve the latter case. For the former case, we
require a predecessor operation on a finger that finds the predecessor of the node
among all ancestors of the node. If this operation takes constant time, then we
can find the predecessor leaf within the globally biased search tree by taking the
maximum descendant of the predecessor ancestor found by the finger.

A child of a node is either the node immediately below in the heavy path
or one of its light children. The first case corresponds to finding the successor
of the node within its globally biased search tree. Again we can support this
operation in constant time by requiring a successor operation on a finger that
finds the successor of the node among all ancestors of the node. Thus, if a child
stores the label of the edge above it in the trie, we can test whether the desired
child is the heavy child. Otherwise, we binary search in the auxiliary search tree
of light children in O(lg ∆) worst-case time. Because the total depth of a node
among all trees of light children is O(lg n), the total time to walk to a node at
depth d can be bounded by O(d + lg n) as well as O(d lg ∆).

3.3 Multiple Fingers. This section describes how to migrate the constant
number of fingers to the new version of the data structure created by an update,
in O(lg n) time. We distinguish the finger at which the update takes place as
active, and call the other fingers passive. Just before performing the update,
we decompose each passive finger into two relative fingers: the longest common
subpath with the active finger, and the remainder of the passive finger. This
decomposition can be obtained in O(lg n) time given constant-time operation to
remove the topmost or bottommost node from a relative finger. First, repeatedly
remove the topmost nodes from both the active and passive fingers until the
removed nodes differ, resulting in the remainder part of the passive finger. Next,
repeatedly remove the bottommost node of (say) the active finger until reaching
this branching point, resulting in the common part of the passive finger. Now
perform the update, and modify the nodes along the active finger according to
path copying. We can find the replacement top part of the passive finger again
by repeatedly removing the bottommost node of the active finger; the remainder
part does not need to change. Then we use the concatenate operation to join
these two relative fingers to restore a valid passive finger. Of course, we perform
this partition, replacement, and rejoin trick for each relative finger.

3.4 Finger Representation. Recall that each finger to a node must be
a list of the ancestors in the representation tree of that node supporting: push
and pop (to move up and down); concatenate (to follow relative fingers); inject
(to augment relative fingers based on a node’s children); eject (to allow for
multiple fingers); parent outside path (for faster parent query); and predecessor
and successor among the ancestors of the node (to support parent and child in
the trie). Our finger must also be functional, because nodes store relative fingers.



As a building block, catenable deques support all the operations we want
except for predecessor or successor. Moreover, functional catenable deques have
been well researched, with Okasaki giving a fairly simple O(1) method [Oka98]
that is amortized, but in a way that permits confluent usage if one allows memo-
ization. Furthermore, Kaplan and Tarjan have shown a complicated O(1) worst
case purely functional implementation of catenable deques [KT95].
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Fig. 3. A finger
to G is repre-
sented by G and
a deque of (out-
lined) deques of
ancestors of G.

In order to implement predecessor and successor queries,
decompose the path in the representation tree into a sequence
of right paths (sequence of nodes where the next element
on the path is the right child) and left paths (sequence of
nodes where the next element on the path is the left child).
Then, the predecessor of a node among its ancestors is the
last element of the last right path. The successor of a node
among its ancestors is the last element of the last left path.

Instead of maintaining the finger as one catenable deque,
we represent the finger as a deque of catenable deques, al-
ternating right and left paths; see Figure 3. Then, because
the last right path (or left path, respectively) is either the
ultimate or penultimate deque in the sequence, its last ele-
ment can be retrieved in O(1) time. All other operations of
the standard catenable deque can be simulated on the deque
of deques with only O(1) overhead. We thus obtain a struc-
ture that supports all of the operations of normal catenable
deques of nodes, predecessor and successor in O(1) time.

This suffices to describe the basic data structure for func-
tional tries. Their query time is O(lg ∆) for navigation down-
ward, O(1) for navigation up, and O(lg n) for updates.

4 Adding Hash Tables

Our data structures above take O(lg ∆) to move a finger to a child node. We can
improve this bound to O(lg lg ∆) by introducing fully persistent hash tables. The
resulting data structures are confluently persistent, but no longer functional.

For our first structure (Section 2), we show in the full paper how to construct
a fully persistent hash table on n elements that performs insertions, deletions,
and searches in O(lg lg n) expected amortized time. Using this structure instead
of the balanced trees of neighboring vertices at every vertex, the time and space
cost of updates and finger movements improves to O(lg lg ∆) expected amortized.

We can also use this method to improve our second structure (Section 3.1).
Given a set of elements with weights w1, . . . , wn, we develop in the full paper a
weight-balanced fully persistent hash table with O(lg

P
j wj

we
) expected amortized

time modification, O(lg lg n) find, and O(lg n) insert and delete, where n is the
number of elements in the version of the hash table being accessed or modified
and we is the weight of the element being accessed.

To use a hash table to move a finger down the trie, we modify each node of
our data structure to include a hash table of relative fingers to light children in



addition to the binary tree of light children. The binary tree of light children
is necessary to support quickly recomputing the heavy child on an update; this
would be hard with just a hash table. Except for inserts and deletes, the hash
table achieves at least as good time bounds as the weight-balance tree, and each
trie operation involves at most O(1) inserts or deletes, so we can maintain both
the table and tree in parallel without overhead. As a result, updates still take
O(lg n), moving the finger up still takes O(1), and moving it down now takes
O(lg lg ∆), where ∆ is the degree of the node being moved from. The hash tables
depend on fully persistent arrays, which are expected amortized, so updates and
moving a finger down become expected amortized.

5 Open Problems

It would be interesting to combine our two functional data structures into one
that achieves the minimum of both performances. In particular, it would be nice
to be able to modify a node at depth d in O(min{d lg ∆, lg n}) time and space.
One approach is to develop modified globally biased binary tree where the depth
of the ith smallest node is O(min{i, wi}) and supporting fast splits and joins.
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