Marvin Minsky

The limitations of using languages for description

Estratto da
Linguaggi nella societa e nella tecnica

Ep1ziont b1 CoMuNITA - MILANO
1970



Marvin Minsky

The limitations of using languages for description

It is time to consider theories that can account both for
language and for imagery. Computer models are being constructed
that operate in these areas; they are of irritating complexity but
of irrefutable performance. One might attack their « validity » as
psychological theories on the grounds that they are very arbitrary
in their details. No mattet! These working models embody a flood
of new ideas about the meaning of meaning — ideas that promise,
I am sure, to revitalize both psychology and linguistics.

Language is very good for telling stories, but it is not very
good for explaining how complicated machines work. While it is
very natural to represent a linear sequence of occurrences by a
linear sequence of linguistic events, the descriptive methods that
speakers and writers have developed do not work well in explain-
ing systems with complicated interactions.

Since language is important in thought as well as in com-
munication we would like to know how difficulties in expression
are . associated with difficulties in thinking. We are particularly
concerned with thinking about Thinking. Since Thought is the
behavior of an exceptionally complicated machine, any limitation
on our ability to discuss complicated machines is certain to have
grave effects upon our own psychological theories and, indeed,
upon the introspectives experiences that lead us to those theories.

This is an essay of « half-baked » ideas relating to that subject.
When talking about language I do not mean to talk merely about
the output of the linguistic machine in our brains, but about what
that sort of machine might be like. Of course, we have almost
no direct knowledge of how it works on the mechanical level, so

405



we must make inference from its behavior. Because the only other
machines that show substantial linguistic activity are certain com-
puter programs, I will construct parallels and analogies with those
programs. I hope readers will agree that we have long passed the
era when it was too simple-minded to propose such comparisons;
the computer models are already more sophisticated and demon-
strably workable than any available alternatives.

The description of images, visual and geometric, poses the
most familiar example of what seems to be an expressive limitation.
Is it merely the one-dimensional character of language that makes
it hard to describe pictures? The line by line dissection of tele-
vision is a logical but obviously unacceptable solution to this.
However, as we shall see, there are reasonably good ways to
describe visual scenery with symbolic expressions, and though
these expressions are not particularly « linguistic », we believe
that their use would entail much the same sort of mental problem-
solving organization.

Before discussing images we will talk about describing com-
puter programs; here too, one has a simple linear representation:
the program’s typed text. But again — and this is not so widely
appreciated — this linear representation can be an absurdly obscure
way to describe what the program « does». Programs are more
important than one might think, as they are our only tool for
describing really complex systems, so we will talk first about
describing programs, then about some possible relations between
programs and mental events, and finally return to the subject
of visual images.

The interior monologue

One often hears accounts of the sudden moment of a great
discovery. We are told how a critical insight comes without rel-
evant conscious context, hence some complicated unconscious
mechanism must be responsible. If you ask people how they solve
simple problems and make trivial discoveries you will obtain such

406



a variety of explanations and non-explanations that you must con-
clude that people know very little about how their minds work
even in simple situations.

It is curious that people should feel that there is something
remarkable about the unconsciousness of their own mechanisms.
When a machine solves a problem, it does not occur to us that
it ought to be able to tell us how it did it. We are trained not
to expect from machines anything resembling conscious thought
— that is, an expressible awareness of its own activity. Let us
explore this question by analogy; by obsetving how programmers
keep track of programs. This is a similar activity, but is more
observable. :

In developing a large problem-solving program, using new an
unfamiliar methods, the inventor usually has trouble passing from
a good idea to a working system. He keeps discovering unexpected
interactions among different decision-making procedures, priorities
and orderings of doing things, and conventions for representing
data, processes and intercommunications. Keeping track of all this
becomes so complicated that the inventor turns to the computer
itself for help, and uses a debugging system of his own or another’s
making. The debugging system contains model environments — test
programs — for his procedures and it makes elaborate records of
things that happen when his program runs. If the program goes
astray, these records provide information about the sequence of
activities that got it into its bad state.

Thus, in the debugging stages of program development, there
becomes available one ingredient of self-awareness: information
about the recent ‘history and goals of the process. Another in-
gredient, ability to ask and use the answers to questions about
this recent history, is not available to the program, but only to
the programmer. In some modern heuristic programs some such
information is indeed accessible and those programs may be
- considered to know, at least in a primitive way, something about
what they are doing. For examples, consider the papers of Slagle,
Gelernter et al. and Newell et al., all described in [1]. Each of
those programs has one means or another to detect whether a

407



new problem is (probably) mote difficult than, or is a disguised
form of, one of the earlier problems that have lead it to its
cutrent state.

