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Abstract

Model reduction and convex optimization are prevalent in science and engineering appli-
cations. In this thesis, convex optimization solution techniques to three different model
reduction problems are studied.

Parameterized reduced order modeling is important for rapid design and optimization of
systems containing parameter dependent reducible sub-circuits such as interconnects and
RF inductors. The first part of the thesis presents a quasi-convex optimization approach to
solve the parameterized model order reduction problem for linear time-invariant systems.
Formulation of the model reduction problem as a quasi-convex program allows the flexi-
bility to enforce constraints such as stability and passivity in both non-parameterized and
parameterized cases. Numerical results including the parameterized reduced modeling of a
large RF inductor are given to demonstrate the practical value of the proposed algorithm.

A majority of nonlinear model reduction techniques can be regarded as a two step
procedure as follows. First the state dimension is reduced through a projection, and then
the vector field of the reduced state is approximated for improved computation efficiency.
Neither of the above steps has been thoroughly studied. The second part of this thesis
presents a solution to a particular problem in the second step above, namely, finding an
upper bound of the system input/output error due to nonlinear vector field approximation.
The system error upper bounding problem is formulated as an L2 gain upper bounding
problem of some feedback interconnection, to which the small gain theorem can be applied.
A numerical procedure based on integral quadratic constraint analysis and a theoretical
statement based on L2 gain analysis are given to provide the solution to the error bounding
problem. The numerical procedure is applied to analyze the vector field approximation
quality of a transmission line with diodes.

The application of Volterra series to the reduced modeling of nonlinear systems is ham-
pered by the rapidly increasing computation cost with respect to the degrees of the poly-
nomials used. On the other hand, while it is less general than the Volterra series model,
the Wiener-Hammerstein model has been shown to be useful for accurate and compact
modeling of certain nonlinear sub-circuits such as power amplifiers. The third part of the
thesis presents a convex optimization solution technique to the reduction/identification of
the Wiener-Hammerstein system. The identification problem is formulated as a non-convex
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quadratic program, which is solved by a semidefinite programming relaxation technique.
It is demonstrated in the thesis that the formulation is robust with respect to noisy mea-
surement, and the relaxation technique is oftentimes sufficient to provide good solutions.
Simple examples are provided to demonstrate the use of the proposed identification algo-
rithm.

Thesis Supervisor: Luca Daniel
Title: Associate Professor

Thesis Supervisor: Alexandre Megretski
Title: Professor
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Chapter 1

Introduction

1.1 Motivations

Model reduction is a widely accepted practice to facilitate system simulation and optimiza-

tion. Different levels of success have been achieved depending on the specific model re-

duction applications. Algorithms for model reduction for linear time-invariant (LTI) system

analysishave been successfully developed by many groups of researchers. For example,

balanced truncation (or truncated balanced realization) [1, 2, 3] and the optimal Hankel

norm model reduction [4] are expensive model reduction algorithms (by the standard of

the electronic design automation community) but they are very accurate and possess nice

theoretical guarantees such as reduced model stability and error bound. On the other hand,

moment matching (Krylov subspace methods) [5, 6, 7, 8] and proper orthogonal decompo-

sition [9] are relatively inexpensive model reduction algorithms, but they do not in general

offer much guarantee in terms of ready-to-use accuracy measures (e.g.,H∞ norm error

bound) or reduced model properties such as stability. Only in some special cases can the

stability of the reduced models be assumed [8]. In addition, compromises between the

two groups exist approximating the first group using the operations allowed in the second

group [10, 11, 12]. All the aforementioned algorithms construct reduced models by operat-

ing on the state space representation (i.e., system matrices) of the full model and therefore

are restricted to the model reduction problems of finite dimensional LTI systems. On the

other hand, there are optimization/identification based model reduction algorithms which
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directly find the coefficients of the reduced model without using the state space information

of the full model. Rational transfer function fitting algorithms are well-known optimization

based examples [13, 14]. In addition, rational transfer function fitting algorithms can en-

force additional constraints such as stability and passivity. This will be shown in Chapter 2.

For thedesignandoptimizationof LTI systems, model reduction approaches have been

less successful. One way to apply standard model reduction techniques to system design

is to construct a reduced model for every full model ever considered by the design op-

timizer. This path tends to be time-consuming because typically a large number of full

models have to be considered and reduced. Another way to apply model reduction tech-

niques to system design is to constructparameterizedreduced models. Once such re-

duced models have been constructed, the design optimization process can be greatly facil-

itated. Due to their popularity in the non-parameterized case, the moment matching tech-

niques have been extended to the parameterized reduction case by many previous attempts

[15, 16, 17, 18, 19, 20, 21, 22, 23]. One significant drawback of the moment matching

based parameterized model reduction techniques is that to increase the accuracy of the re-

duced model, more moments need to be matched and this results in an increase in the order

of the reduced model. The increase in order does not scales well with the number of param-

eters. On the other hand, optimization based techniques such as rational transfer function

fitting can be generalized to the parameterized case, constructing reduced models with or-

ders independent of the number of parameters, even if an increase in accuracy is desired.

However, the challenge with rational transfer function fitting is that with constraints such

as stability, the reduced model construction process can be very time-consuming (because

the optimization problems are not convex in general). Therefore, the development of a sta-

ble reduced model generating rational transfer function fitting algorithm, which is efficient

in both the model construction process and the simulation of the reduced models, would

greatly benefit the design and optimization of LTI systems. The development of such an

algorithm will be the main focus of Chapter 2.

The picture concerning the nonlinear model reduction problem is less clear simply be-

cause “nonlinear” is a very general collective term for systems other than LTI. First attempt

approaches for nonlinear model reduction include trajectory piecewise linear/polynomial
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based methods [24, 25, 26, 27, 28, 29, 30] and Volterra series based projection methods

[31, 32, 33, 34, 35, 36]. Trajectory based methods can be considered as two step proce-

dures as follows: first the dimension of the system state is reduced by a projection, then an

approximation is made to the reduced vector field for efficient simulation. Volterra series

based projection methods, on the other hand, first approximate the vector field using poly-

nomials and then reduce the approximated model using projection schemes. To make a

tradeoff between reduced model accuracy and complexity (time required for model simula-

tion), it would be necessary to understand how to quantify the error in the two steps. While

in some cases the projection error (e.g., trajectory piecewise linear method with balanced

truncation [27]) can be quantified, the error due to vector field approximation (i.e., the sec-

ond step in trajectory based methods and the first step in Volterra series based projection

methods) is not very well-known. An attempt to solve the vector field approximation error

estimation problem will be presented in Chapter 3.

Sometimes the only available information regarding the full model is its input and out-

put measurements. On these occasions the projection based methods described above do

not work. Instead, input/output based system identification techniques must be used to con-

struct the reduced models. There is a very large body of input/output system identification

techniques. See, for instance, [37, 38] for the descriptions of some of the techniques. The

block diagram oriented identification technique based on the Wiener/Hammerstein/Wiener-

Hammerstein structure is one of the most popular choices because of its simplicity, its abil-

ity to model complicated nonlinear effects, and its applicability to model realistic devices

such as power amplifiers and RF amplifiers [39, 40, 41]. Being a classical problem, the

identification of the Wiener and Hammerstein systems and their combinations has been

considered in a large number of references [42, 43, 44, 45, 46, 47, 48]. However, very few

of the aforementioned references actually consider the Wiener-Hammerstein identification

problem itself (i.e., two LTI systems sandwiching a memoryless nonlinearity) because of

the “non-separability” issue (i.e., the cascading of three blocks with unknown coefficients

makes the identification task much more difficult than the Wiener or Hammerstein setup

with only two unknown blocks). The non-separability issue is oftentimes addressed by

making certain assumptions on one of the blocks (e.g., assuming the nonlinearity to be of
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certain forms such as polynomial), which might make the approaches restrictive in some

cases. On the other hand, if no assumptions are made, the resulting identification decision

problem would be very difficult (e.g., non-convex), and in general it is solved by a general

purpose solver which might not be efficient. The purpose of the third part of the thesis is

to investigate whether the identification decision problem possesses any special properties

due to the underlying Wiener-Hammerstein structure, and whether these properties can be

exploited in facilitating the optimization solution process. Chapter 4 presents in detail the

relevant results.

1.2 Dissertation Outline

The following three chapters contain the contributions of this thesis. In Chapter 2 a quasi-

convex optimization based parameterized model reduction algorithm for LTI systems will

be presented. In Chapter 3 the problem of bounding the system error due to an approxima-

tion to the nonlinear vector field will be considered. A convex optimization based numerical

procedure and a theoretical statement will be given as solutions to the problem. In Chapter 4

a special case of the nonlinear model reduction problem, namely the Wiener-Hammerstein

system identification problem, will be studied. A convex semidefinite programming based

algorithm will be presented. Chapter 5 concludes the thesis.
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Chapter 2

Model Order Reduction of

Parameterized Linear Time-Invariant

Systems via Quasi-Convex Optimization

Developing parameterized model order reduction (PMOR) algorithms would allow digital,

mixed signal and RF analog designers to promptly instantiate field solver accurate small

models for their parasitic dominated components (interconnect, RF inductors, MEM res-

onators etc.). The existing PMOR techniques are based either on statistical performance

analysis [49, 50, 51, 52, 10] or on moment matching [15, 16, 17, 18, 19, 20, 21, 22, 23].

Some non-parameterized model order reduction or identification techniques based on an

optimization approach are present in literature. References [53] and [54] identify systems

from sampled data by essentially solving the Yule-Walker equation derived from a linear

least squares problem. However, these methods might not be satisfactory since the ob-

jective of their minimization is not the norm of the difference between the original and

reduced transfer functions, but rather the same quantity multiplied by the denominator of

the reduced model. References [14] and [55] directly formulate the model reduction prob-

lem as a rational fit minimizing theH2 norm error, and therefore they solve a nonlinear

least squares problem, which is not convex. To address the problem, those references pro-

pose solving linear least squares iteratively, but it is not clear whether the procedure will

converge, and whether they can handle additional constraints such as positive real passiv-
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ity. In order to reduce positive real systems, the authors of [13] propose using the KYP

Lemma/semidefinite programming relationship [56], and show that the reduction problem

can be cast into a semidefinite program, if the poles of the reduced models are given a pri-

ori. Reference [57] uses a different result derived from [58], to check positive realness. In

that procedure, a set of scalar inequalities evaluated at some frequency points are checked.

Reference [57] then suggests an iterative scheme that minimizes theH2 norm of the error

system for the frequency points given in the previous iteration. However, this scheme does

not necessarily generate optimal reduced models, since in order to do that, both the sys-

tem model and the frequency points should be considered as decision variables. In short,

the available methods lack one or more of the following desirable properties: rational fit,

guaranteed stability and passivity, convexity, optimality or flexibility to impose constraints.

In principle, the method proposed in this thesis is a rational approximation based model

reduction framework, but with the following three distinctions:

• Instead of solving the model reduction directly, the proposed methodology solves a

relaxation of it.

• The objective function to be minimized is not theH2 norm, but rather theH∞ norm.

As it turns out, the resultant optimization problem, as described in Section 2.2, is

equivalent to a quasi-convex program, i.e., an optimization of a quasi-convex func-

tion (all sub-level sets are convex sets) over a convex set. This property implies the

following: 1) there exists a unique optimal solution to the problem; 2) the oftentimes

efficient convex optimization solution techniques can be applied. Also, since the

proposed method involves only a single optimization problem, it is near optimal with

respect to the objective function used (H∞ norm of error).

• In addition to the mentioned benefits, it will be demonstrated in the thesis that some

commonly encountered constraints or additional objectives can be added to the pro-

posed optimization setupwithoutsignificantly increasing the complexity of the prob-

lem. Among these features are guaranteeing stability, positive realness (passivity of

24



impedance systems), bounded realness (passivity of scatter parameter systems), qual-

ity factor error minimality. Also, the optimization setup can be modified to generate

an optimal parameterized reduced model that is stable for the range of parameters of

interest.

The rest of this chapter is organized as follows. Section 2.1 provides some technical

background. Section 2.2 describes the proposed relaxation and explains why it is quasi-

convex after a change of decision variables. Section 2.3 gives an overview of the setup of

the proposed method and some details of it. Section 2.4 demonstrates how to modify the

basic optimization setup to incorporate various desirable constraints. Section 2.5 focuses on

the extension of the optimization setup to the case of parameterized model order reduction.

In Section 2.6 more design oriented modifications will be discussed. As a special case, the

RF inductor design algorithm will be given. In Section 2.7 the complexity of the proposed

algorithm is analyzed. In Section 2.8 several applications examples are shown to evaluate

the practical value of the proposed method in terms of accuracy and complexity.

2.1 Technical Background

2.1.1 Tustin transform and continuous-time model reduction

In order to work with (rational) transfer functions in a numerically reliable way, the fol-

lowing standard procedure will be employed throughout the chapter: given a continuous-

time (CT) system with transfer matrixHc(s), first apply a Tustin transform (e.g., [59]) to

construct a discrete-time (DT) systemH(z) := Hc(s)|s = λ(z−1)/(z+1) (with λ being a pre-

specified real number, to be discussed), then construct a reduced DT systemĤ(z) using

the proposed model reduction technique, and finally apply the inverse Tustin transform to

obtain the reduced CT system̂Hc(s) := Ĥ(z)|z=(λ+s)/(λ−s). The main benefit of the above

procedure is that the transfer function coefficients of the optimally reduced DT model will

be bounded, thus making the numerical procedure more robust. In addition, except for

the somewhat arbitrary choice of the parameterλ in the Tustin transform, there is no ob-

vious drawback for the model reduction procedure described above. Since the frequency
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responses of the CT and DT systems are the frequency axis scaled versions of each other,

there is an one-to-one correspondence between the (H∞ norm) optimal reduced model in

CT and DT with the same order. Consequently, model reduction settings for the rest of this

chapter will be described in DT only.

The choice of the center frequencyλ in the Tustin transform is somewhat arbitrary.

While it is true that extreme choices (e.g., pickingλ to be 1Hz, while the frequency range

of interest is at 1GHz) can be harmful for the proposed model reduction framework, nu-

merical experiments have shown that a broad choice of center frequencies would allow

the proposed framework to work without suffering any CT/DT conversion problem. In

fact, we have implemented, as part of the proposed model reduction algorithm, an auto-

matic procedure that chooses the center frequency by minimizing the maximum slope of

the magnitude of the frequency response, hence avoiding any possibly numerically harmful

extreme situations.

2.1.2 H∞ norm of a stable transfer function

For a stable transfer functionH(z) : C 7→ C, theH∞ norm is defined as

‖H(z)‖∞ := sup
ω∈[0,2π)

∣∣H(ejω)
∣∣ . (2.1)

TheH∞ norm for the multiple-input-multiple-output (MIMO) case withH(z) : C 7→ Cp×n

(p≥ 1,n≥ 1) is

‖H(z)‖∞ := sup
ω∈[0,2π)

∥∥H(ejω)
∥∥

2 . (2.2)

The H∞ norm can be thought of as the “amplification factor” of a system. In the context

of model reduction, a reduced modelĤ(z) is regarded as a good approximation to the full

modelH(z) if the H∞ norm of the difference
∥∥H(z)− Ĥ(z)

∥∥
∞ is small.

2.1.3 Optimal H∞ norm model reduction problem

A reasonable model reduction problem formulation is the optimalH∞ norm model reduc-

tion problem: given a stable transfer functionH(z) (possibly of large or even infinite order)
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and an integerm (as the order of the reduced model), construct a stable rational transfer

function with real coefficients

Ĥ(z) =
p(z)
q(z)

:=
pmzm+ pm−1zm−1 + . . .+ p0

zm+qm−1zm−1 + . . .+q0
, pk ∈ R, qk ∈ R, ∀k

such that order of̂H(z) is less than or equal tom, and the error
∥∥H(z)− Ĥ(z)

∥∥
∞ is mini-

mized:
minimize

p,q

∥∥∥H(z)− p(z)
q(z)

∥∥∥
∞

subject to deg(q) = m, deg(p)≤m,

q(z) 6= 0, ∀z∈ C, |z| ≥ 1 (stability).

(2.3)

Unfortunately, because of the stability constraint, program (2.3) is not a convex problem

(see the next subsection for the definition). Up to now, no efficient algorithm for program

(2.3) has been found.

2.1.4 Convex and quasi-convex optimization problems

This subsection will only describe the concepts necessary to the development of the thesis.

For a more detailed description of the subject, consult, for example [60, 61].

A setC⊂ Rn is said to be a convex set if

αx+(1−α)y∈ C, ∀x∈ C, y∈ C, α ∈ [0,1] .

In other words, a setC is convex if it contains the line segment connecting any two points

in the set.

A function f : Rn 7→ R is said to be convex if

f (αx1 +(1−α)x2)≤ α f (x1)+(1−α) f (x2), ∀x1,x2 ∈ Rn,α ∈ [0,1] .

In other words, a functionf is convex if the function value at any point along any line

segment is below the corresponding linear interpolation between the function values at the
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two end points. In addition, a functionf : Rn 7→ R is concave is− f is a convex function.

An optimization problem is said to be convex if it minimizes a convex objective func-

tion (or maximizes a concave objective function), and if the feasible set of the problem

is convex. The nice property about a convex optimization problem is that any local opti-

mum is also a global optimum. Convex optimization problems are oftentimes found to be

efficiently solvable.

A relevant concept that will be explored in this chapter is the notion of a quasi-convex

function. A function f : Rn 7→ R is quasi-convex if all its sub-level sets are convex sets.

That is, the sets

{x∈ Rn | f (x)≤ γ} are convex, ∀γ ∈ R.

The sub-level sets of a convex function are convex. Therefore, a convex function is auto-

matically a quasi-convex function. However, the converse is not true. See Figure 2-1 for

an illustration of a quasi-convex function which is not convex.

x

f(x)

Figure 2-1: A one dimensional quasi-convex function which is not convex. All the sub-
level sets of the function are (convex) intervals. However, the function values lie above the
line segment (the dash line in the figure).

A quasi-convex optimization problem is a minimization problem of a quasi-convex

function over a convex set. Quasi-convex optimization problems are not much more diffi-

cult to solve than convex problems. This is suggested by the fact that a local minimum of a

quasi-convex problem is still a global minimum. In Sections 2.2 and 2.3 a specific class of
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quasi-convex optimization problem will be identified, and an efficient algorithm to solve it

will be detailed.

2.1.5 Relaxation of an optimization problem

While optimization provides a versatile framework for many model reduction decision

problems, oftentimes the formulated optimization problems are difficult to solve (i.e., not

convex). Formulating relaxations is a standard attempt to address the computation chal-

lenge above. A relaxation of an optimization problem is a related optimization problem

such that an optimal solution to the original problem is a feasible solution to the relaxation.

A relaxation can be introduced if it is much easier to solve, and the optimal solution to the

relaxation is useful in constructing a reasonably good feasible solution to the original prob-

lem. However, note that such feasible solution might not be in general an optimal solution

to the original problem. Typical ways for obtaining a relaxation include enlarging the fea-

sible set and/or replacing the objective function with another (easier to optimize) function

whose sub-level set contains the sub-level set of the original. It will be shown in Section

2.2 that the relaxation idea is useful in simplifying the proposed model reduction problem.

2.2 Relaxation Scheme Setup

This section describes the main theory of the proposed model reduction framework. The

development of the framework is as follows: first a relaxation of (2.3) is proposed. Then

a change of decision variables is introduced to the relaxation, and it can be shown that

the relaxation is equivalent to a quasi-convex optimization problem, which happens to be

readily solvable.
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2.2.1 Relaxation of theH∞ norm optimization

Motivated by the optimal Hankel norm model reduction [62], the following relaxation of

the optimalH∞ norm model reduction was proposed in [63]:

minimize
p,q,r

∥∥∥H(z)− p(z)
q(z) −

r(1/z)
q(1/z)

∥∥∥
∞

subject to deg(q) = m, deg(p)≤m, deg(r) < m

q(z) 6= 0, ∀z∈ C, |z| ≥ 1 (stability).

