
6.034 Practice with
Constraint Satisfaction Problems

(Updated: 13/Oct/2014: The boar should have been propagated first, alphabetically.)

The two problems that follow have been taken from previous 6.034 quizzes. They have
been chosen because they are most effective at demonstrating the various methods of
solving constraint satisfaction problems.

These problems have been largely unedited, except some sections have been cut, and
we have introduced domain worksheets as a way of recording your progress during
constraint propagation. Domain worksheets should be useful to you, especially in a quiz
setting, as they help you to demonstrate what you know. Because these domain
worksheets may appear on the second quiz or the final, we wanted to ensure that you
would be familiar with them in advance.

The quiz problems appear first, followed by their solutions.

1

Part I: Problems

2

The Time Traveler's Convention (2009 Q2)

The MIT Time Travel Society (MITTTS) has invited seven famous historical figures to each give a
lecture at the annual MITTTS convention, and you've been asked to create a schedule for them.
Unfortunately, there are only four time slots available (1pm - 4pm), and you discover that there are
some restrictions on how you can schedule the lectures and keep all the convention attendees happy.
For instance, physics students will be disappointed if you schedule Niels Bohr and Isaac Newton to
speak during the same time slot, because those students were hoping to attend both of those
lectures.

After talking to some students who are planning to attend this year's convention, you determine
that they fall into certain groups, each of which wants to be able to see some subset of the time-
traveling speakers. (Fortunately, each student identifies with at most one of the groups.) You write
down everything you know:

The list of guest lecturers consists of Alan Turing, Ada Lovelace, Niels Bohr, Marie Curie,

Socrates, Pythagoas, and Isaac Newton.
1. Turing has to get home early to help win World War II, so he can only be assigned to the 1pm

slot.
2. The Course VIII students want to see the physicists: Bohr, Curie, and Newton.
3. The Course XVIII students want to see the mathematicians: Lovelace, Pythagoras, and Newton.
4. The members of the Ancient Greece Club wants to see the ancient Greeks: Socrates and

Pythagoras.
5. The visiting Wellesley students want to see the female speakers: Lovelace and Curie.
6. The CME students want to see the British speakers: Turing, Lovelace, and Newton.
7. Finally, you decide that you will be happy if and only if you get to see both Curie and

Pythagoras. (Yes, even if you belong to one or more of the
groups above.)

Part A:
Diagram these constraints by drawing a line between the initials of
each pair of guests who cannot share a time slot.

Part B
Search for a solution using depth-first search only—without any
forward checking or propagation. The only check is to make sure that
each new assignment violates no constraint with any previous
assignment. As a tiebreaker, assign a lecturer to the earliest available
timeslot. Continue up to the first time you try and fail to assign any
time to Newton and must backtrack, at which point you give up and
move on to Part C to try a more sophisticated approach.
Show your answers on the next two pages.

3

Show your work by (1) filling out the domain worksheet on this page and (2) drawing the search tree on the next page.

Constraint graph for this problem Domains for this problem

T 1

L 1 2 3 4

B 1 2 3 4

C 1 2 3 4

S 1 2 3 4

P 1 2 3 4

N 1 2 3 4

Fill out this worksheet as you draw your search tree. There may be more rows than you need.
1. Every time you assign a variable or remove a variable from the propagation queue, fill out a new row

in the table. (The same variable might appear in more than one row, especially if you have to
backtrack.)

2. In that row, indicate which variable you assigned or de-queued; write its assigned value if it has one
(e.g. X=x), otherwise just write its name (X). In the second column, list the values that were just
eliminated from neighboring variables as a result. If no values were just eliminated, write NONE
instead.

3. If your search has to backtrack after assigning or de-queuing a variable: first, finish listing all values
eliminated from neighboring variables in the current row. Next, check the backtrack box in that row.
Then, continue with the next assignment in the following row as usual.

4. At some point, you might add several variables to your propagation queue at once. Break ties by adding
variables to your propagation queue in alphabetical order .

Var assigned
or de-
queued

List all values eliminated from
neighboring variables

Back
track

?
Var assigned or
de-queued

List all values eliminated from
neighboring variables

Back
track

?

ex X Y ≠ 3, 4 Z ≠ 3 (example) ☑ 10 ☐

1 ☐ 11 ☐

2 ☐ 12 ☐

3 ☐ 13 ☐

4 ☐ 14 ☐

5 ☐ 15 ☐

6 ☐ 16 ☐

7 ☐ 17 ☐

8 ☐ 18 ☐

9 ☐ 19 ☐

4

Draw your search tree for part B below.

5

Part C
You're not fond of backtracking, so rather than wait and see how much backtracking you'll have to do,
you decide to use depth first search with forward checking and propagation through singletons
(propagation through domains reduced to size 1) to solve the problem. As before, show your work by
filling out the domain worksheet below and drawing the search tree on the following page.