After the program is debugged, the programmer removes
his diagnostic features. The various tests, traps, breakpoints,
push-down lists and interpreters all consume time and memory.
Wherever he can, he replaces standard methods (that often preserve
unneeded data) by more efficient but trickier methods. Interpreters
— that is, programs which obey rules written out explicitly in
symbolic form — are replaced by compiled programs — in which
the rules are implicit in the program structure, and are written
in more efficient but much less transparent language. Once the
program gets into this form, it had better work well, for the
designer will have much more trouble understanding what happen-
ed should it go wrong.

This account of programming practices is intended, of course,
to suggest an analogous process in the mental process of learning
a skill. Something like it probably happens in the transition from
novice to expert. At first, one may not do very well at a task but
can say a good deal about how he does it. The expert does much
better. But to the extent that his efficiency depends on removing
interpreters and compiling efficient procedures for the debugged
parts of his performance, he will become less conscious of what
he is doing. To be sure, there are examples of experts who seem
to explain their actions very well — but I suspect that usually
this reflects an entirely different talent, the ability to invent good
heuristic explanations, and not any exceptionally direct ability to
observe one’s own programs in action. The great mathematicians’
discussions of their own creative processes do not compare
especially favorably with those of laymen. I tried to persuade
Norbert Wiener, near the end of his career, to attempt such an
explanation but he refused, saying he would rather produce another
first rate theorem than another third-rate psychological theory.

Most of the simplest cybernetic self-improvement schemes are
unsuitable for symbolic use. Consider the quasi-numerical optimiza-
tion or « tuning-up » techniques such as one finds in Samuel’s

408



checker-player [1] or in the perceptron [2]. In that sort of
scheme the « learning » is embodied in the modification of the
values of numerical coefficients — rather than in symbolic expres-
sions or in substantial changes in the structure of the procedure.
Consequently one can state little reason for an improvement
beyond that « it works ». This makes decisions easy to make.
But if one wants to be able to use the results of exploration of
part of the game tree in deciding where and how to make further
explorations, one needs instead a summary analysis of the po-
sitioni’s strengths and weaknesses. Present chess programs do not
do this, but they generate nearly enough information to make
it a reasonable next step. See [3].

While I doubt that « tuning-up » plays a large role in abstract
thinking, one is tempted to suppose that it might play significant
parts in, for example, the parameters of motor activities. Thus
one would expect much of style and grace to be hard to com-
municate. An explicit symbolic abstract analysis is an essential
requirement, I believe for any learning process that can keep
growing in power. See the discussions in chapters 1 and 8 of [4].

This line of thinking suggests that some of the laws of con-
sciousness depend upon general principles of computational effi-
ciency and are not entirely arbitrary features of the way the brain
happens to be arranged. While interpretative programs ate in-
herently slower than compiled programs, they are accompanied
by a monologue in which the interpreter reports what rules it
obeys and which data it uses. This would make it feasible for
another concurrent process to supervise the activity, making logical
and other inferences about how well the activity is setving a
variety of goals. The compiled type of program does not lend
itself to this, except for answering such questions as were anti-
~ cipated before the program was compiled. Thus a compiled pro-
gram, while more efficient, will seem less conscious; its user will
be able to say relatively little to others or to himself about its
operation.

The technical problems of making efficient compilers seem
particularly serious for self-modifying programs; if these difficulties

409



persist, either for practical or for fundamental reasons, they might
provide clues to the nature of those mental processes that most
persistently figure in conscious mental activity. One would expect
. procedures that regularly change themselves to remain conscious.

Images

It is usually assumed that the abilities to visualize scenes, use
geometric intuition, or reason using pictures and diagrams depend
upon inherently non-verbal modes of thinking. Let us consider the
hypothesis that imagery and verbal thinking are not really so
different, and examine some computer programs that actually deal
with geometric concepts.

The transformations of the retinal image of an object are
complicated enough, when it suffers changes in position, illumina-
tion, and context. And to « parse » a visual scene into a cognitive
structure of « petceived » physical objects and their interrelations
is even harder when there are many objects, with some of them
obscuring the view of others — a situation characteristic in real
life. Surely the complexity of such an analysis is comparable to
that needed for the syntactic analysis used in parsing speech at
corresponding ages for children or, for that matter, at any age.

Consider the visual scene represented conventionally by the
line drawing of figure 1.

The normal comprehension of this scene is to discern twelve
objects, with the obvious support relations. How might we parse
the scene into this structure? Assuming we have a way to reduce
the retinal input signals to the simpler line-drawing form, we still
need a system that can group the resulting collection of features
— lines and vertices — into a physically plausible hypothesis about
spatial objects. . '

A program developed in our laboratory by Adolfo Guzman
solves this problem quite effectively. Its basic elements are the
regions bounded by the lines; these are presumed to be projections
of partly occluded faces of physical bodies. When two or more

410



faces meet at a vertex, a number of abstract links are created to
bind together some of those faces, according to the exact manner
in which their boundary lines meet.

For example, in these three types of vertex configurations

I
1 I
I I
II I
II

Figure 2

the « Y » provides evidence for linking region I to region II; II to
IIT; and I to III. The « arrow » configuration just links I to II.