(2.4)

In program (2.4), an anti-stable rational partr(1/z)
q(1/z) , wherer is a real coefficient polynomial

of degree less thanm, is added to the setup of (2.3). Because of the associated additional

decision variables (i.e., the coefficients of polynomialr), program (2.4) is a relaxation of

(2.3). After solving program (2.4), a (suboptimal) stable reduced model can simply be

obtained asĤ(z) = p(z)
q(z) . The following lemma, from [63], gives an error bound of the

relaxation.

Lemma 2.2.1.Let (p∗,q∗, r∗) be the optimal solution of program (2.4) with reduced order

m,

γ∗ =
∥∥∥∥H(z)− p∗(z)

q∗(z)
− r∗(1/z)

q∗(1/z)

∥∥∥∥
∞

and

Ĥ(z) :=
p∗(z)
q∗(z)

be a stable reduced model, then

min
D∈R

{∥∥H (z)− Ĥ (z)−D
∥∥

∞
}≤ (m+1)γ∗. (2.5)

¥

Remark2.2.2. By definition γ∗ is a lower bound of the error of the optimalH∞ norm

model reduction problem (2.3) and Lemma 2.2.1 states that the suboptimal reduced model

provided by the proposed framework has an error upper bound(m+ 1) times its error

lower boundγ∗. In the lemma,Ĥ(z) := p∗(z)
q∗(z) is the outcome of the solving program (2.4) or
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program (2.14), to be discussed in the next subsection. It should be noted that the scalarD

in (2.5) can be incorporated into the reduced modelĤ, if Ĥ is not a strictly proper transfer

function. Therefore the reduced model should really be understood asĤ(z) + D∗ where

D∗ is chosen to be the optimizingD. In Section 2.3 procedure (2.26) will be discussed to

construct a reduced model that always picks the optimizingD. ¥

2.2.2 Change of decision variables in the relaxation scheme

The benefit of the relaxation (2.4) is not immediately obvious: program (2.4) still retains

the non-convex stability constraintq(z) 6= 0, ∀z∈ C, |z| ≥ 1. More formally, it can be

stated that the set of the coefficients of the polynomials,

Ωm
qpr :=

{
(~q,~p,~r) ∈ Rm×Rm+1×Rm :

q(z) = zm+~qm−1zm−1 + . . .+~q1z+~q0

p(z) = ~pmzm+~pm−1zm−1 + . . .+~p1z+~p0

r(z) =~rm−1zm−1 +~rm−2zm−2 + . . .+~r1z+~r0

satisfying q(z) 6= 0, ∀z∈ C : |z| ≥ 1

}

(2.6)

is not convex ifm> 2. As the first step to address the non-convexity difficulty, the following

set of decision variables is proposed,

Ωm
abc :=

{(
~a,~b,~c

)
∈ Rm×Rm+1×Rm :

a(z) =~am(zm+z−m)+~am−1(zm−1 +z−m+1)+ . . .+1

b(z) =~bm(zm+z−m)+~bm−1(zm−1 +z−m+1)+ . . .+~b0

c(z) = 1
j

(
~cm(zm−z−m)+ . . .+~c1(z−z−1)

)

satisfying a(z) > 0 ∀z∈ C : |z|= 1.

}

(2.7)

Note that the coefficientqm in eq. (2.6) is normalized to one because stability con-

dition (i.e., p(z)
q(z) cannot have a pole at infinity) does not allow it to be zero. Likewise,

the coefficienta0 in eq. (2.7) is also normalized to one because positivity condition (i.e.,

a0 =
∫ 2π

0 a
(
ejω)

dω) does not allow it to be zero. However, it should be pointed out that
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in eq. (2.7), there is no normalization foram. In particular, it can be zero and the degree

of a(z) can be strictly less thanm. The following lemma defines an one-to-one correspon-

dence between the setsΩm
qpr andΩm

abc, and hence suggesting that both sets can be used to

completely characterize the set of all reduced models in optimization problem (2.4).

Lemma 2.2.3.Defineτm : Ωm
qpr 7→Ωm

abc as follows:

• Given(~q,~p,~r) ∈ Ωm
qpr,

(
~a,~b,~c

)
= τm(~q,~p,~r) ∈ Ωm

abc is defined as follows: denote

D :=
(

1+
m−1
∑

k=0
(~qk)

2
)−1

, then
(
~a,~b,~c

)
are defined as the coefficients of the trigono-

metric polynomials

a(z) = Dq(z)q
(
z−1

)

b(z) = D
2 [p(z)q

(
z−1

)
+q(z)r

(
z−1

)
+ p

(
z−1

)
q(z)+q

(
z−1

)
r(z)]

c(z) = D
2 j [p(z)q

(
z−1

)
+q(z)r

(
z−1

)− p
(
z−1

)
q(z)−q

(
z−1

)
r(z)].

(2.8)

• Given
(
~a,~b,~c

)
∈ Ωm

abc, (~q,~p,~r) = τm
−1

(
~a,~b,~c

)
∈ Ωm

qpr is defined as follows: let

m̂∈ {0,1, . . . ,m} be the degree ofa(z) in eq. (2.7), and letzk,k = 1, . . . ,m̂ be the

(maybe repeated) roots of the ordinary polynomialzm̂a(z) such that|zk|< 1. Then~q

is defined as the coefficients of the polynomial

q(z) := zm−m̂
m̂

∏
k=1

(z−zk). (2.9)

DenoteD :=
(

1+
m−1
∑

k=0
(~qk)

2
)−1

, then~p,~r are uniquely defined by

D
(
p(z)q(z−1)+q(z)r(z−1)

)
= b(z)+ jc(z). (2.10)

Then

1. The mapτm is one-to-one with the inverse asτm
−1.

2. The mapτm satisfies the following frequency response matching property:

H(ejω) =
p(ejω)
q(ejω)

+
r(e− jω)
q(e− jω)

=
b(ejω)+ jc(ejω)

a(ejω)
,0≤ ω < 2π. (2.11)
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Proof of Lemma 2.2.3. The proof of the lemma is divided into three steps:

Step 1 shows that the definitions of the mapsτm and τm
−1 “make sense”. That is,

given (~q,~p,~r) ∈ Ωm
qpr, the operation of applyingτm is valid, and it should be true that(

~a,~b,~c
)

:= τm(~q,~p,~r) ∈ Ωm
abc. Conversely, given

(
~a,~b,~c

)
∈ Ωm

abc, the operation ofτm
−1

is valid, and it should be true that(~q,~p,~r) = τm
−1

(
~a,~b,~c

)
∈ Ωm

qpr.

The first statement can be verified simply by applying the definition in eq. (2.8).

For the second statement, suppose
(
~a,~b,~c

)
∈ Ωm

abc is given. First show that the opera-

tion in eq. (2.9) is always valid, andq(z) thus obtained satisfies the condition in eq. (2.6).

Let m̂ be the degree ofa(z), and definêa(z) as

â(z) := zm̂a(z) =~am̂
(
z2m̂+1

)
+~am̂−1

(
z2m̂−1 +z

)
+ . . .+zm̂.

The following properties of the roots ofâ(z) can be concluded:

• Being an ordinary polynomial of degree2m̂, â(z) has2m̂ roots.

• Since~am̂ 6= 0, the origin (i.e.,0∈ C) cannot be a root of̂a(z). Therefore,z0 ∈ C is a

root of â(z) if and only if a(z0) = 0.

• Sinceâ(z) has real coefficients anda(z) = a
(
z−1

)
, the following two cases are true:

if z0∈ C\R is a root ofâ(z), then so arez0
′, 1

z0
and 1

z0
′ , where′ is complex conjugate

for z0 ∈ C. On the other hand, ifz0 ∈ R is a root ofâ(z), then so is1
z0

.

• Sincea(z) > 0,∀ |z|= 1, there is no unit circle roots of̂a(z).

The four properties above imply that there are exactlym̂ stable roots and̂m anti-stable

roots ofâ(z) as the “unit circle mirror images” of the former (e.g.,1+2 j and0.2+0.4 j).

Moreover, all roots with nonzero imaginary parts come in complex conjugate pairs. This

concludes that thêm roots described in eq. (2.9) can always be found, andq(z) defined in

eq. (2.9) has real coefficients polynomial of degreem, and all roots ofq(z) are stable (i.e.,

q(z) 6= 0,∀|z| ≥ 1).
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To conclude the proof ofstep 1, it remains to be shown that when
(
~a,~b,~c

)
∈ Ωm

abc is

given and~q has been found by eq. (2.9),(~p,~r) ∈ R2m+1 can be found as the coefficients

of p(z) andr(z) using eq. (2.10). First recognize that eq. (2.10) defines a linear function

M~q : R2m+1 7→ R2m+1 such that

M~q(~p,~r) =
(
~b,~c

)
. (2.12)

Then it is sufficient to prove thatM~q is invertible. That is,

Ker
(
M~q

)
= 0. (2.13)

To show eq. (2.13), consider(~p?,~r?), corresponding top?(z) andr?
(
z−1

)
such that

p?(z)q
(
z−1)≡−q(z)r?

(
z−1) .

The fact thatq
(
z−1

)
in the LHS hasm anti-stable roots andq(z) in the RHS has no anti-

stable roots implies thatr?
(
z−1

)
should bem anti-stable roots. However, since the degree

of r? is strictly less thanm, r? should be zero andp? should also be zero. This concludes

that(~p?,~r?) = 0∈ R2m+1, showing thatM~q is invertible and concludingstep 1.

Step 2shows that the mapτm is one-to-one. For this purpose, it suffices to show the

following: for every (~q,~p,~r) ∈ Ωm
qpr, if

(
~̂q,~̂p,~̂r

)
:= τm

−1(τm(~q,~p,~r)), then
(
~̂q,~̂p,~̂r

)
=

(~q,~p,~r). First show that̂~q=~q. Let m̂∈ {0,1, . . . ,m} be the number of nonzero root ofq(z),

thenq(z) = zm−m̂
m̂
∏

k=1
(z−zk). Applying τm to (~q,~p,~r) results in aa(z) with a knownform.

That is,a(z) = D
m̂
∏

k=1
(z−zk)

(
z−1−zk

)
, with D =

(
1+

m−1
∑

k=0
(~qk)

2
)−1

. Then the ordinary

polynomialzm̂a(z) in eq. (2.9) has exactlŷm stable roots (i.e., with magnitude less than

one), and they are the roots ofp(z) (i.e., zk for k = 1,2, . . . ,m̂). Therefore, corresponding

to ~̂q, the polynomial ˆq(z) := zm−m̂
m̂
∏

k=1
(z−zk), is exactly the same asq(z), implying that

~̂q =~q. It remains to show that
(
~̂p,~̂r

)
= (~p,~r). This is true because, for any~q, the mapM~q
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defined in eq. (2.12) is invertible. Then,

(
~̂p,~̂r

)
=

(
M~q

)−1
M~q(~p,~r) = (~p,~r) ,

hence
(
~̂q,~̂p,~̂r

)
= (~q,~p,~r). This concludesstep 2.

Finally, step 3shows that the frequency matching condition in eq. (2.11) holds. Given

(~q,~p,~r) ∈ Ωm
qpr, then simply by checking the definition in eq. (2.8), it can be verified that(

~a,~b,~c
)

:= τm(~q,~p,~r) satisfies eq. (2.11).

Given,
(
~a,~b,~c

)
∈ Ωm

abc, because of the matching (up to the constant multiplicative fac-

tor D) of the numerator of eq. (2.11) by the definition in eq. (2.10), it suffices to show

that~q, as part ofτm
−1

(
~a,~b,~c

)
, satisfies the denominator matching of eq. (2.11) (i.e.,

a(z) = Dq(z)q(z−1)). To show this, notice that forq(z) defined in eq. (2.9),Dzm̂q(z)q
(
z−1

)

is an ordinary polynomial with exactly the same (stable and anti-stable) roots ofzm̂a(z) be-

cause of the “unit circle mirror image” property of the roots ofzm̂a(z) shown instep 1. That

means that the coefficients ofDzm̂q(z)q
(
z−1

)
andzm̂a(z) can at worst be off by a constant

multiplicative factorC. The coefficient of the monomialzm̂ of zm̂a(z) is one by the defini-

tion in eq. (2.7). On the other hand, expressingq(z) asq(z) = zm+~qm−1zm−1 + . . .+~q0,

it can be seen that the coefficient of the monomialzm̂ in Dzm̂q(z)q
(
z−1

)
is also one, when

D :=
(

1+
m−1
∑

k=0
(~qk)

2
)−1

. Hence, the multiplicative factorC is one, and thereforeq(z), to-

gether witha(z) satisfies the matching ofa(z) = Dq(z)q(z−1) in eq. (2.11). This concludes

step 3and the proof of the lemma. ¥

Remark2.2.4. Lemma 2.2.3 states that both setsΩm
qrp in eq. (2.6) andΩm

abc in eq. (2.7) can

completely characterize the relaxed model reduction problem in program (2.4). In addition,

the stability constraintq(z) 6= 0, ∀z∈ C : |z| ≥ 1 in (2.6), which makes the feasible set of

(2.3) non-convex, can be replaced by the easier to handle (to be shown) positivity constraint

a(z) > 0, ∀z∈ C : |z| = 1, and this paves way to the discovery of efficient algorithms for

solving the relaxation problem. ¥

Remark2.2.5. Since the evaluation ofz in the positivity constraint in eq. (2.7) is restricted

to the unit circle only, for the model reduction problem in program (2.4), the evaluation

of z can also be restricted to the unit circle because it is where the frequency response is
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evaluated. Therefore, denotingz = ejω = cos(ω)+ jsin(ω), program (2.4) is equivalent

to
minimize

ã,b̃,c̃,γ
γ

subject to |H(ejω)ã(ω)− b̃(ω)− j c̃(ω)|< γã(ω), 0≤ ω < 2π,

ã(ω) > 0, 0≤ ω < 2π,

deg(ã)≤m,deg(b̃)≤m,deg(c̃)≤m,

(2.14)

with
ã(ω) = 1+ ã1cos(ω)+ . . .+ ãmcos(mω),

b̃(ω) = b̃0 + b̃1cos(ω)+ . . .+ b̃mcos(mω)

c̃(ω) = c̃1sin(ω)+ . . .+ c̃msin(mω).

(2.15)

Because of the trigonometric terms, polynomials in eq. (2.15) (and in eq. (2.7)), are called

trigonometric polynomials of degreem. The following lemma justifies the change of vari-

ables introduced by Lemma 2.2.3 in terms of possible computational efficiency gain.¥

Lemma 2.2.6.Program (2.14) is quasi-convex (i.e., minimization of a quasi-convex func-

tion over a convex set). ¥

Proof of Lemma 2.2.6. First note thatã(ω) > 0,∀ω ∈ [0,2π) defines the intersection of

infinitely many halfspaces (each defined by a particularω∈ [0,2π)) and therefore the feasi-

ble set is convex. Secondly, consider a sub-level set of the objective function (for anyfixed

γ). Since

|z|= max
|θ |=1

Re(θz), ∀z∈ C,

condition

|H(ejω)ã(ω)− b̃(ω)− j c̃(ω)|< γã(ω), ∀ω ∈ [0,2π)

is equivalent to

Re

(
θ
(
H(ejω)ã(ω)− b̃(ω)− j c̃(ω)

))
< γã(ω), ∀ω ∈ [0,2π) , |θ|= 1, (2.16)

which is the intersection of halfspaces parameterized byθ andω. Therefore, the sub-level

sets of the objective function of program (2.14) is convex and the quasi-convexity of the

program is established. ¥
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Remark2.2.7. Quasi-convex program (2.14) happens to be polynomially solvable. A de-

scription of how to solve the relaxation, as well as how this fits in the general picture of

the proposed model reduction algorithm, will be discussed in the next section. Finally, it

should be emphasized that not all quasi-convex programs are efficiently solvable. This is

the case for the parameterized model reduction problem to be discussed in Section 2.5.¥

2.3 Model Reduction Setup

This section deals with the solution procedure of the proposed model reduction framework.

A summary of the procedure is given as follows.

Algorithm 1: MOR

Input: H (z)

Output: Ĥ (z)

i. Solve program (2.14) using a cutting plane algorithm (details in Subsection 2.3.1) to

obtain the relaxation solution(ã, b̃, c̃).

ii. Compute the denominatorq(z) using spectral factorization eq. (2.9).

iii. Solve a convex optimization problem to obtain the numeratorp(z). See Subsection

2.3.3.

iv. Synthesize a state space realization of the reduced modelĤ(z) = p(z)/q(z). See [59]

for details.

Stepi. will be explained in Subsections 2.3.1 and 2.3.2. Stepiii. will be explained in

Subsection 2.3.3.

2.3.1 Cutting plane methods

Program (2.14) is a quasi-convex program with infinitely many constraints, and in general

it can be solved by the cutting plane methods. This subsection will provide a general
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description of the cutting plane methods, and their application to solving program (2.14)

will be discussed in the subsequent parts of this chapter (Subsection 2.3.2 and Section 2.4).

Note that the cutting plane method is a standard optimization solution technique for

quasi-convex problems, and it is given here for completeness. The cutting plane method

solves the following problem: find a point in a target setX (e.g., the sub-optimal level set

of a minimization problem), or verify thatX is empty. The basic algorithm description is

as follows.

a. Initialize the algorithm by finding an initial bounding setP1 such thatX ⊂ P1.

b. At each stepk, maintain a localization setPk such thatX ⊂ Pk.

c. Compute a query pointxk ∈ Pk. This is the current trial of the vector of the decision

variables. Check ifxk ∈ X.

d. If xk ∈ X, then terminate the algorithm and returnxk. Otherwise, return a “cut” (e.g.,

a hyperplane) such that all points inX must be in one side of the hyperplane (i.e., a

halfspace). Denote the corresponding halfspaceH .

e. Update the localization set toPk+1 such thatPk∩H ⊂ Pk+1,

f. If Volume(Pk+1) < ε, for some smallε (which, for instance, is determined by the desired

sub-optimality level), then assertX is empty, and terminate the algorithm. Otherwise,

go back to stepb.

The choice of the localization setPk and the query pointxk distinguishes one method

from another. Reasonable choice of localization set/query point can be 1) a covering el-

lipsoid/center of the ellipsoid or 2) covering polytope/analytic center of the polytope. The

former choice results in the ellipsoid algorithm (see [64] or [65] for detailed reference),

while the latter choice results in the analytic center cutting plane method (ACCPM) (see

[66] for reference). The finding of the initial bounding setP1 : X ⊂ P1 is problem depen-

dent, and it will be discussed in the next subsection, in the context of program (2.14).

Stepa. and stepd. are the only steps in the cutting plane algorithm that are determined

by the optimization problem to be solved. They will be discussed, in the context of program
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(2.14), in Subsection 2.3.2 and Section 2.4, respectively. The subroutine implemented in

stepd. is typically referred to as an oracle. While the cutting plane algorithm is guaranteed

to terminate in the number of iterations which scales polynomially to the problem size, the

computation requirement of the oracle can range from light (e.g., the non-parameterized

MOR case) to heavy (e.g., the parameterized MOR case).

Finally, it is noted that quasi-convex program (2.14) can also be solved as a semi-

definite program (SDP) by interior point methods [67]. However, the discussion of this

implementation will not be discussed in this thesis.

2.3.2 Solving the relaxation via the cutting plane method

In the context of solving the quasi-convex program (2.14) in Subsection 2.2.2, the de-

scription of the cutting plane method introduced in Subsection 2.3.1 can be more specific:

the decision variablesx in Subsection 2.3.1 are the coefficients of the trigonometric poly-

nomialsã(ω), b̃(ω) and c̃(ω). The target setX in Subsection 2.3.1 would be the set of

trigonometric polynomial coefficients such that (2.14) is feasible (in particular, the stabil-

ity constraintã(ω) > 0 is satisfied) and the objective valueγ can achieve its minimum (in

practice,γ is allowed to be within a few percents above the minimum).