Constraint graph for this problem Domains for this problem

T 1

L 1 2 3 4

B 1 2 3 4

C 1 2 3 4

S 1 2 3 4

P 1 2 3 4

N 1 2 3 4

Fill out this worksheet as you draw your search tree. There may be more rows than you need.
5. Every time you assign a variable or remove a variable from the propagation queue, fill out a new row

in the table. (The same variable might appear in more than one row, especially if you have to
backtrack.)

6. In that row, indicate which variable you assigned or de-queued; write its assigned value if it has one
(e.g. X=x), otherwise just write its name (X). In the second column, list the values that were just
eliminated from neighboring variables as a result. If no values were just eliminated, write NONE
instead.

7. If your search has to backtrack after assigning or de-queuing a variable: first, finish listing all values
eliminated from neighboring variables in the current row. Next, check the backtrack box in that row.
Then, continue with the next assignment in the following row as usual.

8. At some point, you might add several variables to your propagation queue at once. Break ties by adding

variables to your propagation queue in alphabetical order .
Var assigned
or de-
queued

List all values eliminated from
neighboring variables

Back
track

?

Var
assigned or
de-queued

List all values eliminated from
neighboring variables

Back
track

?

ex X=3 Y ≠ 3, 4 Z ≠ 3 (example) ☑ 7 ☐

1 ☐ 8 ☐

2 ☐ 9 ☐

3 ☐ 10 ☐

4 ☐ 11 ☐

5 ☐ 12 ☐

6 ☐ 13 ☐

6

Draw your search tree for Part C below.

7

8

The Zoo in Killian Court (2011 Q2)
In honor of MIT 150, MIT has decided to open a new zoo in Killian Court. They have obtained seven
animals and built four enclosures. Because there are more animals than enclosures, some animals
have to be in the same enclosures as others. However, the animals are very picky about who they live
with. The MIT administration is having trouble assigning animals to enclosures, just as they often have
trouble assigning students to residences. As you have taken 6.034, they have asked you to plan where
each animal goes.

The animals chosen are a LION, ANTELOPE, HYENA, EVIL LION, HORNBILL, MEERKAT, and BOAR.

They have given you the plans of the zoo layout.

Each numbered area is a zoo enclosure. Multiple animals can go into the same enclosure, and not all
enclosures have to be filled.

Each animal has restrictions about where it can be placed.
1. The LION and the EVIL LION hate each other, and do not want to be in the same enclosure.
2. The MEERKAT and BOAR are best friends, and have to be in the same enclosure.
3. The HYENA smells bad. Only the EVIL LION will share his enclosure.
4. The EVIL LION wants to eat the MEERKAT, BOAR, and HORNBILL.
5. The LION and the EVIL LION want to eat the ANTELOPE so badly that the ANTELOPE cannot be

in either the same enclosure or in an enclosure adjacent to the LION or EVIL LION.
6. The LION annoys the HORNBILL, so the HORNBILL doesn't want to be in the LION's enclosure.
7. The LION is king, so he wants to be in enclosure 1.

9

Using the reduced domains provided below, find one solution using depth first search with forward
checking and propagation through domains reduced by any number of values (propagation through
reduced domains.) Show your work by filling out the domain worksheet on this page and drawing the
search tree on the next page. Break ties in numerical order (1,2,3,4).

Constraint graph for this problem Domains for this problem

Can't be equal
or adjacent

must be equal

EL

H

M B Hb L A
Can't be equal

or adjacent

≠ ≠ ≠ ≠

≠

≠ ≠ ≠ ≠≠

L 1

Hb 2 3 4

A 3 4

EL 2 3 4

H 2 3 4

M 1 2 3 4

B 1 2 3 4

Reminder: At some point, you might add several variables to your propagation queue at once. Break
ties by adding variables to your propagation queue in alphabetical order .

Var assigned
or de-
queued

List all values eliminated from
neighboring variables

Back
track

?
Var assigned or
de-queued

List all values eliminated from
neighboring variables

Back
track

?

ex X Y ≠ 3, 4 Z ≠ 3 (example) ☑ 11 ☐

1 ☐ 12 ☐

2 ☐ 13 ☐

3 ☐ 14 ☐

4 ☐ 15 ☐

5 ☐ 16 ☐

6 ☐ 17 ☐

7 ☐ 18 ☐

8 ☐ 19 ☐

9 ☐ 20 ☐

10 ☐ 21 ☐

10

11

Part II: Solutions

12

SOLUTION: The Time Traveler's Convention (2009 Q2)

The MIT Time Travel Society (MITTTS) has invited seven famous historical figures to each give a
lecture at the annual MITTTS convention, and you've been asked to create a schedule for them.
Unfortunately, there are only four time slots available (1pm - 4pm), and you discover that there are
some restrictions on how you can schedule the lectures and keep all the convention attendees happy.
For instance, physics students will be disappointed if you schedule Niels Bohr and Isaac Newton to
speak during the same time slot, because those students were hoping to attend both of those
lectures.