411

28



The idea is that a Y is probably (but not certainly) the image of
a corner of an object that has all three faces on it; an arrow
probably means that just the two faces are on the object whose
corner is seen. But because a « T » is usually the result of one
object covering up part of another it is not considered to establish
a link between III and either of I and II; and there is no reason
to suppose that the latter two should be linked together, either.

Using only these rules (and they are simplifications of the ones
actually used) we can convert pictures into symbolically linked
groupings of faces as follows: we represent the Y-links by straight
lines and the arrow-links by curves:

412



~—_—

Figure 3

Up to this point we see no difficulty in associating the linked
groups of faces to form the objects in the scene. In the next
figure things are more complicated: :

Figure 4

because of false «links » due to the exact superposition of
boundaries of different objects. To break such misleading con-
nections the program has a second phase that uses a hierarchical
scheme: first it finds subsets of faces that are very tightly linked,
e.g., by two or more links. These « nuclei » then compete for
other faces. In Examples (1)-(4) there is no such competition,
but in (5) the single false links between the cubes are broken
by this procedure. We have described only the bare skeleton of the
system; it actually uses a variety of other links, not all of the same
strength. Particularly important is the effect of T-joints that line
up with each other: in figure 5, I and II, and also III and
IV, are linked together, even if there are other objects within
the region V.

413



v
I I
I \ v

Figure 5

This allows the system to group together parts of an object
completely disconnected by occlusions, as is the long board in
our first illustration. The system compares quite favorably with
human performance, it can be adapted to work with stereo
picture-pairs, and it is quite suitably confused by appropriately
ambiguous figures. '

This program, described in more detail in [5], can be taken
as a model of how a visual system might « parse » its input into
a structure of mental objects and relations between those objects.
While we have no reason to suppose that human vision works in
just this sort of fashion, we know of no other theory of comparable
economy of structure that can cope with anything approaching
the same range of scenic complexity.

In any case, the program’s analysis is unlike the usual « syntax-
directed » parsing program in vogue among computer language
designers, and is presumably different from the mechanisms most
linguistic theorists would propose if they were to turn away from
their curious preoccupation with ideal sentence-structure. But it
does resemble in spirit, though not at all in detail, the kind of
processing done by Quillian in his meaning-selection program [4].
Quillian constructs what he calls a « Semantic Network », in com-
puter memory, linking in various ways different « meanings » of
each of a number of words. The word « Cry », for example, could
be linked to structures representing, among other things: making
a sad sound, the call of an animal, or a proclamation. « Comfort »

414



might have meanings for: something someone needs, making
someone less sad, etc. When the program is given a pair of words
like « Cry; Comfort » — not a sentence! — it attempts to select
the most plausible of each word’s alternative meanings in the
context of the other’s. This is done by initiating two spreading
foci of activity, one for each of the input words. The activities
spread along the links between meanings, as brush-fires; eventually
the two will intersect. The program notes where this first happens,
and traces the activity back from this intersection to the original
words, determining for each which of the alternate meanings was
most directly involved. (For « Cry; Comfort », the program se-
lected meanings for lamenting and consoling, through the word
« sad »). A selector of this sort could guide a « meaning-directed »
patsing system so as to escape the demonstrably desperate problems
that have engulfed the analysis-through-synthesis, generative-gram-
mar, parsing schemes. No one has yet attempted this, yet, but the
success of Guzman’s visual nucleus scheme favors further explora-
tions of symbolic network manipulators.

Another extremely successful symbolic « image-processing »

- computer program is the Geometric Analogy program of Evans,
also described in [4]. Evans, too, represents geometric scenes by
descriptive expressions involving symbols for primitive objects
and relations between them; he goes on to represent comparisons
of pairs of scenes by expressions that describe almost-linguistic
transformations. These transformations describe what must be
done to convert one description into another; for example, by
deleting one object and removing another from the interior of
a third. I cannot summarize this whole system here, but it can
be said that it compares favorably with older children’s perform-
ance on the analogy type of intelligence test — an area that most

people would agree involves a large degree of imagery.

415



REFERENCES

[1] E.A. Fricensaum and J. Feroman (Eds.), Computers and
Thought, New York, McGraw-Hill, 1963.

[2] M. Minsky and S. PAPERT, Perceptrons, Cambridge, Mass., MIT
Press, 1969.

[3]1 R.D. GreenBLATT, D. E. EAsTLAKE and S.D. Crocker, « The
Greenblatt Chess Program », Proc. Fall Joint Computer Conf.,
1967, pp. 901-910, Thompson Books, Washington D. C.

[4] M. Minsky (Ed.), Semantic Information Processing, Cambridge,
Mass., MIT Press, 1968.

[5]1 A. GuzMmAN, « Decomposition of a visual scene into bodies »,
Proc. Fall Joint Computer Conf., 1968.