A simple strategy to obtain an initial bounding set (i.e.,P1 in Subsection 2.3.1) is merely

to assume it to be a “large enough” sphere. This is reasonable for most cases even though

there is no real guarantee that it will work. However, for program (2.14), it is actually

possible to find an initial bounding set which guarantees to contain the target set. The

result is summarized in the following two statements.

Lemma 2.3.1. Let ãk, k = 1,2, . . . ,m be the coefficients of the trigonometric polynomial

ã(ω) in program (2.14), then the stability constraintã(ω) > 0, ∀ω ∈ [0,2π) implies that

|ak| ≤ 2, ∀k = 1,2, . . . ,m. ¥

Proof of Lemma 2.3.1. The stability constraint

ã(ω) = 1+ ã1cos(ω)+ . . .+ ãmcos(mω) > 0, ∀ω ∈ [0,2π) (2.17)
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implies that ∫ 2π

0
ã(ω)(1+cos(kω))dω≥ 0, ∀k = 1,2, . . . ,m, (2.18)

which (by the orthogonality of cosine) implies that

ãk ≥−2, ∀k = 1,2, . . . ,m. (2.19)

Similarly, eq. (2.17) also implies that

∫ 2π

0
ã(ω)(1−cos(kω))dω≥ 0, ∀k = 1,2, . . . ,m, (2.20)

which in turns implies

ãk ≤ 2, ∀k = 1,2, . . . ,m. (2.21)

Eq. (2.19) and (2.21) combined yields the desired result. ¥

Lemma 2.3.2. Let ãk, b̃k and c̃k be the trigonometric polynomial coefficients defined as

in eq. (2.15) in program (2.14). LetH(z) be any stable transfer function, andγ be any

nonnegative number. Under the stability constraintã(ω) > 0, ∀ω ∈ [0,2π), if it is true that

∥∥∥∥
b̃(ω)+ j c̃(ω)

ã(ω)
−H(ejω)

∥∥∥∥
∞
≤ γ. (2.22)

Then

1.
∣∣b̃k

∣∣≤ 2(2m+1)(‖H(z)‖∞ + γ) , ∀k = 0,1, . . . ,m.

2. | c̃k| ≤ 2(2m+1)(‖H(z)‖∞ + γ) , ∀k = 1,2, . . . ,m.

¥

Proof of Lemma 2.3.2. First prove the first statement. Eq. (2.22) implies that

∣∣∣∣
b̃(ω)
ã(ω)

−Re
[
H(ejω)

]∣∣∣∣≤ γ, ∀ω ∈ [0,2π) (2.23)

because for any complex numberx∈ C, |Re[x]| ≤ |x|. Eq. (2.23), together with the trian-
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gular inequality, implies

∣∣b̃(ω)
∣∣−

∣∣Re
[
H(ejω)

]∣∣ | ã(ω)| ≤ γ | ã(ω)| , ∀ω ∈ [0,2π) .

This in turns implies, as
∣∣H(ejω)

∣∣≤ ‖H(z)‖∞ , ∀ω ∈ [0,2π), that

∣∣b̃(ω)
∣∣≤ |ã(ω)|(‖H(z)‖∞ + γ) , ∀ω ∈ [0,2π) .

Applying Lemma 2.3.1, it can be concluded from above that

∣∣b̃(ω)
∣∣≤ (2m+1)(‖H(z)‖∞ + γ) , ∀ω ∈ [0,2π) . (2.24)

From eq. (2.24) it can be seen that

∣∣∣∫ 2π
0 b̃(ω)(1+cos(kω))dω

∣∣∣≤ 2π(2m+1)(‖H(z)‖∞ + γ) , k = 0,1, . . . ,m∣∣∣∫ 2π
0 b̃(ω)(1−cos(kω))dω

∣∣∣≤ 2π(2m+1)(‖H(z)‖∞ + γ) , k = 0,1, . . . ,m
(2.25)

Similar to the proof of Lemma 2.3.1, by applying the orthogonality of cosine, it can be

concluded that

∣∣b̃0
∣∣≤ (2m+1)(‖H(z)‖∞ + γ)

∣∣b̃k
∣∣≤ 2(2m+1)(‖H(z)‖∞ + γ)−2, ∀k = 1,2, . . . ,m,

which yields the desired result for the first statement in the Lemma.

The proof of the second statement is analogous to that of the first statement. Only the

main steps are highlighted here. It can be concluded that

| c̃(ω)| ≤ | ã(ω)|(‖H(z)‖∞ + γ) , ∀ω ∈ [0,2π) .

Then using an approach analogous to eq. (2.25) with the “multipliers”(1±sin(kω)), the

conclusion of the second statement can be made. ¥

Remark2.3.3. Lemma 2.3.1 can directly be applied to obtain a hypercube for bounding the
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coefficients ofãk. To compute the bounds for the coefficientsb̃k andc̃k, Lemma 2.3.2 can

be applied withγ = ‖H(z)‖∞, corresponding to the objective value of a trial in which the

coefficientsb̃k andc̃k are set to zero. ¥

2.3.3 Constructing the reduced model

Once the quasi-convex relaxation problem (2.14) has been solved, by for instance, the

cutting plane method described in Subsections 2.3.1 and 2.3.2, the reduced model can be

constructed: the denominatorq(z) and the numeratorp(z) of the reduced model could be

found by applying eq. (2.9) and eq. (2.10) in Lemma 2.2.3. However, the following more

practical procedure yields a reduced model whose approximation quality is no worse than

the one obtained with (2.10): onceq(z) is found, calculatep(z) as the optimal solution to

the following program

minimize
p,γ

γ

subject to
∣∣∣H(ejω)− p(ejω)

q(ejω)

∣∣∣ < γ, ∀ω ∈ [0,2π) ,

deg(p)≤m.

(2.26)

Note that program (2.26) is convex and can be solved by the same cutting plane method

described in Subsections 2.3.1 and 2.3.2. Also note that since the degree of the numerator

p can bem, the transfer function is not strictly proper, and the optimal constant termD in

(2.5) is automatically chosen when program (2.26) is solved.

2.3.4 Obtaining models of increasing orders

In the proposed model reduction framework, the information from an orderm model re-

duction can be reused to find the reduced models of orderm+ k(with k > 0) relatively

cheaply. The update procedure for orderm+ 1 reduced model is described here (the pro-

cedure for higher order reduced models is the same). Suppose(ã∗m, b̃∗m, c̃∗m) is the optimal

trigonometric polynomials for orderm reduction, and assume the corresponding error is
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γ∗m, then
b̃∗m(ω)+0·cos((m+1)ω)+ j (c̃∗m(ω)+0·sin((m+1)ω))

ã∗m(ω)+0·cos((m+1)ω)

is automatically a valid (stable, passive, etc) candidate for the orderm+1 reduction prob-

lem. Therefore it can be used as the initial center of the localization set (e.g., covering

ellipsoid) for them+1 order problem. The localization set for them+1 order problem can

also be inherited from that of the orderm problem by appending the previous localization

set in the following way. Letxm be the vector of decision variables of the ordermproblem,

x∗m be coefficients of the optimal trigonometric polynomials(ã∗m, b̃∗m, c̃∗m) of orderm and

P∗m be the symmetric positive semi-definite matrix that defines the ellipsoid of the orderm

localization set, then

(xm−x∗m)′P∗m(xm−x∗m)≤ 1

Now let xm+1
a ,xm+1

b ,xm+1
c be the coefficients of them+1 degree terms in them+1 degree

trigonometric polynomials of them+1 order reduction problem. If there exists someM > 0

s.t. |xm+1
a |< M, |xm+1

b |< M, |xm+1
c |< M then

(xm−x∗m)′P∗m(xm−x∗m)+ |xm+1
a |2 + |xm+1

b |2 + |xm+1
c |2≤ 1+3M2

can be used as the initial ellipsoid (i.e. localization set) for them+ 1 model reduction

problem. The orderm optimal objective valueγ∗m can be used as the initial objective value

when them+ 1 order procedure starts. Using these initial iterates for them+ 1 order

problem, relatively few cuts will be required to obtain them+1 order optimal trigonometric

polynomials.

2.4 Constructing Oracles

The oracles, which defines the optimization problem in the cutting plane method described

in Subsection 2.3.1, will be discussed in this section in detail.
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2.4.1 Stability: Positivity constraint

From Lemma 2.2.3 it can be seen that the positivity constraintã(ω) > 0 in program (2.14)

is equivalent to the stability constraint in program (2.4) requiringq(z) to be a Schur polyno-

mial. Therefore, the positivity constraint must be strictly imposed for allω ranging from0

to 2π, and therefore the common engineering practice of enforcing such constraint on only

a finite set of points in that interval will not suffice. In order to address this issue consider

the positivity constraint (for convenience, assumingãm 6= 0)

ã(ω) = 1+a1cos(ω)+ . . .+amcos(mω) > 0, ∀ω ∈ [0,2π) . (2.27)

It is sufficient (becausẽa(ω) is an even function ofω) to check whether

min
ω∈[0,π]

ã(ω) > 0.

Sinceã(ω) is continuous over[0,π], the minimum is attained, and it can only be at the roots

of
dã(ω)

dω
=−ã1sin(ω)− . . .−mãmsin(mω) = 0, (2.28)

as the boundary points are included with

dã(0)
dω

=
dã(π)

dω
= 0.

If there existsω0 among the roots of (2.28) s.t.ã(ω0) ≤ 0, thenã(ω0) > 0 defines a cut,

otherwise the positivity constraint is met.

In order to find the roots of (2.28), the identityz = ejω = cos(ω) + jsin(ω) can be

applied to (2.28):

dã(ω)
dω

= − 1
2 j

(
a1

(
z−z−1)+ . . .+mam

(
zm−z−m))

:= ∂ã(z)

= 0
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Note thatzm∂ã(z) is an ordinary polynomial of degree2mandejω 6= 0,∀ω∈ R. Therefore,

anyω0 is a root of (2.28) if and only if it is a root of∂ã(ejω) and the root finding task can be

performed by finding (unit circle) roots of an ordinary polynomialzm∂ã(z) of degree2m.

2.4.2 Passivity for impedance systems: Positive real constraint

For some applications it is desirable that the reduced model transfer function has positive

real part. In order to impose this constraint, it suffices to note that the real part of the

relaxed transfer function in program (2.14) isb̃(ω)/ã(ω). Therefore, the only modification

to (2.14) is to add the constraint

b̃(ω) > 0, ∀ω ∈ [0,2π)

and the treatment of this oracle is similar to that of the positivity constraint discussed in

Subsection 2.4.1 becauseã(ω) andb̃(ω) are the same type of trigonometric polynomials.

However, it should be noted that program (2.26) should be modified accordingly to

guarantee the positive realness of the final reduced model. That is, the following constraint

should be added.

p(ejω)q(e− jω)+ p(e− jω)q(ejω) > 0, ∀ω ∈ [0,2π) . (2.29)

It is important to realize that the left side of constraint (2.29) is a trigonometric polynomial

(with respect toω) whose coefficients are linear functions of the decision variablesp(z).

2.4.3 Passivity for S-parameter systems: Bounded real constraint

For S-parameter models, the notion of dissipative system is given by the bounded real

condition (i.e.|H(z)|< 1, ∀z∈ C, |z|= 1). To model this property, program (2.14) can be

modified by adding the constraint

ã(ω) > | b̃(ω)+ j c̃(ω)|, ∀ω ∈ [0,2π) . (2.30)
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To construct the oracle, first check the positivity of the trigonometric polynomial

ã(ω)2− b̃(ω)2− c̃(ω)2 > 0, ∀ω ∈ [0,2π) .

If this condition is met, then bounded realness is satisfied at the current query point, oth-

erwise there exists someω0 ∈ [0,2π) at which the bounded real constraint in eq. (2.30) is

violated. Then the constraint

ã(ω0) > | b̃(ω0)+ j c̃(ω0)|

defines a desired cut. It is noted that program (2.26) should be modified analogously to

preserve the passivity of the final reduced model.

2.4.4 Multi-port positive real passivity

For a multi-port transfer matrixH(z) ∈ Cn×n with real coefficients, positive real passivity

means

H(ejω)+H(ejω)
′
> 0, ∀ω ∈ [0,2π) , (2.31)

with ′ denoting complex conjugate transpose of a matrix and the inequality in eq. (2.31)

means that the matrix sum in the LHS has real and positive eigenvalues. Define the follow-

ing notations.

Let
x[k+1] = Ax[k]+Bu[k]

y[k] = Cx[k]+Du[k]
(2.32)

be a state-space realization ofH(z) and define the2×2 block matrix

Σ :=


 0 C′

C D+D′


 :=


 Σ11 Σ12

Σ21 Σ22


 . (2.33)
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The following generalized eigenvalue problem will be considered later.

z


 −Σ11+Σ12Σ−1

22 Σ21 A′+Σ12Σ−1
22 B′

−I 0


−


 0 I

−A+BΣ−1
22 Σ21 −BΣ−1

22 B′


 = 0

(2.34)

The following lemma describes the oracle construction procedure.

Lemma 2.4.1.AssumeΣ22> 0. If generalized eigenvalue problem (2.34) does not have any

eigenvalue on the unit circle, then (2.31) is satisfied. Otherwise, there existsω0 ∈ [0,2π)

such thatejω0 is an eigenvalue of (2.34), andH(ejω0)+H(ejω0)′≯ 0. In this case ifv0∈ Cn

is an eigenvector associated with a non-positive eigenvalue ofH(ejω0)+H(ejω0)′, then

v0
′(H(ejω0)+H(ejω0)

′
)v0 > 0 (2.35)

defines a (real coefficient) linear cut with respect to the coefficients of the numerator of

H. ¥

Proof of Lemma 2.4.1. Note that (2.31) is the same as

u′H(ejω)u+u′H(ejω)
′
u > 0, ∀u∈ Cn, u 6= 0, ω ∈ [0,2π) , (2.36)

and it is equivalent to (withΣ as defined in (2.33))


 x

u


Σ


 x

u



′

> 0, (2.37)

subject to “system constraints”

zx= Ax+Bu (2.38)

andHu=Cx+Du for z∈ C. According to KYP lemma [68], frequency dependent inequal-

ity (2.37) subject to “system constraint” (2.38) holds if and only if the system of equations
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(with unknownsx, u andψ)

zx = Ax+Bu
ψ
z = A′ψ−Σ11x−Σ12u

B′ψ = Σ21x+Σ22u,

(2.39)

does not have any nonzero solution for|z| = 1. SinceΣ22 is assumed to be invertible,

solving foru from the last equation of (2.39), it can be seen that the conditions in eq. (2.39)

is equivalent to the condition that the generalized eigenvalue problem in eq. (2.34) does not

have any eigenvalue on the unit circle. Therefore, if this condition is true, then condition

(2.31) is met. Otherwise, letejω0 be an eigenvalue of problem (2.34) and it needs to be

shown that

H(ejω0)+H(ejω0)′ ≯ 0. (2.40)

Indeed,ejω0 being an eigenvalue of (2.34) implies that (2.39) is satisfied withejω0 and the

correspondingx, u andψ, then quadratic form from (2.37) becomes

x′Σ11x+x′Σ12u+u′Σ21x+u′Σ22u

= x′ (Σ11x+Σ12u)+u′ (Σ21x+Σ22u)

= x′
(
A′ψ−e− jω0

)
+u′B′ψ

=
(
Ax+Bu−ejωx

)′ψ
= 0

and (2.40) is resulted. In the derivation, the second and the fourth equalities are due to

(2.39). The fact that (2.35) defines a linear cut should be obvious. ¥

Remark2.4.2. It should be noted that the assumptionΣ22 > 0 is in fact necessary for posi-

tive real passivity condition eq. (2.31) to hold. This is because

H(ejω)+H(ejω)
′
= C

(
ejωI −A

)−1
B+

(
C

(
ejωI −A

)−1
B
)′

+D+D′, (2.41)

whereA,B,C,D are the state space matrices defined in eq. (2.32). Integrating eq. (2.41)
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with respect toω results in

∫ 2π

0

(
C

(
ejωI −A

)−1
B+

(
C

(
ejωI −A

)−1
B
)′

+D+D′
)

dω = 2π
(
D+D′

)
= 2πΣ22

(2.42)

as the first two terms in the integrand integrate to zero. Therefore, if eq. (2.41) is to be

positive definite for all values ofω, then it integral (2.42) should also be positive definite,

meaning thatΣ22 > 0 is necessary for eq. (2.31) to hold. ¥

2.4.5 Objective oracle

In the case where the transfer functionH of the original system is fully specified explicitly

(in terms of system matrices, numerator/denominator, or pole/zero/gain), and the exactH∞

norm is to be minimized, one can use the following oracle: given the current iterates(ã, b̃, c̃)

and the desired level of optimalityγ, an unstable transfer function

Ĥ(ejω) :=
b̃(ω)+ j c̃(ω)

ã(ω)

can be realized. Then the difference systemH− Ĥ can be formed to check if itsL∞ norm

(same definition asH∞ norm defined in eq. (2.1) and eq. (2.2), but not limited to stable

systems) is less thanγ. If the correspondingL∞ norm is not smaller thanγ, then a violating

frequencyω0 can be identified and the cut

|b̃(ω0)+ j c̃(ω0)− ã(ω0)H(ω0)|< γã(ω0)

can be enforced.

In the case where the transfer functionH of the original system is specified as sam-

ple data(ωi ,H(ωi)) , i = 1,2, . . .N, theL∞ norm check of the differenceH− Ĥ can be

simplified to checkingN inequalities.

Finally, if the original transfer functionH is again given explicitly (e.g., system ma-

trices), but theL∞ norm oracle mentioned above is deemed too expensive to compute,

the frequency response ofH can be sampled, and the proposed algorithm still applies (al-
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though theH∞ norm error is no longer guaranteed). Uniform sampling of the discrete-time

frequency axis over the range of interest is generally a good choice for the proposed algo-

rithm.

2.5 Extension to PMOR

This section discusses how the setup in (2.14) can be extended to solve the problem of the

parameterized model order reduction.

2.5.1 Optimal H∞ norm parameterized model order reduction prob-

lem and relaxation

The parameterized model order reduction problem is defined as follows: given a stable

transfer functionH(z,p), wherep is the vector of design parameters contained in a set

P ⊂ Rnp, and a positive integerm (as the order of the reduced model), construct a stable

parameterized rational transfer function with real coefficient functions

Ĥ(z,p) =
p(z,p)
q(z,p)

:=
pm(p)zm+ pm−1(p)zm−1 + . . .+ p0(p)

zm+qm−1(p)zm−1 + . . .+q0(p)
, pk,qk : Rnp 7→ R, ∀k

such thatĤ(z,p) is the optimal solution of

minimize
p,q

max
p∈P

∥∥∥H(z,p)− p(z,p)
q(z,p)

∥∥∥
∞

subject to deg(q) = m, deg(p)≤m,

q(z,p) 6= 0, ∀z∈ C, |z| ≥ 1, ∀p ∈ P (stability).

(2.43)

Parallel to the development in the non-parameterized case in Section 2.2, quasi-convex

program (2.14) is extended by introducing the followingparameterized univariate trigono-

50



metric polynomialswith real coefficients

a(z,p) = a0(p)+a1(p)(z+z−1)+ . . .+am(p)(zm+z−m),

b(z,p) = b0(p)+b1(p)(z+z−1)+ . . .+bm(p)(zm+z−m),

c(z,p) = 1
j

(
c1(p)(z−z−1)+ . . .+cm(p)(zm−z−m)

)
.

(2.44)

Then the parameterized version of program (2.14) becomes

minimize
ã,b̃,c̃,γ

γ

subject to |H(ejω,p)ã(ω,p)− b̃(ω,p)− j c̃(ω,p)|< γã(ω,p), ∀ω ∈ [0,2π) , ∀p ∈ P ,

ã(ω,p) > 0, ∀ω ∈ [0,2π) , ∀p ∈ P

deg(ã)≤m, deg(b̃)≤m, deg(c̃)≤m.