After talking to some students who are planning to attend this year's convention, you determine
that they fall into certain groups, each of which wants to be able to see some subset of the time-
traveling speakers. (Fortunately, each student identifies with at most one of the groups.) You write
down everything you know:

The list of guest lecturers consists of Alan Turing, Ada Lovelace, Niels Bohr, Marie Curie,

Socrates, Pythagoas, and Isaac Newton.
1. Turing has to get home early to help win World War II, so he can only be assigned to the 1pm

slot.
2. The Course VIII students want to see the physicists: Bohr, Curie, and Newton.
3. The Course XVIII students want to see the mathematicians: Lovelace, Pythagoras, and Newton.
4. The members of the Ancient Greece Club wants to see the ancient Greeks: Socrates and

Pythagoras.
5. The visiting Wellesley students want to see the female speakers: Lovelace and Curie.
6. The CME students want to see the British speakers: Turing, Lovelace, and Newton.
7. Finally, you decide that you will be happy if and only if you get to see both Curie and

Pythagoras. (Yes, even if you belong to one or more of the groups above.)

Part A:
Diagram these constraints by drawing a line between the initials of each pair of guests who cannot
share a time slot.

Search for a solution using depth-first search only—without any forward checking or propagation. The
only check is to make sure that each new assignment violates no constraint with any previous
assignment. As a tiebreaker, assign a lecturer to the earliest available timeslot. Continue up to the first
time you try and fail to assign any time to Newton and must backtrack, at which point you give up
and move on to Part C to try a more sophisticated approach.
Show your answers on the next two pages.

13

Show your work by (1) filling out the domain worksheet on this page and (2) drawing the search tree on the next page.

Constraint graph for this problem Domains for this problem

T 1

L 1 2 3 4

B 1 2 3 4

C 1 2 3 4

S 1 2 3 4

P 1 2 3 4

N 1 2 3 4
Fill out this worksheet as you draw your search tree. There may be more rows than you need.

1. Every time you assign a variable or remove a variable from the propagation queue, fill out a new row
in the table. (The same variable might appear in more than one row, especially if you have to
backtrack.)

2. In that row, indicate which variable you assigned or de-queued; write its assigned value if it has one
(e.g. X=x), otherwise just write its name (X). In the second column, list the values that were just
eliminated from neighboring variables as a result. If no values were just eliminated, write NONE
instead.

3. If your search has to backtrack after assigning or de-queuing a variable: first, finish listing all values
eliminated from neighboring variables in the current row. Next, check the backtrack box in that row.
Then, continue with the next assignment in the following row as usual.

4. At some point, you might add several variables to your propagation queue at once. Break ties by adding

variables to your propagation queue in alphabetical order .
Var assigned
or de-
queued

List all values eliminated from
neighboring variables

Back
track

?
Var assigned or
de-queued

List all values eliminated from
neighboring variables

Back
track

?

ex X Y ≠ 3, 4 Z ≠ 3 (example) ☑ 10 P = 2 NONE ☑

1 T = 1 NONE ☐ 11 P = 3 NONE ☑

2 L = 1 NONE ☑ 12 P = 4 NONE ☐

3 L = 2 NONE ☐ 13 N = 1 NONE ☑

4 B = 1 NONE ☐ 14 N = 2 NONE ☑

5 C = 1 NONE ☑ 15 N = 3 NONE ☑

6 C = 2 NONE ☑ 16 N = 4 NONE ☑

7 C = 3 NONE ☐ 17 ☐

8 S = 1 NONE ☐ 18 ☐

9 P = 1 NONE ☑ 19 ☐

14

Draw your search tree for part B below.

15

Part C
You're not fond of backtracking, so rather than wait and see how much backtracking you'll have to do,
you decide to use depth first search with forward checking and propagation through
singletons (propagation through domains reduced to size 1) to solve the problem. As before, show
your work by filling out the domain worksheet below and drawing the search tree on the following
page.

Constraint graph for this problem Domains for this problem

T 1

L 1 2 3 4

B 1 2 3 4

C 1 2 3 4

S 1 2 3 4

P 1 2 3 4

N 1 2 3 4
Fill out this worksheet as you draw your search tree. There may be more rows than you need.

1. Every time you assign a variable or remove a variable from the propagation queue, fill out a new row
in the table. (The same variable might appear in more than one row, especially if you have to
backtrack.)