(2.45)

Here the decision variables areγ, and the coefficients of̃a, b̃, c̃ as functions of the design

parameter vectorp. By the same argument as in the proof of Lemma 2.2.6 in Subsection

2.2.2, program (2.45) can be shown to be quasi-convex. However, as it turns out, program

(2.45) is difficult to solve. The subsequent part of this section will focus on approximately

solving program (2.45) using the cutting method. The emphasis will be given to the con-

struction of the parameterized stability oracle, as it is the main roadblock to the solution.

2.5.2 PMOR stability oracle – challenge and solution idea

2.5.2 A: PMOR stability check problem

In practice, in program (2.45) the frequency response matching constraint (i.e., the first

set of the constraints) is enforced only at some finite number of frequencies and parame-

ter values, and hence it can be handled by the same procedure for the non-parameterized

case described in Subsection 2.4.5. The stability constraint (i.e., the second set of con-

straints in (2.45)), however, has to be enforced for all values of frequencies as well as

design parameters. In the context of a solution procedure via the cutting plane method,

constraint enforcement amounts to the following check in program (2.45): given functions
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a0(p),a1(p), . . . ,am(p), check if it is true that

ã(ω,p) > 0, ∀ω,∀p ∈ P , (2.46)

2.5.2 B: Polynomially parameterized univariate trigonometric polynomial

In general, it is very difficult to solve the problem in eq. (2.46) ifa0(p),a1(p), . . . ,am(p)

are arbitrary functions ofp. Therefore, the first step to solve the stability check challenge

in eq. (2.46) is proposed in this thesis that these functions are restricted to be polynomials.

Define (as the degree ofã(ω,p))

m ∈ Znp+1
+ , m :=

[
m0 m1 · · · mnp

]′

with m0 taking the place ofm in program (2.45). Then

Definition 2.5.1. A polynomially parameterized univariate trigonometric polynomial of

degreem, associated with̃a(ω,p) in eq. (2.46), is defined as̃a : [0,2π)×P 7→ R :

ã(ω,p) =
m0

∑
i0=0

m1

∑
i1=0

. . .
mnp

∑
inp=0

ãi0,i1,...,inp

(
pi1

1 . . .p
inp
np

)
cos(i0ω)

:=
m
∑

i=0
ãipi1: cos(i0ω)

(2.47)

with

i ∈ Znp+1
+ , i :=

[
i0 i1 · · · inp

]′
,

and

pi1: := pi1
1 . . .p

inp
np ,

and

ãi ∈ R, ∀0≤ i ≤m,

with inequalities understood entry-wise. ¥
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Accordingly, the stability constraint in eq. (2.46) becomes

ã(ω,p) =
m

∑
i=0

ãip
i1: cos(i0ω) > 0, ∀ω, ∀ p. (2.48)

Unfortunately, even though constraint eq. (2.48) is linear (hence convex) with respect to

the decision variables (i.e., coefficientsãi), there is no known efficient algorithms to check

whether it is satisfied or not. It will be clear that this difficulty is resulted from the fact that

the set of positive multivariate trigonometric polynomials cannot be characterized in the

same computationally tractable manner as in the univariate case. In addition, looking back

at the non-parameterized stability oracle procedure described in Subsection 2.4.1 would

provide some insight into why the parameterized case is more difficult. It was shown in

Subsection 2.4.1 that the positivity check can be done by finding the roots of some uni-

variate polynomial. However, for the parameterized case, the checking of constraint eq.

(2.48) would analogously be finding the (infinitely many) roots of amultivariatepolyno-

mial. There is no efficient algorithm for such a problem.

2.5.2 C: Conversion to multivariate trigonometric polynomials

The next step to solve the challenge in eq. (2.48) is to transform the polynomially pa-

rameterized univariate trigonometric polynomialã(ω,p) in eq. (2.48) to amultivariate

trigonometric polynomial. This transformation will be detailed in Subsection 2.5.3.

2.5.2 D: Sum-of-squares relaxation solution idea – overview

The benefit of transforming̃a(ω,p) in eq. (2.48) to a (to be defined) multivariate trigono-

metric polynomial is that it allows the use of sum-of-squares (SOS) relaxation. The main

idea is that instead of checking the positivity of a multivariate trigonometric polynomial, it

would be much more computationally tractable to check the SOS condition (to be defined

in Subsection 2.5.4). In addition, it will also be shown that the relationship between the

set of SOS and the set of positivity trigonometric polynomials are closely related, hence

justifying the use of SOS. However, it should be forewarned that the SOS approach is not

without its own limitations, which will further be explained in Subsection 2.5.4. Finally,
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the parameterized stability oracle, based on the SOS relaxation idea, will be described in

Subsection 2.5.5.

2.5.3 From polynomially parameterized univariate trigonometric poly-

nomial to multivariate trigonometric polynomial

In a sense,̃a(ω,p) in eq. (2.48) is a “mixed” polynomial – ifp is fixed, thenã is a trigono-

metric polynomial ofω. On the other hand, ifω is fixed, thenã is an ordinary polynomial

of p. There are SOS tools working with ordinary polynomials or trigonometric polynomi-

als, but there is none for both. The solution strategy adopted by this thesis is to convert eq.

(2.48) into a multivariate trigonometric polynomial positivity constraint. This adoption is

for numerical robustness and convenience. A parallel procedure of working with ordinary

polynomials is entirely possible. The development for the rest of this subsection will be

divided into two parts. First, the multivariate trigonometric polynomial will formally be

defined. Then the conversion bearing the title of this subsection will be detailed.

2.5.3 A: Multivariate trigonometric polynomials

We first recall thatnp ∈ N is the number of design parameters, and the default dimension

of many vector spaces to be discussed will benp +1.

Definition 2.5.2. A halfspaceH̃ ⊂ Znp+1 is a set such thatH̃ ∩
(
−H̃

)
= {0}, H̃ ∪(

−H̃
)

= Znp+1, andH̃ + H̃ ⊂ H̃ (i.e., closed under addition). ¥

To explicitly denote the dimension of a halfspace,H̃ can be written as̃Hd ⊂ Zd for any

d ∈ N with the default value ofd asnp +1. It can be verified that the following procedure

defines a halfspacěHd ⊂ Zd. It is defined thatk ∈ Ȟd if one of the following is true

1. kd−1 > 0,

2. kd−1 = 0 and(k0, . . . ,kd−2) ∈ Ȟd−1,

with Ȟ1 := {0,1,2, . . .}. The symbolH will be reserved for the halfspace thus constructed

in Znp+1. That is,

H := Ȟnp+1. (2.49)
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Notation. For anym ∈ Znp+1
+ , Bm ⊂ Znp+1 is defined as

Bm =
{

k ∈ Znp+1|−m≤ k ≤m
}

. (2.50)

Here the inequalities are understood entry-wise (i.e.,|k i | ≤mi ,∀ i = 0, . . . ,np). ¥

Notation. Denote

z :=
[
z0 z1 · · · znp

]T
∈ Cnp+1, (2.51)

and

k :=
[
k0 k1 · · · knp

]′
∈ Znp+1. (2.52)

Then the “multivariate power” is defined as

zk := zk0
0 z1

k1 · · ·znp
knp . (2.53)

¥

Definition 2.5.3. A multivariate trigonometric polynomial of degreem ∈ Znp+1
+ is defined

as a functiona(z) : Cnp+1 7→ C such that

a(z) := ∑
k

ak

(
zk +z−k

)
, k ∈ H ∩Bm, ak ∈ R, ∀k, (2.54)

wherezk , H andBm are defined in eq. (2.53), eq. (2.49) and (2.50), respectively. ¥

Define thenp +1 dimensional unit sphere as

T :=
{

z∈ Cnp+1| |z0|= |z1|= . . . =
∣∣znp

∣∣ = 1
}

. (2.55)

Then it can be seen that

a(z) ∈ R, ∀z∈ T
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because for allk,

1
2

(
zk +z−k

)
= cos

(
k′ω

)
with ω :=− j

[
log(z0) log(z1) · · · log

(
znp

)]T
∈ Rnp+1,

(2.56)

which gives rise to the name “trigonometric polynomial”.

Definition 2.5.4. A trigonometric polynomial is said to be positive if it is positive on the

unit sphere.

a(z) > 0, ∀z∈ T, (2.57)

and a trigonometric polynomial is said to be nonnegative if it is nonnegative on the unit

sphere.

a(z)≥ 0, ∀z∈ T, (2.58)

whereT is defined in eq. (2.55). ¥

2.5.3 B: The conversion

The first step towards the conversion is to re-define the indeterminates(ω,p) in ã(ω,p) in

eq. (2.47). This is achieved with an additional assumption, which will remain throughout

the chapter.

Assumption. It is assumed thatP is a bounded set. That is, there existp ∈ Rnp and

p ∈ Rnp such that

P =
{

p ∈ Rnp p
i
≤ pi ≤ pi , ∀ i = 1,2, . . . ,np

}
. (2.59)

¥

Denotez as in eq. (2.51) as a new set of indeterminates that will be used in eq. (2.47),

and recall the definition of the unit sphereT in eq. (2.55). Then following lemma defines an

one-to-one correspondence between the sets[0,2π)×P andT (corresponding to variables

(ω,p) andz).
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Lemma 2.5.5. The functionf : T 7→ [0,2π)×P , f (z) = (ω,p) is one-to-one, when it is

defined as

f (z) :=




f0(z0)

f1(z1)
...

fnp

(
znp

)




=




ω

p1
...

pnp




with
f0(z0) = − j log(z0)

fi (zi) =
pi+p

i
2 +

(
pi−p

i
4

) (
zi +z−1

i

)
, ∀ i = 1,2, . . . ,np

=
pi+p

i
2 +

(
pi−p

i
2

)
cos(− j log(zi)) .

(2.60)

¥

Proof of Lemma 2.5.5. First, by inspection,[0,2π)×P = f (T), which shows thatf is

surjective. Then, sincelog(·) andcos(·) are injective on their respective domains (i.e.,T

and[0,2π)), f is injective. Therefore,f is one-to-one. ¥

The fact thatf is one-to-one means that the positivity check in eq. (2.48) is the same as

the check of

ã( f (z)) > 0, ∀z∈ T. (2.61)

The real benefit of introducingf in eq. (2.60), though, is that̃a( f (z)) is a multivariate

trigonometric polynomial, as stated by the following lemma.

Lemma 2.5.6. Let m ∈ Znp+1
+ and ã(ω,p) be a polynomially parameterized univariate

trigonometric polynomial of degreem, defined as in eq. (2.47). Letf (z) = (ω,p) be the

change of indeterminates defined as in Lemma 2.5.5. Definea(z) := ã( f (z)), then it is a

multivariate trigonometric polynomial (with respect toz) of degreem. That is,a(z) has

the form in eq. (2.54) ¥

Proof of Lemma 2.5.6. Step 1is to show that the set of (degree unspecified) trigonometric
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polynomials is closed under addition, scalar multiplication and multiplication. Let

b(z) := ∑
k

bk
(
zk +z−k

)
, k ∈ H , bk ∈ R, ∀k

c(z) := ∑
i

ci
(
zi +z−i

)
, i ∈ H , ci ∈ R, ∀ i

be two (degree unspecified) trigonometric polynomials. Then(b+c)(z) := b(z) + c(z)

and(αb)(z) := αb(z) are trigonometric polynomials by inspection. Furthermore, since

b(z)c(z) = ∑
k

∑
i

bkci

(
zk +z−k

)(
zi +z−i

)
.

The fact that

(
zk +z−k

)(
zi +z−i

)
= zk+i +z−(k+i) +zk−i +z−k+i , ∀k, i ∈ H

is a trigonometric polynomial shows that the productb(z)c(z) is a trigonometric polyno-

mial. Hencestep 1 is shown.Step 1, in particular, implies that a polynomial of trigono-

metric polynomials is still a trigonometric polynomial.

Step 2of the proof is to recognize thata(z) = ã( f (z)) as in the statement of the Lemma

is indeed a polynomial of trigonometric polynomials with respect toz. Applying eq. (2.60)

to a(ω,p) in eq. (2.47) yields

a( f (z)) =
1
2

m

∑
i=0

ãi

np

∏
t=1

(pt +p
t

2
+

(pt −p
t

4

) (
zt +z−1

t

))it (
zi0

0 +z−i0
0

)
. (2.62)

It is then to recognize that

zt = zδt ,

with δt having only a single non-zero value of 1 in thet th entry. Therefore, factors in eq.

(2.62) such as
pt +p

t

2
+

(pt −p
t

4

) (
zt +z−1

t

)

and

zi0
0 +z−i0

0
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are trigonometric polynomials ofz, and consequently bystep 1, eq. (2.62) is a polynomial

of trigonometric polynomial ofz with the form

a(z) = ∑
k

ak

(
zk +z−k

)
, k ∈ H , ak ∈ R, ∀k (2.63)

Finally, step 3of the proof is to verify that the degree of eq. (2.63) is indeedm. This

can be shown simply by checking the monomials in eq. (2.62). ¥

Remark2.5.7. Lemma 2.5.5 asserts that the parameterized stability check can be per-

formed, equivalently, by the positivity check in eq. (2.48) and eq. (2.61). Both are equally

hard, but Lemma 2.5.6 states that the latter is a positivity check of a multivariate trigono-

metric polynomial, which can be checked in a restricted sense by using the SOS relaxation

idea to be described in Subsection 2.5.4. ¥

Remark2.5.8. In the conversion to eq. (2.54) given in Lemma 2.5.6, the coefficientsak are

not independent. This can be seen as follows: by the trigonometric identity

cos(nx) = Tn(cos(x)) , ∀x∈ [0,2π)

whereTn(·) is the Chebyshev polynomial of degreen, it can be seen that eq. (2.62) is

actually an ordinary polynomial of the termscos(− j log(zi)), whereas mixed terms such

ascos(− j log(zi))sin(− j log(zk)) are allowed in eq. (2.54). For example,

zizk +z−1
i z−1

k = 2(cos(− j log(zi))cos(− j log(zk))−sin(− j log(zi))sin(− j log(zk))) .

The “over-parameterizations” ofa(z) in eq. (2.54) when dealing with̃a(ω,p) in eq. (2.47)

can also be seen by looking at the lengths of the respective vector of coefficients. Denote

Notation.

ã∈ R|ã|, ã :=




...

ãk
...


 , 0≤ k ≤m, | ã| :=

np

∏
i=0

(mi +1) (2.64)
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a∈ R|a|, a :=




...

ak
...


 , k ∈ H ∩Bm, |a| := 1

2

(
np

∏
i=0

(2mi +1)+1

)
. (2.65)

Hereãk andak are coefficients of the trigonometric polynomials in eq. (2.47) and eq. (2.54),

respectively. ¥

Then it is generally true that|a|> | ã|. The observation of the coefficient redundancy in

the general multivariate trigonometric polynomial representation might lead to a speedup

in the implementation of the parameterized stability check. Unfortunately, improvement in

this direction has not been pursued in this thesis. ¥

The final result in this subsection concerns about the relationship between the vectors

of coefficients in eq. (2.64) and eq. (2.65). It can easily be argued thata is the image of̃a

under somelinear function.

Lemma 2.5.9.Let a in eq. (2.65) be the vector of coefficients ofa(z) as in eq. (2.54). Let

ã in eq. (2.64) be the vector of coefficients ofã(ω,p) as in eq. (2.47). Ifa andã are related

by Lemma 2.5.6, then there existsM ∈ R|a|×| ã| such that

a = Mã.

¥

Proof of Lemma 2.5.9. By expanding the terms in eq. (2.62), it can be seen that eq. (2.62)

has exactly the same monomials as in eq. (2.54) (i.e.,zk , k ∈ H ∩Bm). In addition, the

coefficients of the monomials in eq. (2.62) and eq. (2.54) are linear functions ofã anda,

respectively. Therefore, equating the monomial coefficients term by term concludes the

proof. ¥

Remark2.5.10. It should be noted, however, that showing the existence of the matrixM

is very different from actually obtaining a formula forM. The latter task is much more

cumbersome. In general, this is a task in which a parser based on a computer algebraic

system can help significantly (e.g., the SOSTOOL [69] for the ordinary polynomial case).
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Nevertheless, a formula will be obtained for a special case in whichnp = 2 in Subsection

2.5.6. ¥

To summarize, this subsection concludes with the equivalence of two positivity checks

for the parameterized stability check problem. That is,

ã(ω,p) > 0, ∀ (ω,p) ∈ [0,2π)×P (2.66a)

⇐⇒ a(z) > 0, ∀z∈ T, (2.66b)

with ã(ω,p) defined in eq. (2.47) anda(z) defined in eq. (2.54), and they are connected

by Lemma 2.5.6. The second check is a positivity check of a multivariate trigonometric

polynomial, which will be subject of Subsection 2.5.4.

2.5.4 Multivariate trigonometric sum-of-squares relaxation

It should be emphasized that the material in this subsection is standard, and only the most

relevant topics are discussed here. See [70] for an excellent description of the full list of

topics.

In Subsections 2.5.2 and 2.5.3 it was established that the parameterized stability check

is the positivity check of a multivariate trigonometric polynomial (see eq. (2.66b)). This

computation, in a limited sense, can be performed by the use of SOS idea to be described.

This subsection first defines SOS, and then it will proceed to describe two properties of

SOS – one with its computationally tractable characterization (i.e., Gram matrix represen-

tation), and the other with its relationship to positive trigonometric polynomials. Finally,

the combination of these two properties will lead to the idea of SOS relaxation.

2.5.4 A: Definition of sum-of-squares

Definition 2.5.11. A multivariate positive orthant polynomial of degreem ∈ Znp+1
+ is de-

fined as

h(z) := ∑
k

hkz−k , 0≤ k ≤m, hk ∈ R, ∀k. (2.67)

Here the inequalities are understood entry-wise. That is,0≤ k i ≤mi , ∀i. ¥
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Definition 2.5.12. A trigonometric polynomiala(z) is called a sum-of-squares (SOS) if

a(z) =
ν

∑
l=1

hl (z)hl
(
z−1) , (2.68)

wherehl (z) are positive orthant polynomials defined in eq. (2.67), andν is a positive inte-

ger. ¥

Note that the degrees of the positive orthant polynomials can actually be higher than

the degree of the trigonometric polynomial. See [70, 71] for an example.

2.5.4 B: Gram matrix representation of sum-of-squares

First, it is reminded thatnp is the number of design parameters. Therefore, the (trigono-

metric) polynomials involved will benp +1 variate (trigonometric) polynomials. Now, the

notion of Gram matrix trigonometric polynomial characterization will be defined.

Definition 2.5.13. A vector of (np +1 variate) monomialsθ of degreem is defined as

θ(z) := θnp

(
znp

)⊗ . . .⊗θ0(z0) , ∀z∈ Cnp+1 (2.69)

with

θi (zi) :=
[
1 zi · · · zi

mi

]T
∈ Cmi+1, i = 0,1, . . . ,np.

Also, denote

M :=
np

∏
i=0

(mi +1) (2.70)

as the length of vectorθ. ¥

Definition 2.5.14.A symmetric matrixQ∈ RM×M is called a Gram matrix associated with

trigonometric polynomiala(z) of degreem defined in eq. (2.54) if

a(z) = θ
(

z−1
)T

Q θ(z) , ∀z∈ Znp+1, (2.71)

whereθ andM are defined in eq. (2.69) and in eq. (2.70), respectively. ¥
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In addition to the definition in eq. (2.54), the Gram matrix provides alternative way to

characterize a trigonometric polynomial. Given a trigonometric polynomiala(z) as in eq.

(2.54), one (of the many) Gram matrix associated with it can be

Q =




a[1] a[2] · · · a[|a|]
a[2] 0 · · · 0

...
...

.. .
...

a[|a|] 0 · · · 0




, (2.72)

wherea ∈ R|a| is defined in eq. (2.65) anda[i] denotes itsith entry, assuming that the

ordering of the entries ofa in Q in eq. (2.72) are consistent with that of the monomials

in θ in eq. (2.69). On the other hand, given a Gram matrix, the trigonometric polynomial

coefficients can be obtained by the following theorem from [70].

Theorem 2.5.15.Letak be the coefficients of a trigonometric polynomiala(z) in eq. (2.54),

and letQ be a Gram matrix associated witha(z) satisfying eq. (2.71). Then it holds that:

ak = Tr(TkQ) , (2.73)

where

Tk = Tknp
⊗ . . .⊗Tk0 (2.74)

with Tk i ∈ RM×M being Toeplitz matrices with1 on the+k i diagonal, for alli = 0,1, . . . ,np.

¥

For example, forM = 4,

T2 =




0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0




.

The main benefits of using the Gram matrix representation of trigonometric polyno-

mials is that it provides a computationally tractable way to characterize the SOS. This is

summarized by the following theorem from [70].
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Theorem 2.5.16.A trigonometric polynomiala(z) is a sum-of-squares, with the degree of

hl in eq. (2.68) less than or equal tom ∈ Znp+1, if and only if there exists apositive semi-

definite Gram matrixQ∈ RM×M with M :=
np

∏
i=0

(mi +1) (defined in eq. (2.71)) associated

with the trigonometric polynomiala(z). ¥

Remark2.5.17. Theorem 2.5.16 allows the linear matrix inequality (LMI) [56] characteri-

zation of SOS in terms of a positive semi-definite Gram matrix. In the event of optimization

with SOS decision variables, the LMI characterization allows the optimization problem to

be formulated as a SDP, which can be solved in polynomial time by interior point algo-

rithms [67]. This is the main advantage of the Gram matrix characterization of SOS, as

well as one of the two reasons of why the SOS relaxation (to be described) is utilized.¥

2.5.4 C: Sum-of-squares and positive trigonometric polynomials

The other benefit of working with SOS is its intimate relationship with positive and non-

negative trigonometric polynomials (see eq. (2.57) and eq. (2.58) for definitions), which

are the objects of concerned for parameterized stability checking. Evaluated on the unit

sphere, a SOS (as its name suggests) becomes

a(z) =
ν

∑
l=1

|hl (z)|2≥ 0, z∈ T. (2.75)

As it is indicated by eq. (2.75), if a trigonometric polynomial is a SOS, then immediately it

is nonnegative. However, it is not known whether the converse is true or not. Nevertheless,

a “partial converse” turns out to be true, as stated by the following theorem from [72].

Theorem 2.5.18.If a trigonometric polynomial is positive, then it is also a sum-of-squares.

¥

Remark2.5.19. Intuitively, Theorem 2.5.18, together with the preceding discussion, sug-

gests that, for anym ∈ Znp+1
+ , the set of SOS of degreem is “sandwiched” between the set

of positive trigonometric polynomials and its closure (i.e., the set of nonnegative trigono-

metric polynomials). This relationship can be summarized in the following schematic.

{positive} ⊂ {SOS} ⊂ {nonnegative} . (2.76)
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Set inclusion relationship in eq. (2.76) ensures that the set of SOS and the set of positive

trigonometric polynomials cannot be too different. ¥

2.5.4 D: Sum-of-squares relaxation

To recap, Subsection 2.5.3 establishes that the parameterized stability constraint checking

problem can be formulated into two equivalent positivity checking problems in eq. (2.66a)

and (2.66b). Both checks are equally hard, but the latter is a positivity check of a multivari-

ate trigonometric polynomial. Then the set inclusion relationship in eq. (2.76) suggests that

eq. (2.76) can be replaced by a check of SOS which, according to Theorem 2.5.16, can be

formulated as a SDP which admits efficient solution algorithms such as interior point meth-

ods. This chain of ideas is referred to as the SOS relaxation in this chapter. The following

is the schematics of the SOS relaxation.

(hard) ã(ω,p) > 0, ∀ (ω,p) ∈ [0,2π)×P (2.77a)

(hard) ⇐⇒ a(z) > 0, ∀z∈ T (2.77b)

(easy) =⇒ a(z) ∈ {SOS} , (2.77c)

whereã(ω,p) (from eq. (2.47)) is a polynomially parameterized univariate trigonometric

polynomial, anda(z) (from eq. (2.54)) is a multivariate trigonometric polynomial.

More details should be pointed out regarding the SOS relaxation idea.

Remark2.5.20. The right arrow in eq. (2.77c) conforms with the set inclusion relationship

in eq. (2.76), and also explains the name “relaxation”. However, it should be noted that the

right arrow does not come trivially – it is the consequence of Theorem 2.5.18, a result that

is not so obvious, and not so trivial to show. ¥

Remark2.5.21. It is obvious that not all SOS are positive trigonometric polynomials (e.g.,

the zero polynomial). To make sure that positivity is really enforced, the check in eq.

(2.77c) can be modified to bea(z)− ε is SOS, for some smallε > 0. The real problem

of SOS relaxation, however, lies in the fact that the statement in Theorem 2.5.16 doesnot

completely characterize the set of SOS for any degreem ∈ Znp+1
+ . This is explained in the

subsequent remarks. ¥
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Remark2.5.22. The positive semi-definite Gram matrixQ∈ RM×M in Theorem 2.5.16 is

insufficient to fully characterize the set of all SOS’s of degreem because the latter set

also contains SOS with positive orthant polynomials of degree higher thanm. Therefore

the set{SOS} in eq. (2.77c) (i.e., SOS relaxation) should accordingly be understood as

the set of degreem SOS’s which is representable by a positive semi-definite Gram matrix

Q∈RM×M. The limitation of the representability of the Gram matrix characterization leads

to a restriction in SOS relaxation. In particular, the right arrow implication in eq. (2.77c) is

no longer true – there can be positive trigonometric polynomials of degreem which does

not belong to the{SOS} in eq. (2.77c). ¥

Remark2.5.23. To allow a less restrictive Gram matrix characterization of the set of SOS’s

of degreem, Theorem 2.5.16 can be applied to the case forn ∈ Znp+1
+ such thatn ≥ m.

In order to exclude the choices that lead to a trigonometric polynomial of degree higher

thanm, additional constraints are needed. That is, for the Gram matrixQ ∈ RN×N with

N :=
np

∏
i=0

(ni +1), constraints such as

Tr(TkQ) = 0, ∀k �m

should be enforced. ¥

Remark2.5.24. There is a price for usingn≥m in Remark 2.5.23 because the the complex-

ity of a SDP involved will beO
(
N4

)
, which grows rather quickly withN. In practice, this

means that the set of SOS’s of degreem cannot be completely characterized using Gram

matrix representation becausen (and henceN) cannot be too large. Therefore, the SOS

relaxation is not really a relaxation. Nevertheless, experimental results seem to suggest

that the limitation is not crippling. ¥

Remark2.5.25. There is no analogy to Theorem 2.5.18 in the multivariate ordinary poly-

nomial case, with the closest results pertaining only to the SOS ofrational functions (see,

Chapter 3 of [70]). The restriction in ordinary polynomial SOS adds to the list of justifi-

cations for the choice of working with trigonometric SOS instead of ordinary SOS. Never-

theless, there is a rather large body of literature regarding ordinary SOS, see, for example,

[73, 74, 75]. ¥

66



2.5.5 PMOR stability oracle – a SDP based algorithm

In this subsection, a SDP based parameterized stability oracle will be presented. As it

was explained in Subsection 2.5.4, rather than checking positivity constraints such as eq.

(2.77a) or eq. (2.77b) which truly corresponds to the parameterized stability constraint, it

is the SOS constraint in eq. (2.77c) that is being checked in this subsection. In addition,

Remark 2.5.22 in Subsection 2.5.4 concludes that the set{SOS} in eq. (2.77c) should be

restrictive – letm ∈ Znp+1
+ be the degree of the trigonometric polynomial considered, then

the set{SOS} in eq. (2.77c) refers to the set of SOS’s of degreem with positive orthant

polynomial degreem (see eq. (2.68) for definition). It is asubsetof the set of all SOS’s of

degreem. Now the SOS oracle will be presented.

Algorithm 2: PMOR SOS ORACLE

Input: query point – a vector of coefficientsã∈ R| ã| (see eq. (2.64)). This vector defines

the polynomialã(ω,p) of degreem in eq. (2.47).

Output: declaration of SOS constraint met, or a cut(α,β) : α′x > β, for all vector of

coefficientsx∈ R| ã| corresponding to SOS’s with positive orthant polynomial degree less

than or equal tom.

i. With the coefficient̃a for ã(ω,p) of degreem in eq. (2.47), obtain trigonometric poly-

nomiala(z) in eq. (2.54) using Lemma 2.5.6 in Subsection 2.5.3.

ii. Solve the semidefinite program with decision variablesy∈ R andQ∈ RM×M,

minimize
y,Q

y

subject to θ
(
z−1

)T
Q θ(z) = a(z)+y, ∀z∈ Cnp+1

Q = Q′ ≥ 0,

(2.78)

where the vector of monomialsθ is of degreem is defined in eq. (2.69),M is defined

in eq. (2.70), andT is defined in eq. (2.55).

iii. if program (2.78) is feasible and optimaly∗ < 0,

return SOS constraint is met
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else

return Cut (α,β) ∈ R| ã|×R constructed using from the dual solution to (2.78).

The following lemma certifies the correctness of the oracle and gives a constructive

proof of the existence of(α,β).

Lemma 2.5.26.Let ã∈ R| ã| (defined in eq. (2.64)) as the coefficient vector ofã(ω,p) be

given. If program (2.78) is feasible and the optimal valuey∗ < 0, thenã(ω,p) > 0,

∀ω ∈ [0,2π), p ∈ P . Otherwise, a cut(α,β) ∈ R| ã|×R can be returned. The cut has

the following property:α′x > β for all x ∈ R| ã| such that the optimal objective value of

program (2.78) is negative. ¥

Proof of Lemma 2.5.26.First consider the case when program (2.78) is feasible. Since

θ
(
z−1

)T
Q θ(z) >−∞, ∀z∈ T and|a(z)|< ∞, an optimal solution exists. Let it bey∗. If

y∗ < 0, thenã(ω,p) = a(z) = θ
(
z−1

)T
Q θ(z)− y∗ > θ

(
z−1

)T
Qθ(z) ≥ 0, ∀z∈ T. Next

consider the case when program (2.78) is feasible buty∗ ≤ 0. Express the polynomial

equalityθ
(
z−1

)T
Qθ(z) = a(z) as equalities with the corresponding coefficients using eq.

(2.73), program (2.78) can be rewritten as

minimize
y,Q

y

subject to Tr(Q) = a0 +y,

Tr(TkQ) = ak , ∀k ∈ (H ∩Bm)\{0}
Q = Q′ ≥ 0,

(2.79)

whereTk , H andBm are defined in eq. (2.74), eq. (2.49) and eq. (2.50). Now consider the

Lagrangian of (2.79)

L(λ) = minimize
y,Q=Q′>0

{y+λ0(Tr(Q)−y−a0)

+∑
k

λk(Tr(TkQ)−ak)}

= minimize
y,Q=Q′>0

{y(1−λ0)+Tr(Q(∑
k

λkTk))−∑
k

λkak},
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with the summation over the setH ∩Bm, andT0 being the identity matrix. It is true that

L(λ) =




−∑

k
λkak if λ0 = 1, ∑

k
λkTk ≥ 0

−∞ otherwise

At the optimum, the optimal primal/dual pair (y∗,λ∗) has the following property

−∑
k

λ∗kak = y∗. (2.80)

Recall, in Subsection 2.5.3, the definition ofa in eq. (2.65) and the linear relationship

a= Mã for some matrixM. Under the condition thaty∗≥ 0, eq. (2.80) implies thatλ∗′ã≤ 0.

Therefore, all coefficient vectorsx (of ã(ω,p)) that makey∗ < 0 should satisfy

λ∗′Mx > 0, (2.81)

and therefore(M′λ∗,0) is the desired cut.

Finally, consider the case when (2.78) is infeasible. By argument of the statements of

alternatives, infeasibility of (2.78) implies the existence of feasible dual solutionλ s.t.

λ0 = 1, ∑
k

λkTk ≥ 0, and ∑
k

λkak ≤ 0.

Therefore,∑
k

λkak > 0 will lead to the same type of cut as in (2.81). ¥

Remark2.5.27. Once again it is reiterated that the SOS constraint is a restrictive version

of the positivity constraint which is desirable to check, as the former check is the only

tractable problem to solve. ¥

Remark2.5.28. While the specific construction of the SOS constraint oracle in Lemma

2.5.26 requires the dependence ofã on the design parameter to be polynomial, there is no

restriction in the dependence ofb̃ andc̃, and they can be chosen to best fit the problem at

hand. ¥

Remark2.5.29. It is program (2.79) used in the proof of Lemma 2.5.26, instead of program

(2.78), that is actually formulated and solved because the former is readily formulated as
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the SDP “standard” form, which can be solved by solvers such as SeDuMi [76]. The details

of how to construct program (2.79) will be illustrated in the following subsection through

the special case in which two design parameters are allowed. ¥

2.5.6 PMOR positivity oracle with two design parameters

General SOS programming problems can be formulated using available parsers such as

SOSTOOLS [69]. However, this tool requires the use of computer algebraic system (e.g.,

MATLAB Symbolic Toolbox), which is slow in the context of cutting plane oracle ap-

plication, as oracles must be called thousands of times to solve a single instance of the

optimization problem. Therefore, dedicated codes for formulating (2.79) are preferred.

Consider the case in which only two design parameters are allowed. Denote the param-

eters asD andW (i.e., wire separation and wire width for RF inductor design). Letm be

the reduced order,M andN be the highest degrees ofD andW. Then in this subsection,

the polynomially parameterized univariate trigonometric polynomialã(ω,p) in eq. (2.47)

will be denoted as

ã(ω,D,W) =
m

∑̃
k=0

M

∑̃
i=0

N

∑̃
j=0

ãĩ j̃ k̃D
ĩW j̃ cos

(
k̃ω

)
, (2.82)

where indices̃i and j̃ are associated with design parameterD andW and index̃k is with the

frequency variableω. The triplet
(
k̃, ĩ, j̃

)
takes the role of the multi-indexi in the definition

of eq. (2.47).

Similar to the treatment in Subsection 2.5.3, the parameter setP will be assumed to be

bounded. That is, there existD ∈ [D, D̄] andW ∈ [W,W̄] such that

D = D0 +D1
(
zD +zd

−1
)

W = W0 +W1
(
zW +zd

−1
)
,

(2.83)

where
D0 = 0.5(D+ D̄)

W0 = 0.5(W+W̄)

D1 = 0.25(D̄−D)

W1 = 0.25(W̄−W)

70



andzD ∈ C, |zD|= 1, zW ∈ C, |zW|= 1. Also, a new variablezwill be defined such that

ω :=−√−1log(z) . (2.84)

With the redefinition of the indeterminates (i.e.,z, zD andzW), the multivariate trigono-

metric polynomiala(z), as in eq. (2.54), will be denoted as

a(z) =
m

∑
k=−m

M

∑
i=−M

N

∑
j=−N

ai jkzi
Dzj

Wzk, (2.85)

with the hidden assumptions that the coefficientsai jk do conform to the rule of a trigono-

metric polynomial. For example,ai jk = a−i− j−k. Also, it is pointed out here that in this

subsection the symbolj is treated as an index, and the unit imaginary number will be

denoted explicitly as
√−1.

As stated in Lemma 2.5.9 in Subsection 2.5.3, the coefficients of multivariate trigono-

metric polynomial in eq. (2.85) are linearly related to the coefficients of the polynomial

parameterized univariate trigonometric polynomial in eq. (2.82). Here, an explicit formula

for the relation will be given: substituting eq. (2.83) and eq. (2.84) intoã(ω,W,D) in eq.

(2.82) leads to

1
2

(
m
∑

k̃=0

M
∑

ĩ=0

N
∑
j̃=0

ãĩ j̃ k̃

(
D0 +D1

(
zD +z−1

D

))ĩ (
W0 +W1

(
zW +z−1

W

)) j̃
(zk̃ +z−k̃)

)

:=
m
∑

k=−m

M
∑

i=−M

N
∑

j=−N
bi jkzi

Dzj
Wzk.

(2.86)

Equating the coefficients of the monomials yields

ai jk :=

1
2

M
∑

p=|i|

N
∑

q=| j|


b p−|i|

2 c
∑

s=0


 p

|i|+2s


Dp−|i|−2s

0 D|i|+2s
1


 |i|+2s

s





·


b q−| j|

2 c
∑

t=0


 q

| j|+2t


Wq−| j|−2t

0 W| j|+2t
1


 | j|+2t

t





 ãp,q,|k|,

(2.87)
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where 
 p

q


 :=

p!
(p−q)!q!

Note that in eq. (2.87) the indicesi, j andk only appear in absolute value. This is explained

by the constraint thata(z) is a trigonometric polynomial (in fact, an ordinary polynomial of

cos
(−√−1log(z)

)
, cos

(−√−1log(zW)
)
, andcos

(−√−1log(zD)
)

only). Furthermore,

eq. (2.87) indicates that there can be at most(m+1)(M +1)(N+1) unique coefficients in

a(z) – this is the exactly the same number of coefficients inã(ω,p).

With the multivariate trigonometric polynomial coefficientsai jk clearly defined in eq.

(2.87), the optimization problem in (2.79) can be set up and solved using a standard SDP

solver such as SeDuMi.

2.6 Additional modifications based on designers’ need

It will be shown here that the proposed Algorithm 1 (MOR) given in Section 2.3 and Al-

gorithm 2 (PMOR) given in Section 2.5 are quite flexible, and they can serve as a basic

framework which can easily be modified to account for several additional desirable con-

straints devised for instance from a designer’s knowledge about the specific system to be

modelled.

2.6.1 Explicit approximation of quality factor

When the transfer functionH is for instance the impedance of an RF inductor, the accurate

representation of the quality factor

Q(ω) :=
Im(H(ejω))
Re(H(ejω))

, ω ∈ [0,2π)

is of critical importance for the designers in order to evaluate the system performance. In

this case, the basic problem in (2.14) can be modified to guarantee a very good quality

factor accuracy.
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minimize
ã,b̃,c̃,γ

γ

subject to
∣∣H(ejω)ã(ω)− b̃(ω)− j c̃(ω)

∣∣ < γã(ω),
∣∣∣ Im(H(ejω))

Re(H(ejω)) b̃(ω)− c̃(ω)
∣∣∣ < ργb̃(ω),

ã(ω) > 0, b̃(ω) > 0, ∀ω ∈ [0,2π) ,

deg(ã) = m,deg(b̃)≤m,deg(c̃)≤m.

(2.88)

ρ in the second set of constraint is a tuning parameter of the relative accuracy between

match on frequency response and on quality factor. The oracles for program (2.88) are

similar to those for program (2.14). The positive real part constraint and the reduced model

should be constructed using

minimize
p,γ

γ

subject to
∣∣∣H(ejω)− p(ejω)

q(ejω)

∣∣∣ < γ, ∀ω ∈ [0,2π) ,
∣∣∣ Im(H(ejω))

Re(H(ejω)) −
p(ejω)q(e− jω)−p(e− jω)q(ejω)
p(ejω)q(e− jω)+p(e− jω)q(ejω)

∣∣∣ < ργ

p(ejω)q(e− jω)+ p(e− jω)q(ejω) > 0, ∀ω ∈ [0,2π) .

deg(p)≤m,

(2.89)

Again, this program is quasi-convex, and the oracle procedure with constraint (2.29) can

be applied here as well.