2. In that row, indicate which variable you assigned or de-queued; write its assigned value if it has one
(e.g. X=x), otherwise just write its name (X). In the second column, list the values that were just
eliminated from neighboring variables as a result. If no values were just eliminated, write NONE
instead.

3. If your search has to backtrack after assigning or de-queuing a variable: first, finish listing all values
eliminated from neighboring variables in the current row. Next, check the backtrack box in that row.
Then, continue with the next assignment in the following row as usual.

4. At some point, you might add several variables to your propagation queue at once. Break ties by adding

variables to your propagation queue in alphabetical order .
Var assigned
or de-
queued

List all values eliminated from
neighboring variables

Back
track

?
Var assigned or
de-queued

List all values eliminated from
neighboring variables

Back
track

?

ex X Y ≠ 3, 4 Z ≠ 3 (example) ☑ 7 S = 2
 NONE ☐

1 T = 1 L≠ 1 N ≠ 1 ☐ 8 P = 1
 NONE ☐

2 L = 2 P≠ 2 N ≠ 2 C ≠ 2 ☐ 9 N = 4
 NONE ☐

3 B = 1 C ≠ 1 ☐ 10 ☐

4 C = 3 N ≠ 3 P ≠ 3 ☐ 11 ☐

5 N P ≠ 4 ☐ 12 ☐

6 P S ≠ 1 ☐ 13 ☐

16

Draw your search tree for Part C below.

17

18

SOLUTION: The Zoo in Killian Court (2011 Q2)
In honor of MIT 150, MIT has decided to open a new zoo in Killian Court. They have obtained seven
animals and built four enclosures. Because there are more animals than enclosures, some animals
have to be in the same enclosures as others. However, the animals are very picky about who they live
with. The MIT administration is having trouble assigning animals to enclosures, just as they often have
trouble assigning students to residences. As you have taken 6.034, they have asked you to plan where
each animal goes.

The animals chosen are a LION, ANTELOPE, HYENA, EVIL LION, HORNBILL, MEERKAT, and BOAR.

They have given you the plans of the zoo layout.

Each numbered area is a zoo enclosure. Multiple animals can go into the same enclosure, and not all
enclosures have to be filled.

Each animal has restrictions about where it can be placed.
1. The LION and the EVIL LION hate each other, and do not want to be in the same enclosure.
2. The MEERKAT and BOAR are best friends, and have to be in the same enclosure.
3. The HYENA smells bad. Only the EVIL LION will share his enclosure.
4. The EVIL LION wants to eat the MEERKAT, BOAR, and HORNBILL.
5. The LION and the EVIL LION want to eat the ANTELOPE so badly that the ANTELOPE cannot be

in either the same enclosure or in an enclosure adjacent to the LION or EVIL LION.
6. The LION annoys the HORNBILL, so the HORNBILL doesn't want to be in the LION's enclosure.
7. The LION is king, so he wants to be in enclosure 1.

19

Using the reduced domains provided below, find one solution using depth first search with forward
checking and propagation through domains reduced by any number of values (propagation through
reduced domains.) Show your work by filling out the domain worksheet on this page and drawing the
search tree on the next page. Break ties in numerical order (1,2,3,4).

Constraint graph for this problem Domains for this problem

Can't be equal
or adjacent

must be equal

EL

H

M B Hb L A
Can't be equal

or adjacent

≠ ≠ ≠ ≠

≠

≠ ≠ ≠ ≠≠

L 1

Hb 2 3 4

A 3 4

EL 2 3 4

H 2 3 4

M 1 2 3 4

B 1 2 3 4

Reminder: At some point, you might add several variables to your propagation queue at once. Break
ties by adding variables to your propagation queue in alphabetical order .

Var assigned
or de-
queued

List all values eliminated from
neighboring variables

Back
track

?
Var assigned or
de-queued

List all values eliminated from
neighboring variables

Back
track

?

ex X Y ≠ 3, 4 Z ≠ 3 (example) ☑ 11 M NONE ☐

1 L = 1 NONE ☐ 12 A = 4 NONE ☐

2 Hb = 2 EL ≠ 2 H ≠ 2 ☐ 13 EL = 2 NONE ☐

3 EL A ≠ 3, 4 ☑ 14 H = 2 NONE ☐

4 Hb = 3 EL ≠ 3 H ≠ 3 ☐ 15 M = 1 B ≠ 3,4 ☐

5 EL A ≠ 3 ☐ 16 B NONE ☐

6 H NONE ☐ 17 B = 1 NONE ☐

7 A EL ≠ 4 H ≠ 4 ☐ 18 ☐

8 EL M ≠ 2 B ≠ 2 ☐ 19 ☐

9 H NONE ☐ 20 ☐

10 B NONE ☐ 21 ☐

20

21