2.6.2 Weighted frequency response setup

In some applications the desired approximation accuracy is different in different frequency

ranges. For those applications the objective function of program (2.14) can be replaced by

∥∥W(z)
(
H(z)− Ĥ(z)

)∥∥
∞ ,

whereW(z) are weights that can be chosen to be larger for the “more important” frequency

range.
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2.6.3 Matching of frequency samples

Program (2.14) can be modified so that the reduced transfer function matches exactly the

original transfer function at some particular frequenciesωk between0 andπ. In order to do

this, equality constraints such as

H
(
ejωk

)
ã(ωk)− b̃(ωk)− j c̃(ωk) = 0, ∀k

can be imposed. Similarly, the program (2.26) can be modified to make sure the final

reduced model matches the full model at those frequencies. Besides the intended use of

exact sample matching, this modification has the practical meaning of reducing the num-

ber of optimization decision variables in programs (2.14) and (2.26), hence reducing the

runtime significantly.

2.6.4 System with obvious dominant poles

Algorithm 3 implements a PMOR procedure, and it is specialized in the case where the

full model has a pair of “dominant poles”. It is given because it can take advantage of

the problem specific insight common, for instance, in RF inductor design. Note that the

reduced modelĤ(z,p) is stable because, as described in Algorithm 3,|ẑ∗(p)| < 1, and

Ĥ(z,p) is stable∀p ∈ P .

Algorithm 3: PMOR: RF INDUCTOR DESIGN

Input: H(z,p)

Output: Ĥ(z,p)

i. Construct reduced models̃Hp(z) for eachp ∈ P1⊂ P , whereP1 is a finite (training) set

ii. Identify the dominant polesz∗p of modelsH̃p(z)

iii. For each model̃Hp(z), construct proper “non-dominant” systemsH1
p(z) s.t.

H̃p(z) =
Kpz2

(z−z∗p)(z− z̄∗p)
H1

p(z), (2.90)
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whereKp ∈ R.

iv. Construct global interpolation modelK̂(p) andẑ∗(p). Special attention should be paid

to the model̂z∗(p) to make sure that|ẑ∗(p)|< 1,∀p ∈ P

v. Solve program (2.45) to find a parameterized modelĤ1(z,p) with non-dominant sys-

temsH1
p(z) as inputs.

vi. Construct reduced model of the original system using eq. (2.90). That is,

Ĥ(z,p) =
K̂(p)z2

(z− ẑ∗(p))(z− ẑ∗(p))
Ĥ1(z,p).

Note that in order to make sure the final modelĤ(z,p) is passive, pole and zero infor-

mation of the “dominant” system can be taken into account to form the numerator of the

overall system when parameterized ”non-dominant” systemĤ1(z,p) is being computed.

2.7 Computational complexity

There are two sources that contribute to the complexity. The first part is the computation of

the frequency samples, which, when using accelerated solvers [77, 78, 79], isO(nlog(n))

for each frequency point, withn being the order of the full model. The examples in Sec-

tion 4.8 usually required from 20 to 200 frequency samples. The second part is the cost

of running the optimization algorithm. The complexity analysis here is based on the spe-

cific method of ellipsoid algorithm (which is implemented as a test code). Ifq andnv are

the order of the reduced model and the number of decision variables in the optimization

respectively, thennv = O(q). Based on the fact that the volume of the bounding ellipsoid

is reduced by at least a factor of1− 1
nv

, it can be concluded that it takesO(n2
v) = O(q2)

iterations to terminate the algorithm. At each iteration of the ellipsoid algorithm, the cost is

O(q2) (matrix vector product performed when updating the bounding ellipsoid). Therefore,

the cost of the second part isO(q4). The overall complexity of the algorithm is summarized

as

O(nlog(n)ns)+O(q4),
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with ns being the number of frequency samples computed. Similarly, for the parameterized

case,nv = O(q∏qpk) whereqpk is the degree of the polynomial with each parameterpk as

in (2.47) and the complexity is

O(nlog(n)ns)+O(q∏qpk)4). (2.91)

Based on our experience in running the examples in Section 4.8, the bottleneck for non-

parameterized model reduction is represented by the computation of the frequency response

samples, i.e. the first term in (2.91), unless the samples are available as measured data.

For parameterized applications, on the contrary, the bottleneck is solving the relaxation as

there are many more decision variables. Therefore, the second term of (2.91) becomes the

dominating factor.

2.8 Applications and Examples

In this section several application examples are shown to illustrate how the proposed opti-

mization based model reduction algorithm works and performs in practice. All the exam-

ples in this section were implemented in MATLAB and run on a Pentium IV laptop with

1GHz clock, 1GB of RAM and running Windows XP. A basic, stability constrained version

of the proposed algorithm can be found at

http://www.rle.mit.edu/cpg/research_codes.htm

2.8.1 MOR: Comparison with PRIMA

In this subsection the proposed algorithm is compared with the commonly used model re-

duction method of moment matching. The first two examples are non-parameterized com-

parison. The last example is aparameterizedmodelling problem for a 2 turn RF inductor

as described in [18].

RF inductor example. The first example is a comparison between multi-point mo-

ment matching (PRIMA) [8] and the proposed algorithm for reducing a 7 turn spiral RF
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inductor model generated by an electro-magneto-quasi-static (EMQS) mixed potential in-

tegral equation (MPIE) solver [79]. The original model has order 1576. PRIMA is set to

match 2 moments at DC, 6 moments at each of the following frequencies: 4GHz, 8GHz

12GHz. The resulting model has order 20. On the other hand, two models are con-

structed using the proposed method. One has order 14 using 20 frequency samples (same

computational cost as PRIMA), and the other has order 20 using 40 frequency samples

(same order as PRIMA). When using the proposed method, both stability and positive-real

passivity oracles are checked in this example. The following error metric is computed:

max( |H( f )−Ĥ( f )|
|H( f )| ), f ∈ [0,14GHz]. Comparison results are shown in Table 2.1, with QCO

being the shorthand for the proposed quasi-convex optimization method.

Table 2.1: Reduction of RF inductor from field solver data using QCO and PRIMA

QCO QCO PRIMA
order 14 20 20
cost (# of solves) 20 40 20
error (%) : H 6.9×10−3 7.1×10−4 1.8×10−3

RLC line example. This is a cooked-up example in which the full model is not quite

reducible. The example is presented here in order to examine how PRIMA and the pro-

posed method perform in a poorly defined setup. In this example we reduce an RLC line

segmented into 10 sections (full model order 20) with an open circuit termination. The

transfer function is the admittance. The model is obtained as follows: inductor currents

and capacitor voltages are the state variables. KCL is imposed at each capacitor node, and

the branch equation is used between adjacent nodes. The reduced models of both methods

have order 10, and PRIMA is set to match 4 moments at104 rad/s, 4 moments at5×104

rad/s, and 2 moments at105 rad/s respectively. Figures 2-2 and 2-3 compare the magni-

tudes of the admittance of the full model, and the reduced models by PRIMA, and by the

proposed method, respectively. The difficulties encountered when modelling this example

with PRIMA are discussed in [80]. As expected, in this example PRIMA performs better

locally, but the proposed method does better for the whole frequency range of interest.

PMOR of 2 turn RF inductor. In this example, the two turn RF inductor in [18] is

analyzed. In [18], an 12th order parameterized reduced model was constructed using a
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Figure 2-2: Magnitude of admittance of an RLC line. Solid line: full model. Solid with
Stars: PRIMA 10th order ROM.
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Figure 2-3: Magnitude of admittance of an RLC line. Solid line: full model. Solid with
Stars: QCO 10th order ROM.

moment matching method. On the other hand, we have constructed an 8th order PROM

using the proposed method. Figures 2-4 show the comparison results in [18] for the case of

wire width D = 1µmand wire separationW = 1, . . . ,5µm, with the additional result of the

proposed method superimposed.
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Figure 2-4: Inductance of RF inductor for different wire separations. Dash: full model.
Dash-dot: moment matching 12th order. Solid: QCO 8th order.

2.8.2 MOR: Comparison with a rational fit algorithm

In the third example we compare the proposed method with an existing optimization based

rational fit [55, 14, 57] by constructing a reduced model from measured frequency re-

sponse of a fabricated spiral RF inductor [81]. In this example, the order of the reduced

model is 10, and the positive real part constraint is imposed. Frequency weights (preferring

samples of up to 3GHz) are used, and the quality factor is explicitly minimized. In partic-

ular, program (2.88) is solved with tuning parameterρ = 10−4. Runtime for the proposed

method was 60 seconds. On the other hand, rational fit [55], vector fitting [14] and pas-

sivity enforcement [57] were used in combination to construct another passive model for

comparison. The runtime for running the mentioned algorithms was 30 seconds.

Fig 2-5.a and 2-5.b show the real part of the impedance, and the quality factor of the

model produced by the proposed approach comparing to measured data and to a model of

the same order generated using the optimization based approaches in combination.

2.8.3 MOR: Comparison to measured S-parameters from an industry

provided example

In the fourth example we identify a reduced model from measured multi-port S-parameter

data. 390 frequency response samples have been measured on a commercial graphic card.
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Figure 2-5: Identification of RF inductor. Dash line: measurement. Solid line: QCO
10th order reduced model. Dash-dot line: 10th order reduced model using methods from
[14,55,57].

The internal architecture and implementation details are not available. Although the origi-

nal data is multi-input-multi-output, data from only one port is used to construct the reduced

model. Figure 2-6 shows the comparison result for the corresponding ports. The reduced

model is order 20. The model was identified in 30 seconds.
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Figure 2-6: Magnitude of one of the port S-parameters for an industry provided example.
Solid line: reduced model (order 20). Dash line: measured data (almost overlapping).
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2.8.4 MOR: Frequency dependent matrices example

In the fifth example we apply the proposed method to reduce a model of an RF inductor

generated by a full wave MPIE solver accounting for the substrate effect using layered

Green’s functions [82, 79]. Since the system matrices are frequency dependent, the order

of the full model is infinite. The order of the reduced model is 6 and the positive real part

constraint is imposed. Computation time was 2 seconds. Figure 2-7 shows the result of the

quality factor.
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Figure 2-7: Quality factor of an RF inductor with substrate captured by layered Green’s
function. Full model is infinite order and QCO reduced model order is 6.

2.8.5 MOR: Two coupled RF inductors

A 10th order passive reduced model of two coupled 4 turn RF inductors (identical, side by

side) was constructed. It took about 120 seconds to build the reduced model. Figure 2-8

shows the result for the magnitude and phase of S12.

2.8.6 PMOR of fullwave RF inductor with substrate

In this example an8th order passive parameterized reduced model is constructed for an RF

inductor with substrate. The full model has more than 2000 states (quasi-static). The design

parameters are wire width (W) and wire separation (D). The parameter space is a square
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Figure 2-8: S12 of the coupled inductors. Circle: Full model. Solid line: QCO reduced
model.

from (1,1) to (5,5) microns. In constructing the reduced model, 25(W,D) pairs forming

a grid of (1 : 5)× (1 : 5) were used as training data. The reduced model is tested with

simulation results from field solver on a
(
(1.5 : 1 : 4.5)× (1.5 : 1 : 4.5)

)
grid, and Figure

2-9 shows the result. Construction of reduced model took overnight.
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Figure 2-9: Quality factor of parameterized RF inductor with substrate. Cross: Full model
from field solver. Solid line: QCO reduced model.

2.8.7 PMOR of a large power distribution grid

In this example a passive parameterized reduced model of a power distribution grid is built

using the techniques in Subsection 2.6.3, and those similar to Algorithm 3. The design
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parameters are die sizeD ∈ [7,9]mm, and wire widthW ∈ [2,20]µm. 25 full models dis-

tributed uniformly in the design space are used as training points for the reduced model of

order 32. To test the parameterized reduced model, comparison of full model and reduced

model is done at parametersD ∈ {8.25,8.75}mm andW ∈ {4,8,12,14,18}µm. Figures

2-10 and 2-11 show the result atD = 8.25mm andD = 8.75mm, respectively.
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Figure 2-10: Real part of power distribution grid atD = 8.25 mm andW = 4,8,12,14,18
um. Dash: Full model. Solid: QCO reduced model.
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Figure 2-11: Real part of power distribution grid atD = 8.75 mm andW = 4,8,12,14,18
um. Dash: Full model. Solid: QCO reduced model.

2.9 Conclusion

In this chapter a relaxation framework for the optimalH∞ norm MOR problem is proposed.

The framework has been demonstrated to perform approximately as well as PRIMA when
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reducing large systems, and better than PRIMA for examples that require a more global

accuracy in frequency response. Unlike PRIMA, the proposed method has a guaranteed

error bound, and it can reduce models with frequency dependent system matrices, hence

it can capture for instance substrate and fullwave effects. Unlike other optimization based

methods, the proposed method has been shown to be very flexible in preserving stability

and passivity. Finally, the proposed optimization setup has also been extended to solve

parameterized MOR problems. Several examples have been presented validating both the

MOR and PMOR approaches against field solvers and measured data on large RF inductors,

IC power distribution grids and industrial provided package examples.
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Chapter 3

Bounding L2 Gain System Error

Generated by Approximations of the

Nonlinear Vector Field

A growing number of results can be found in the literature addressing the problem of non-

linear model order reduction. For example, [31, 32, 33, 34, 35, 36] employ Volterra series

and moment matching techniques to solve the “weakly nonlinear” model order reduction

problem. Another class of methods based on piecewise approximations address strongly

nonlinear problems [24, 25, 26, 27, 28, 29, 30]. Both of the weakly and strongly nonlinear

methods involve the following two steps: a state projection to a lower dimensional sub-

space and the approximation of the reduced nonlinear vector field to facilitate simulation.

However, to the best of our knowledge, there has not been any published result in the field

of electronic design automation regarding the approximation quality of the approximation

step above. The work in this chapter presents an effort in this direction for a practical

dynamical system settings for applications in integrated circuit design as follows.

ẋ(t) = Ax(t)+Φ(x(t))+Bu(t)

y(t) = Cx(t)
(3.1)

whereA∈ Rq×q, B∈ Rq×1, C∈ R1×q. Φ : Rq 7→ Rq is a generalreducedvector field. For

example,Φ(·) =V ′Φ f (V·) for some projection matrixV ∈Rn×q (e.g., see [83]). Typically,
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q is a small positive integer (e.g.,q = 10). On the other hand,Φ f : Rn 7→ Rn is the full

order nonlinear vector field withnÀ q. When the reduced nonlinear vector fieldΦ is

approximated bỹΦ, system (3.1) becomes

ẋ(t) = Ax(t)+ Φ̃(x(t))+Bu(t)

y(t) = Cx(t).
(3.2)

To reiterate, tworeducedsystems have been defined – the original system in eq. (3.1)

and the approximated system in eq. (3.2). The two systems are of the same order. The

objective of this chapter is to relate the error between nonlinear functionsΦ andΦ̃ to the

error between systems (3.1) and (3.2) described in Figure 3-1.

-

orignal

approx

u e

difference system

Figure 3-1: The difference system setup. The original system in eq. (3.1) and the ap-
proximated system in eq. (3.2) are driven by the same inputu, and the difference between
the corresponding outputs is taken to be the difference system output denoted ase. The L2
gain (to be defined in Subsection 3.2.2) fromu to e for the difference system is a reasonable
metric for the approximation quality between the systems in eq. (3.1) and eq. (3.2).

The rest of the chapter is organized as follows: Section 3.1 presents a motivating appli-

cation example explaining why the error bounding problem should be considered. Section

3.2 summarizes background materials such as the small gain theorem which forms the ba-

sis of the development of this chapter. In Section 3.3 the system error will formally be

introduced as the L2 gain of a difference system, which will be analyzed by the robustness

analysis technique (i.e., the small gain theorem). Section 3.4 presents the main theoreti-

cal contribution: under some assumptions, the L2 gain of the difference system is upper

bounded by the L2 gain ofΦ(·)− Φ̃(·) with a positive multiplicative constant. Based again
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on the small gain theorem, a numerical procedure is presented in Section 3.5 to compute a

more convenient upper bound of the L2 gain of the difference system using the L2 gain in-

formation ofΦ(·)−Φ̃(·). Finally, in Section 3.6, the numerical procedure from Section 3.5

is applied to some nonlinear system model reduction problem to validate the statements.

3.1 A motivating application

This subsection presents a specific (but more restrictive) application to illustrate why an

approximation such as (3.2) is useful, and why it would be interesting to provide a bound

for the induced system error. Consider the more specific setup

ẋ(t) = Ax(t)−V ′Φ f (Vx(t))+Bu(t)

y(t) = Cx(t)
(3.3)

whereA∈ Rq×q, V ∈ Rn×q, B∈ Rq×1, C∈ R1×q. Φ f : Rn 7→ Rn :

Φ f (v) =
[

φ f (v1) φ f (v2) · · · φ f (vn)
]′

,

whereφ f : R 7→ R is any nonlinear function. Note that system (3.3) has repeated nonlin-

earities, and it can model for instance any circuit with repeated nonlinear elements, such as

the diode transmission line to be discussed in Section 3.6. Furthermore, the method in this

example can be modified by appending the nonlinear functionΦ f with different nonlinear-

ities, at the expense of a more complicated derivation and computation. However, it should

be emphasized that the mentioned restriction in system (3.3) pertains only to this example,

and not to the main result of this chapter.

System (3.3) can be considered as the result of applying for instance a congruence trans-

formation on a model of ordern using a projection matrixV, wheren andq (with nÀ q)

are the orders of the full and reduced models respectively. A common complaint about

the applicability of system (3.3) is that when using the model in simulation, the nonlinear

functionφ f must be evaluatedn times for every reduced vector field evaluation. Therefore

finding an approximation functiong : Rq 7→ Rq, such thatg(w) ≈ V ′Φ f (Vw), ∀w ∈ Rq,

87



with an evaluation cost much cheaper thanO(n), would be of great interest for most non-

linear model order reduction techniques. A few results can be found about this topic. For

example, [84] investigated the possibility of using Kernel methods for such a construction,

while [85, 86] proposed methods based on polynomial (Taylor series) approximation of

V ′Φ f (V·).
However, when considering the special case (3.3), it would be much more convenient

to find an approximation to the scalar nonlinear functionφ f , instead of the entire vector

field. For example, ifφ f is approximated by a scalar polynomial of degreed,

φ f (z)≈ φ̃ f (z) =
d

∑
k=0

pkz
k, (3.4)

and accordingly

Φ f (v)≈ Φ̃ f (v) :=




φ̃ f (v1)

φ̃ f (v2)
...

φ̃ f (vn)




, (3.5)

then the corresponding vector field approximation is aq vector ofq-variate polynomials of

degreed

V ′Φ f (Vx)≈V ′Φ̃ f (Vx) = ∑
β

cβxβ, (3.6)

whereβ ∈ Zq
+,β =

(
β1,β2, . . . ,βq

)
, ∑

j
β j ≤ d, cβ ∈ Rq andxβ is shorthand forΠ

j
x

β j
j . The

approximated system becomes

ẋ(t) = Ax(t)−V ′Φ̃ f (Vx(t))+Bu(t)

y(t) = Cx(t)
(3.7)

The above polynomial approximation scheme has the following benefits:

1. Approximating a scalar nonlinear functionφ f is much easier than approximating the

vector-valued nonlinear functionV ′Φ f (V·).

2. It can be verified that the coefficient vectorscβ can be computed efficiently.
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3. The Jacobian of the approximated vector field is

A−V ′diag

(
dφ̃ f

dz
, . . . ,

dφ̃ f

dz

)
V. (3.8)

If A is symmetric and Hurwitz, the Jacobian can be constrained to be Hurwitz simply

by constraining the univariate polynomial
dφ̃ f
dz to be nonnegative, which is true if

and only if it is a sum of squares of polynomials, and this condition can in turn be

efficiently enforced using linear matrix inequalities (LMI) [73].

However, there are two issues that are worth considering:

• Estimating and controlling the cost of evaluating the polynomial approximated vector

field.

• Providing precise statements about the accuracy of the approximation quality in

terms of quantifiable system measures such as the L2 gain (to be defined in Sub-

section 3.2.2) of the difference system of (3.3) and (3.7).

The answer to the first question depends on the specific application. The computa-

tion cost for evaluating nonlinear vector fieldV ′Φ̃ f (V·) is O


q


 q+d

d





. Since such

cost is independent ofn, and since typicallynÀ max{q,d}, computation efficiency is

greatly improved. However, as also pointed out in [84],


 q+d

d


 is admittedly still a

large number even for not excessively largeq andd. Measures should be taken to control

computational complexity, but this will not be discussed here, as it is not the main focus.

Instead, this chapter presents results that address the second issue: providing statements

about the accuracy of the approximation. In particular, under the assumptions that system

(3.3) has finite incremental L2 gain (to be defined in Subsection 3.2.3) and stability, it will

be shown that the L2 gain from inputu to the difference of outputy of systems (3.3) and

(3.7) is bounded by a linear function of the L2 gain of the difference of the scalar nonlinear

functionsφ f (·)− φ̃ f (·), if the latter difference is small enough. In addition, this chapter

presents a framework for numerically calculating an a priori (i.e., before simulation) error
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bound of the L2 gain of the difference system, again based on the L2 gain ofφ f (·)− φ̃ f (·).
Finally, it should be noted that the results of this chapter are valid for a more general

framework (3.1) than what is discussed in this motivating application subsection. Namely,

the system error is presented in terms of (3.1) and (3.2), and the vector field approximation

error is between general nonlinearitiesΦ andΦ̃.

3.2 Technical Background

3.2.1 L2 gain of a memoryless nonlinearity

Let u ∈ Rm and y ∈ Rp be the input and output of a memoryless nonlinearityF (i.e.,

y = F(u)). Then the L2 gainγF of the memoryless nonlinearityF is defined as

γF := sup
u6=0

‖F(u)‖2

‖u‖2
(3.9)

3.2.2 L2 gain of a dynamical system

Let u : R+ 7→ Rm andy : R+ 7→ Rp denote the (finitely L2 integrable) input and output

signals of a dynamical system. The L2 gainγ of a system is defined as

γ := inf
r≥0

r : inf
T≥0

∫ T

0

(
r2‖u(τ)‖2

2−‖y(τ)‖2
2

)
dτ >−∞. (3.10)

for all valid input/output pairs(u,y). For the rest of the chapter, unless noted otherwise, L2

gain related integrals inequalities are assumed to hold forall valid input/output pairs.

Intuitively, finiteness of the L2 gain of a system means that the output energy is no

more than a constant times the input energy, and hence the L2 gain can serve as a notion for

stability. In addition, if the L2 gain is small, then the system can be considered “small”, in

the sense that it needs a very strong input to excite any non-negligible output. In particular,

it is desirable that the difference system in Figure 3-1 has very small L2 gain.
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3.2.3 Incremental L2 gain of a system

Let (u,y) be any input/output pair of a system. Then the incremental L2 gainγ of a dynam-

ical system is defined as

γ := inf
r≥0

r : inf
T≥0

∫ T

0

(
r2

(
‖u1(τ)−u2(τ)‖2

2

)
−

(
‖y1(τ)−y2(τ)‖2

2

))
dτ≥ 0, (3.11)

for every(u1,y1) and(u2,y2) satisfying

inf
T≥0

∫ T

0
‖u1(τ)−u2(τ)‖2

2dτ < ∞. (3.12)

Incremental L2 gain of a system can be used to quantify the sensitivity of the output to a

perturbation in the input. In particular, a system having a finite incremental L2 gain means

for each input there is a unique output corresponding to it.

3.2.4 Small gain theorem

The small gain theorem is a collection of statements bounding the L2 gain of the feedback

interconnection of a nominal modelG and a disturbance∆, using the L2 gains of the indi-

vidual constituents. See for example [87], for a more detailed account of these statements.

The statement relevant to the discussion of the thesis is the following.

Theorem 3.2.1.Consider the feedback connection in Figure 3-2.

G

∆

e

yw

u

Figure 3-2: Feedback interconnection of a nominal plantG and disturbance∆.

Let γG be the L2 gain ofG (from [w;u] to [y;e]), andγ∆ be the L2 gain of∆ (from y to

91



w). If γGγ∆ ≤ 1 then the L2 gain of the feedback connection (fromu to e) is less than or

equal toγG. ¥

See, for example [87], for a proof. The small gain theorem is the fundamental tool

upon which the main results of this chapter are based. The discussion of how to apply the

theorem in the context of this chapter will be presented in Section 3.3.

3.2.5 Nonlinear system L2 gain upper bounding using integral quadratic

constraints (IQC)

This subsection only presents the IQC analysis topics that are relevant to the development

of the thesis. See [88] for the rest of the topics.

Consider the system in (3.1). If there exists a nonnegative numberγ and a nonnegative

and continuously differentiable functionW : Rq 7→ R+ and the following inequality holds

γ2‖u‖2
2−‖y‖2

2− (∇xW)′ ẋ≥ 0, ∀(x,u) ∈ Rq×R, satisfying system (3.1), (3.13)

then∀T > 0

∫ T

0

(
γ2‖u‖2

2−‖y‖2
2

)
dτ≥W (x(T))−W (x(0)) >−∞, (3.14)

and thereforeγ is an upper bound for the L2 gain of system (3.1) andW is a certificate

for proving the L2 gain upper bound. A class of nonnegative functionsW(x) that is partic-

ularly convenient for analysis is the quadratic functionW(x) = x′Px for some symmetric

positive semidefinite matrixP∈ Rq×q because the search for the matrixP can be carried

out efficiently as a SDP [56]. Using quadratic certificateW(x) = x′Px, eq. (3.13) becomes

γ2‖u‖2
2−‖Cx‖2

2−2x′P
(
Ax−V ′w+Bu

)≥ 0, ∀ (x,u)∈ Rq×R andw= Φ(Vx). (3.15)

For a general nonlinear vector fieldΦ, showing the existence ofP≥ 0 andγ that satisfy

inequality (3.15) is difficult. However, the technique of IQC analysis [88] can be employed
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here: first introduce a quadratic functionalσ(x,w) that satisfies the following property

w = Φ(Vx) implies σ(x,w) =


 x

w



′
 Σ11 Σ12

Σ′12 Σ22





 x

w


≥ 0, (3.16)

then remove the constraintw = Φ(Vx) in (3.15) and instead solve the following for a

quadratic certificate.

γ2‖u‖2
2−‖Cx‖2

2−2x′P
(
Ax−V ′w+Bu

)−σ(x,w)≥ 0, ∀x,w,u (3.17)

Note that ifγ andP satisfy (3.17) then they automatically satisfy (3.15) by the definition of

σ (3.16). But the converse is not necessarily true, therefore searching forγ andP through

(3.17) results in fewer options. However, (3.17) has the advantage that it can be written as

a LMI (with respect toP andr := γ2).




−C′C−PA−A′P−Σ11 PV′−0.5Σ12 −PB

VP−0.5Σ′12 −Σ22 0

−B′P 0 rI


≥ 0. (3.18)

More generally, if there exist more quadratic functionalsσ1,σ2, . . . such that

w = Φ(Vx) implies σi(x,w)≥ 0, ∀ i,

then solving the following LMI feasibility problem (with decision variablesP, r,τi ≥ 0)

γ2‖u‖2
2−‖Cx‖2

2−2x′P
(
Ax−V ′w+Bu

)−∑
i

τiσi(x,w)≥ 0, ∀x,w,u (3.19)

would result in a less conservative search than the feasibility problem with (3.17) because

if (r,P) satisfy (3.17) then they also satisfy (3.19) simply by pickingτ j = 0, j ≥ 2, while

the converse is not necessarily true. Note also that the search with (3.19) is more restrictive

than that with (3.15) for the same reason mentioned in the case of a singleσ.

In summary, in order to find an upper bound of the L2 gain of a system of the form (3.1).
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The following procedure can be used: first collect characterizations of the nonlinearityΦ

in the form of IQCsσ1,σ2, . . ., then setup and solve the following SDP.

minimize
r,P,τi≥0

r

subject to LMI (3.19)

r ≥ 0

P = P′ ≥ 0.

(3.20)

Note that the L2 gain upper bound provided by such a procedure can be strictly greater

than the true L2 gain because the class of certificates is restricted to quadratic (which is

generally not rich enough except for the LTI case). Furthermore, inequalities such as (3.19)

do not allow all the options (in terms ofr andP) that satisfy (3.15). Nevertheless, this is a

practical method for nonlinear system L2 gain upper bounding because of its tractability.

3.3 Error Bounding with the Small Gain Theorem

This section first sets up the L2 gain error bounding problem as the L2 gain upper bounding

problem of the difference system. The difference system is formulated as a feedback con-

nection between a “nominal” plant that does not contain any approximation vector field,

and the “disturbance” part consisting of the error of the vector fields. The L2 gain upper

bounding problem is then analyzed by the small gain theorem, which is a standard part of

robustness analysis. However, the small gain theorem can be conservative in some cases,

especially when the L2 gain of the disturbance part is small. To allow a more general use of

the small gain theorem, the first contribution of the chapter is presented, namely a scaling

parameter is introduced in the feedback. Finally the ramification of the reformulations will

be discussed.
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3.3.1 System error bounding problem

Definition 3.3.1. The error between systems (3.1) and (3.2) is defined as the L2 gain (from

u to e) of the following difference system (see Figure 3-1 for its block diagram).

ẋ1 = Ax1 +Φ(x1)+Bu

ẋ2 = Ax2 + Φ̃(x2)+Bu

e = C(x1−x2) .

(3.21)

Therefore, the error bounding problem of this chapter is to find upper bounds of the L2 gain

of system (3.21) using the L2 gain information ofΦ− Φ̃. ¥

3.3.2 Difference system formulated as a feedback interconnection

System (3.21) can equivalently be written as

ẋ1 = Ax1 +Φ(x1)+Bu

ẋ2 = Ax2 +Φ(x2)+Bu+w

e = C(x1−x2)

y = x2

w = Φ̃(y)−Φ(y).

(3.22)

It can be seen that system (3.22) fits in the small gain theorem framework in Figure 3-2. In

particular, systemG in the figure corresponds to the part of system (3.22) with input/output

[w;u] and [y;e] and the disturbance in the figure being∆(y) = Φ̃(y)−Φ(y). The feed-

back structure of system (3.22) suggests the use of the small gain theorem in Subsection

3.2.4. However, the small gain theorem cannot be readily applied because the assumption

γGγ∆ ≤ 1 might not be satisfied. More importantly, even if the assumptionγGγ∆ ≤ 1 is

satisfied, direct application of the small gain theorem can lead to a too conservative L2 gain

upper bound of system (3.22) – the small gain theorem provides the boundγ = γG which

is independent ofγ∆, while it would be desirable if limγ∆→0γ = 0, since the L2 gain of the

difference of two identical systems should be zero. This latter difficulty can be resolved

through the use of a scaling parameter discussed in the next subsection.
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3.3.3 Small gain theorem applied to a scaled feedback

Consider Figure 3-3, which is equivalent to Figure 3-2.

∆

G
aa

a

1

a

1

e

yw

u

Ga

Figure 3-3: Feedback interconnection of a nominal plantGand disturbance∆ with mutually
cancelling parameters

√
a and 1√

a. Ga is the original plant parameterized by the scalara.

For the rest of the chapter the scalara is assumed to be nonnegative. SystemGa in the

figure has the form

ẋ1 = Ax1 +Φ(x1)+Bu

ẋ2 = Ax2 +Φ(x2)+Bu+
√

aw

e = C(x1−x2)

y =
√

ax2.

(3.23)

Application of the small gain theorem to the feedback system in Figure 3-2 results in the

following statement.

Theorem 3.3.2.Let γGa be the L2 gain of system (3.23), from[u;w] to [e;y]. If γGaγ∆
a ≤ 1,

then the L2 gain of the feedback interconnection (3.22), fromu to e, is γ≤ γGa. ¥

Remark3.3.3. Since Theorem 3.3.2 holds for all value ofa, it would be natural to choose

the value ofa which minimizes the small gain theorem L2 gain boundγGa. In order to

manipulate the L2 gain bound, it would be necessary to study howγGa andγGaγ∆/a change

with a. In Section 3.4 a statement (Lemma 3.4.1) will be shown thatγGa = O(
√

a) if a≤ 1,

then Theorem 3.3.2 can be applied to form another statement (Theorem 3.4.3) that gives

some theoretical insight into the solution of the error bounding problem in Definition 3.3.1.

96



On the other hand, in section 3.5, the IQC analysis procedure described in 3.2.5 will be

applied to directly compute an upper bound forγGa numerically. Then the application of

Theorem 3.3.2 leads to a numerical procedure to solve the problem in Definition 3.3.1.¥

3.4 A Theoretical Linear Error Bound in the Limit

In this section, to apply theorem 3.3.2 in Subsection 3.3.3 to solve the error bounding

problem in Definition 3.3.1, it will be shown as Lemma 3.4.1 in Subsection 3.4.1 that

under some assumption, the inequality

∃c≥ 0 : γGa ≤ c
√

a, ∀a≤ 1 (3.24)

holds. With eq. (3.24), the following can be implied.

• If a > 1, then inequality (3.24) does not hold, hence in this case unfortunately Theo-

rem 3.3.2 does not apply.

• If a≤ 1, then eq. (3.24) holds. From eq. (3.24) it can be seen that it would be desirable

to chooseaas small as possible. However, from what can be guaranteed by eq. (3.24),

asa goes to zero, the termγGaγ∆/a goes to infinity, hence violating the small gain

theorem assumptionγGaγ∆/a≤ 1. Therefore, there is a tradeoff between choosing

a small to obtain the tightest possible L2 gain upper bound and choosinga large

enough so that Theorem 3.3.2 still applies. The choice of the nontrivial minimum of

a will be given in Subsection 3.4.2 as part of Theorem 3.4.3.

• Whena = 0, eq. (3.24) states that the L2 gain ofGa should be zero. This is indeed

the case becauseGa a=0 is the difference of two identical systems. Therefore, if

γ∆ = 0 (i.e., Φ̃ = Φ), then Theorem 3.3.2 can be applied witha chosen to be zero,

thus providing the expected zero L2 gain bound.

The rest of this section of this section is organized as follows. In Subsection 3.4.1

Lemma 3.4.1 will be shown, and then in Subsection 3.4.2 Theorem 3.4.3 will be shown as

a direct consequence of Lemma 3.4.1.
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3.4.1 A preliminary lemma

First consider the system with inputg and outputz

ẋ = Ax+Φ(x)+g

z = Cx,
(3.25)

where the matrices and functions are as defined in (3.21), except for the arbitrary function

g. Define

γ1 as the incremental L2 gain of (3.25) fromg to z,

γ2 as L2 gain of (3.25) from[u;w] to x wheng≡ Bu+w,
(3.26)

Lemma 3.4.1.Let γ1 andγ2 be the quantities defined in (3.26). DenoteγGa as the L2 gain

of systemGa (3.23), from[u;w] to [e;y]. If γ1 < ∞ andγ2 < ∞, then

γGa ≤
√

2a max{γ1,γ2} , ∀a∈ [0,1] . (3.27)

¥

Proof of Lemma 3.4.1. First let

g1 := Bũ,

g2 := Bũ+ w̃

be two inputs to system (3.25) andz1 andz2 be the corresponding outputs.γ1 < ∞ implies

that for the system

ẋ1 = Ax1 +Φ(x1)+Bũ

ẋ2 = Ax2 +Φ(x2)+Bũ+ w̃

ẽ = C(x1−x2)

the following integral inequality holds

inf
T≥0

∫ T

0

(
γ2
1‖Bũ−Bũ− w̃‖2

2−‖ẽ‖2
2

)
dτ >−∞,
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which implies,∀a > 0,

inf
T≥0

∫ T

0

(
aγ2

1

(
‖ũ‖2

2 +
1
a
‖w̃‖2

2

)
−‖ẽ‖2

2

)
dτ >−∞,

or

inf
T≥0

∫ T

0

(
aγ2

1

(
‖u‖2

2 +‖w‖2
2

)
−‖e‖2

2

)
dτ >−∞, (3.28)

whenu = ũ, w = 1√
aw̃, ande= ẽ. That shows that the system

ẋ1 = Ax1 +Φ(x1)+Bu

ẋ2 = Ax2 +Φ(x2)+Bu+
√

aw

e = C(x1−x2)

has L2 gain from[u;w] to e less than or equal to
√

aγ1. This means that systemGa (3.23)

has L2 gain from[u;w] to e is less than or equal to
√

aγ1.

Secondly, for system (3.25), letg = Bũ+ w̃. Thenγ2 < ∞ implies in the following

system

ẋ1 = Ax1 +Φ(x1)+Bũ

ẋ2 = Ax2 +Φ(x2)+Bũ+ w̃

ỹ = x2

the following inequality holds

inf
T≥0

∫ T

0

(
γ2
2

(
‖ũ‖2

2 +‖w̃‖2
2

)
−‖ỹ‖2

2

)
dτ >−∞,

which implies,∀a∈ (0,1],

inf
T≥0

∫ T

0

(
aγ2

2

(
‖ũ‖2

2 +
1
a
‖w̃‖2

2

)
−a‖ỹ‖2

2

)
dτ >−∞, (3.29)

Note that the fact that1a ≥ 1 for a≤ 1 was indeed used. Rewrite the signals in eq. (3.29) in

terms of the signals in eq. (3.23). That is,u = ũ, w = 1√
aw̃ andy =

√
aỹ. This results in the
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following inequality:

inf
T≥0

∫ T

0

(
aγ2

2

(
‖u‖2

2 +‖w‖2
2

)
−‖y‖2

2

)
dτ >−∞, (3.30)

which means that the L2 gain of systemGa in eq. (3.23) from[u;w] to y has L2 gain less

than or equal to
√

aγ2.

Eq. (3.28) together with eq. (3.30) implies that, in terms of the quantities associated

with Ga in (3.23), the following integral

inf
T≥0

∫ T

0

(
2a(max{γ1,γ2})2

(
‖w‖2

2 +‖u‖2
2

)
− (‖y‖2

2 +‖e‖2
2)

)
dτ (3.31)

is bounded from below for all input/output pair ofGa and this proves eq. (3.27)∀a∈ (0,1].

For the case ofa = 0, γ1 < ∞ impliesγGa|a=0 = 0, so eq. (3.27) also holds in this case.¥

Remark3.4.2. Lemma 3.4.1 suggests that

lim
a→0

γGa

aβ < ∞, (3.32)

with β = 0.5. In fact, the value ofβ = 0.5 is the largest possible exponent such that the

limit in eq. (3.32) is still finite. To see this, consider the LTI case whereGa can be given as

a transfer matrix
√

a



√

aG11 G12

G21 0


 ,

where the “G22” block is zero because the transfer matrix fromu to e is zero. Then the

limit in eq. (3.32) holds, that is,

a0.5−β

∥∥∥∥∥∥



√

aG11 G12

G21 0




∥∥∥∥∥∥
∞

< ∞

if and only if β ≤ 0.5. Since eq. (3.32) must be satisfied by all systems including the LTI

ones, 0.5 is the upper bound for the value ofβ such that eq. (3.32) still holds. ¥
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3.4.2 The linear error bound in the limit

Using Lemma 3.4.1, the main result is now presented.

Theorem 3.4.3.Letγ1 andγ2 be the quantities defined in (3.26). Also letγ∆ be the L2 gain

of Φ− Φ̃ in (3.22). That is,

γ∆ := sup
v6=0

|Φ(v)− Φ̃(v)|
|v|

Denoteγ as the L2 gain fromu to e in system (3.21).

If γ1 < ∞, γ2 < ∞ and
√

2max{γ1,γ2}γ∆ ≤ 1, then

γ≤ 2(max{γ1,γ2})2γ∆. (3.33)

¥

Proof of Theorem 3.4.3. If γ∆ = 0, then by the finiteness ofγ1, γ = 0 and hence (3.33)

holds because system (3.21) reduces to the difference of two identical systems. Now con-

sider the case whenγ∆ > 0, the small gain theorem states that

γ≤ γGa, ∀a :
γGaγ∆

a
≤ 1.

Therefore,

γ≤ min
a:

γGaγ∆
a ≤1

γGa. (3.34)

Denotec :=
√

2max{γ1,γ2}. Sinceγ1 < ∞ andγ2 < ∞ by statement assumption, Lemma

3.4.1 states that∀a∈ (0,1],

γGa ≤ c
√

a and hence
γGaγ∆

a
≤ cγ∆√

a
.

Sincecγ∆ ≤ 1 by statement assumption, the set[cγ∆,1] 6= /0. ∃a∈ [cγ∆,1] :

(cγ∆)2≤ a≤ 1
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and hence

1≥ cγ∆√
a
≥ γGaγ∆

a
.

Therefore,

γ≤ min
a:

γGaγ∆
a <1

γGa ≤ min
a≥c2γ2

∆

c
√

a = c2γ∆.

¥

Remark3.4.4. Intuitively, Theorem 3.4.3 asserts that ifγ∆, the L2 gain of the difference

Φ− Φ̃ (and alsoφ− φ̃) is sufficiently small, then the approximation quality in terms of the

L2 gain of the error system (3.21) is also small. In particular, it provides a guideline for

designing the approximation system (3.2). It states that searching for aφ̃ that is close to

φ in L2 gain sense, should be a reasonable choice, as opposed to other methods such as

Taylor Series, for which the accuracy has not been rigorously established. In addition, the

linear error bound (3.34) can be used to guide the design of the vector field approximation

in the following sense:

• Pick a desired system errorε.

• Choose any available vector field approximation technique (not discussed in this the-

sis).

• Obtain an approximated reduced system; compute the vector field L2 gain error, and

the difference system L2 gain, denoted asε∆ andε1 respectively.

• If ε1 < ε then the desired approximated reduced system has already been obtained.

Otherwise, obtain a better approximated system (e.g., by increasing polynomial or-

der) so that the new vector field L2 gain error is less thanε∆ε
ε1

, then under the assump-

tions of Theorem 3.4.3, the new reduced model will satisfy the desired system error

tolerance. ¥

Remark3.4.5. However, it should also be noted that Theorem 3.4.3 can be conservative and

eq. (3.33) is not true forγ∆ that is not small enough. Therefore, it would be interesting to

see if there exists a less restrictive statement or a numerical procedure to compute a tighter

bound. The result in the next section is an attempt to do so. ¥
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3.5 A Numerical Error Bound with IQC

Theorem 3.3.2 in Subsection 3.3.3 was applied in Section 3.4 via Lemma 3.4.1 and Theo-

rem 3.4.3, which provides some theoretical insight into the solution of the error bounding

problem in Definition 3.3.1. However, the practical use of Theorem 3.4.3 is limited because

the coefficients in eq. (3.33) can be too conservative.

In this section, on the other hand, a numerical procedure, based on the IQC analysis

described in Subsection 3.2.5, is proposed to apply Theorem 3.3.2 by directly computing

an upper bound of the L2 gain ofγGa in the theorem. The procedure is summarized as

follows.

3.5.1 The numerical procedure

The proposed numerical procedure is as follows.

• For a discrete set of{a1,a2, . . .} (e.g.,ak := 10−k), use IQC analysis to findγ1,γ2, . . .

as the L2 gain upper bounds for the parameterized systemsGa1,Ga2, . . .

• For any approximation vector field̃Φ, evaluate the L2 gain ofΦ− Φ̃. Denote it as

γ∆. Find the indexi such that

i = argmin
k

ak :
γkγ∆
ak

< 1

• γi is returned as the upper bound of the L2 gain of the difference system (3.21).

Since the order of systemGa (3.23) is2q andq is assumed to be small, solving the LMIs

to obtain L2 gain upper boundsγk for all ak is relatively cheap. Once the L2 gain upper

boundsγ1,γ2, . . . have been found, the numerical procedure requires a trivial amount of

time to analyze the system L2 gain error for allΦ̃ such thatγ∆ is small enough. As a final

note, it should be pointed out that since the numerical procedure is based on the small gain

theorem, it is possible that whenγ∆ is large, the procedure fails to return any conclusive

result.
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Figure 3-4: A transmission line with diodes.

3.6 Numerical Experiment

In this section the numerical procedure described in Section 3.5 is applied to analyze the

L2 gain of the difference system due to approximation of the nonlinear vector field. The

specific application example is a transmission line with diodes described in [83] and shown

in Figure 3-4. Using nodal analysis, the model of the diode line has the form

ẋf = Af xf −M′Φ(Mxf )+Bf u

yf = Cf xf ,

with
Af ∈ RN×N, M ∈ RN×N, Bf ∈ RN×1, Cf ∈ R1×N,

Φ(v) = diag(φ(v1),φ(v2), . . .) and φ(vk) = e−vk−1,

with M being a sparse matrix relating branch voltages to node voltages. Suppose there

exists a projection matrixV ∈RN×q (e.g., dominant singular vectors of some matrix stacked

by columns of trajectories), then the reduced model is

ẋ = Arx−V ′
r Φ(Vrx)+Bru

y = Crx,
(3.35)

with Ar = V ′AfV, Vr = MV, Br = V ′B andCr = CV. System (3.35) is of the form of (3.1),

hence the numerical procedure described in Section 3.5 can be applied.γGa and a
γGa

are
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plotted in Figure 3-5 for a range of values ofa.
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Figure 3-5: Transmission line example. The upper line (circles) is the numerical upper
bound for the L2 gain of the difference system. The lower line (triangles) is the minimum
allowablea such thatγ∆γGa

a < 1, and hence the small gain theorem still applies. For instance,
if we want the system L2 gain error to be less than10−2, thena should be at most2×10−5,
corresponding to a maximum allowable vector field errorγ∆ of about10−3.

In this figure, the upper line (circles) isγGa that is used as the upper bound for the L2

gain of difference system (3.21). On the other hand, the lower line (triangles) is the quantity

a
γGa

used in determining the minimuma, for a specificγ∆, such thatγ∆γGa
a ≤ 1 (hence the

small gain theorem applies).

As an example to illustrate how Figure 3-5 can be applied, let the desired system level

error be1% or less. By the small gain theorem, ifγGa < 1% then the accuracy is achieved.

According to Figure 3-5, the maximum allowablea for the small gain theorem to be appli-

cable is about2×10−5 (the x coordinate where horizontaly = 10−2 intersects the upper

line). Fora = 2×10−5, the corresponding value ofaγGa
is about10−3, which means that

the vector field L2 gain errorγ∆ should be at most10−3.
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3.7 Conclusion

This chapter investigated the estimation of the L2 gain system error produced by the ap-

proximation of the nonlinear vector field within any nonlinear model order reduction algo-

rithm for systems in the form of (3.1). This problem was formulated as an L2 gain upper

bounding problem of a feedback interconnection of a “nominal” plant and a “disturbance”

(i.e., vector field error). The chapter proposed a framework for broadening the use of the

small gain theorem by introducing the mutually cancelling gains
√

a and 1√
a in the feed-

back loop. While this modification failed exactly when the small gain theorem failed to

apply, it was nevertheless able to tighten the L2 gain upper bound (by the use ofγGa), and

the bound was asymptotically tight. Based on the scaled feedback setup, we have shown

that the difference system L2 gainγ was upper bounded by a linear function of the vector

field difference L2 gainγ∆, providedγ∆ was sufficiently small. In an attempt to fight the

conservatism of the bound, this thesis also proposed a numerical procedure that combined

IQC/LMI techniques and small gain theorem. Although the numerical procedure still did

not apply for large errors in the vector field, it did produce a more readily computable bound

than the theoretical linear bound. Finally, a numerical example was given to demonstrate

the use of our numerical procedure.
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Chapter 4

A Convex Relaxation Approach to the

Identification of the

Wiener-Hammerstein Model

4.1 Introduction

Efficient hierarchical system level design and optimization could be facilitated by the avail-

ability of automatic and accurate behavioral modeling tools for system blocks such as non-

linear circuits (e.g. operational amplifiers) or nonlinear devices (e.g. MEMs). In the current

state of the art, analog designers and system architects generate analytical or semi-empirical

behavioral models of their blocks using their intuition and expertise formed on thousands of

hours spent running slow circuit simulators such as SPICE, or even slower Partial Differen-

tial Equation (PDE) field solvers. Most of the efforts in the field of automatic and accurate

modeling of nonlinear system blocks involve development of techniques for efficiently and

accuratelyreducingavailable large nonlinear systems generated by circuit schematics and

parasitic extractors [85, 83, 89, 90, 86]. When only input/output physical measurements

are available for a given circuits or systems, system identification may be the only valu-

able option. Furthermore, even when internal circuit schematics are available, or when the

internal information of PDE solvers used to simulate MEMS is accessible, system identifi-
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cation may still represent a both efficient and powerful alternative method to model order

reduction. For instance, the authors of [39, 40] presented comprehensive surveys of the use

of system identification for power-amplifier related modeling.

The theory for linear time-invariant (LTI) system identification is relatively mature and

complete [91]. On the other hand, the practice of nonlinear system identification tends to be

case dependent [37, 38]. Volterra series [92] is a general approach, and it has been very pop-

ular among engineers working on behaviorial modeling (e.g., [93, 94]). In this chapter, only

a specific class of nonlinear system identification problem will be considered – the iden-

tification of the Wiener-Hammerstein system with feedback. Classical treatments of the

Wiener-Hammerstein system identification problem can be found, for example, in [91, 95].

Many more recent treatments of the problem can be found, for example, in [45, 46, 47].

In those references, however, the identification of the nonlinearity is parametric (i.e., the

nonlinearity is assumed to be of some form such as piecewise linear or polynomial func-

tions). Therefore, those previous results can be restrictive in application. Non-parametric

identification of block oriented models, on the other hand, are more flexible in terms of

modeling power. Reference [96] proposed an algorithm for the non-parametric identifi-

cation of the Wiener system under the assumption that the input is Gaussian noise. The

authors of [97], assuming that the LTI block is known, reduced the identification problem

of the Wiener system to a least squares problem. [98] proposed an unbiased identification

algorithm based on maximum likelihood estimation.

In a sense, the idea of the system identification scheme proposed in this chapter has

been explored under the banner of model validation [99, 100, 101, 102, 103, 104, 105]. In

this problem, a model with a given block diagram is to be invalidated by proving that it is

inconsistent with some input/output measurement obtained from experiment. The invali-

dation is typically performed through the finding of some infeasibility certificate of some

constraint set. Conversely, the finding of a feasibility certificate will prove the consistency

of a model with the given input/output measurement data. This forms the basis of the

block diagram oriented system identification schemes such as [106, 107, 108]. In partic-

ular, [108] proposed a very general approach for the identification of the Wiener system

assuming only the monotonicity of the nonlinearity. [108] set up a convex QP based on the
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idea of enforcing input/output functional relationship of the nonlinearity. The algorithm

proposed in this chapter can be considered as an extension of the idea in [108]. In fact, the

formulation of the optimization problem in this chapter also centers around some sector

bound property of the nonlinearity. However, because of the more complicated Wiener-

Hammerstein structure, the resultant optimization problem is more involved. In fact, it is

a non-convex QP. Nevertheless, with the proposed SDP relaxation, it will be demonstrated

that the non-convex QP formulated in this chapter is not necessarily hard to solve.

The rest of the chapter is organized as follows: in Section 4.2 some technical back-

ground and definitions will be given. The main ideas of the problem formulation and solu-

tion procedure, explained in Section 4.3 and Section 4.4 respectively, will be given through

a special setup in which there is no output measurement noise or feedback. Then in Section

4.5 the identification setup with output measurement noise is considered. Differences in

the analysis and algorithm due to the noise will be highlighted. After that, the full feedback

Wiener-Hammerstein system identification problem will be considered in Section 4.6. Fi-

nally, in Section 4.7 a brief account of the complexity of the proposed algorithm will be

given, and application examples will be presented in Section 4.8. Table 4.1 summarizes the

development of the proposed system identification algorithm.

Table 4.1: The organization of Chapter 4

no noise with noise
no feedback Sec 4.3 – 4.4 Sec 4.5

with feedback – Sec 4.6

4.2 Technical Background and Definitions

4.2.1 System and model

In this chapter, asystemis a function which maps its input signal to its output signal. On

the other hand, the termmodel can have two meanings: amodel can mean 1) a collection

of parameterized systems usually of some specific form, or 2) a specific instance of the
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collection defined in 1). For example, for the finite impulse response (FIR) transfer function

fitting problem, the unknown system can be1+z−1

2−z−1 , whereas the model is of the forma0 +

a1z−1+ . . .+anz−n for arbitraryak ∈ R. On the other hand, an instance such as1+2z−1+

. . .+(n+1)z−n is also called a model. In the subsequent discussions, the meaning of the

term “model” should be obvious from the context. The definitions of the terms system

and model will allow us in this chapter to distinguish the fixed (but unknown) input/output

relationship (i.e., the system) from the one that is to be determined by the identification

algorithm (i.e., the model).

4.2.2 Input/output system identification problem

Definition 4.2.1. The input/output system identification problem considered in this chapter

is as follows: given the input/output measurement pairs of an unknown dynamical sys-

tem, find a stable model such that the given input/output measurement pairs satisfy the

input/output relationship of the model. ¥

Remark4.2.2. Contrary to many other problems which seek to ensure the “generalization

capacity” of the solutions (e.g., variance minimization in statistical modeling), the solution

criterion of Definition 4.2.1 is based entirely on the matching of the given problem data. It

is assumed that the given problem data covers all the dynamics of interest. ¥

Remark4.2.3. System identification problems in the subsequent sections will be defined

according to Definition 4.2.1. ¥

4.2.3 Feedback Wiener-Hammerstein system

In this thesis, the unknown system in the input/output system identification problem de-

scribed in Subsection 4.2.2 is assumed to be from a specific class – either of the Wiener-

Hammerstein form, or the Wiener-Hammerstein with feedback in Figure 4-1.

The following notations in Figure 4-1 will be used throughout the chapter:

• The input of the unknown system is denoted asu. This is part of the problem data.
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G* φ* (H*)
-1u y

s*

K*

-
n*

y0

Figure 4-1: The Wiener-Hammerstein system with feedback.S∗ denotes the unknown
system. K ≡ 0 corresponds to the Wiener-Hammerstein system without feedback. The
output measurementy is assumed to be corrupted by some noisen∗.

• The outputmeasurementof the unknown system is denoted asy. This is part of the

problem data.

• The true output of the unknown system is denoted asy0. This is not available to the

system identification process.

• The output measurement noise denoted asn∗. The output measurement noise is

additive. That is,

y[t] = y0 [t]+n∗ [t] , ∀t. (4.1)

The following assumptions are made in Figure 4-1.

1. The signalsu, y, y0 andn∗ are one-sided and of finite lengthN. For example,

u[t] =





ut if t = 0,1, . . . ,N−1,

0 otherwise
.

2. G∗, H∗ andK∗ are assumed to be single-input-single-output (SISO) FIR systems. In

addition,H∗ andK∗ are assumed to be positive-real passive. That is,

Re
{

H∗ (ejω)}
> 0, ∀ω ∈ [0,2π)

Re
{

K∗
(
ejω)}

> 0, ∀ω ∈ [0,2π)
(4.2)
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3. Nonlinearityφ∗ is assumed to be scalar valued, memoryless, and is assumed to satisfy

certain sector bound criterion in incremental sense. That is, there exists a scalar

0 < β < ∞ such that

(
φ∗(b)−φ∗(a)

)(
φ∗(b)−φ∗(a)−βb+βa

)
≤ 0, ∀a,b∈ R. (4.3)

Practically speaking condition (4.3) means that the nonlinearityφ∗ is monotonically non-

decreasing and its derivative has an upper bound. This is summarized by the following

lemma.

Lemma 4.2.4.Let φ∗ : R 7→ R andβ > 0, then condition (1) and (2) in the following are

equivalent.

(1)
(

φ∗(b)−φ∗(a)
)(

φ∗(b)−φ∗(a)−βb+βa
)
≤ 0, ∀a,b∈ R

(2)





(
φ∗(b)−φ∗(a)

)
(b−a)≥ 0, ∀a,b∈ R (monotonicity)

(
φ∗(b)−φ∗(a)

)2
≤ β2(b−a)2 , ∀a,b∈ R (derivative bound).

¥

Proof of Lemma 4.2.4. Denote the setE :=
{
(v1,v2) ∈ R2 v1 = v2 or φ∗(v1) = φ∗(v2)

}
.

Then the statement is trivially true if(a,b) ∈ E . Therefore, it will be assumed for the rest

of the proof that(a,b) ∈ (
R2\E

)
:= Ec.

First we show the direction “(1)⇒ (2)”. Note that (1) implies

(φ∗(b)−φ∗(a))(b−a)≥ 1
β

(φ∗(b)−φ∗(a))2 > 0, ∀ (a,b) ∈ Ec, (4.4)

hence showing the first statement of (2). Then, dividing by(φ∗(b)−φ∗(a))(b−a) and

multiplying with β, eq. (4.4) becomes

β≥ φ∗(b)−φ∗(a)
b−a

≥ 0, ∀ (a,b) ∈ Ec. (4.5)

Squaring both sides of eq. (4.5) yields the second statement of (2).
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Now we show the direction “(2)⇒ (1)”. Dividing the first statement of (2) by(b−a)2

yields
φ∗(b)−φ∗(a)

b−a
≥ 0, ∀ (a,b) ∈ Ec. (4.6)

On the other hand, the second statement of (2) implies that

(φ(b)−φ(a))2

(b−a)2 ≤ β2, ∀ (a,b) ∈ Ec. (4.7)

Eq. (4.6) allows the squared root of eq. (4.7) to hold, resulting in

φ(b)−φ(a)
b−a

≤ β, ∀ (a,b) ∈ Ec. (4.8)

Since(φ∗(b)−φ∗(a))(b−a)≥ 0 by the first statement of (2), multiplying both sides of eq.

(4.8) with(φ∗(b)−φ∗(a))(b−a) yields (1), thus concluding the proof. ¥

Remark4.2.5. The derivative bound in Lemma 4.2.4 does not result in much loss of gen-

erality because any physical system is supposed to have a finite gain. The monotonicity

assumption, however, is made due to stability concerns: together with the positive-real as-

sumption in eq. (4.2), the system in Figure 4-1 can be shown to be stable using the circle

criterion (see [109] Chapter 4). ¥

4.2.4 Non-parametric identification of nonlinearity

Typically, the identification of a scalar memoryless nonlinearity can be done in two ways:

parametric and non-parametric.Parametric identification means that the to-be-determined

nonlinearity is assumed to be of some pre-defined form which carries some to-be-determined

parameters. A very popular class of the pre-defined forms is the linear combination of some

basis functions, with polynomials and piecewise polynomials being some popular choices.

A more extensive treatment of the topic of parametric identification can be found in the

field of machine learning. See, for example, [110, 111] for more details.Non-parametric

identification, on the other hand, does not assume any form of the to-be-determined non-

linearity. Instead, the nonlinearity is specified through a lookup table of the samples of
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its input and output. Values of the nonlinearity not specified in the lookup table are typi-

cally obtained using some interpolation schemes such as splines [112]. The particular type

of interpolation scheme chosen in this thesis is linear interpolation. That is, let(vk,wk),

k = 1,2, . . . ,N be the lookup table of the nonlinearityφ. Without loss of generality, assume

v1 < v2 < .. . < vN. Then the nonlinearityφ is defined as

φ(v) =





wk if v = vk, for somek,

wi +
wi+1−wi
vi+1−vi

(v−vi) if v 6= vk, for all k and∃ i : vi < v < vi+1,

wN + wN−wN−1
vN−vN−1

(v−vN) if v 6= vk, for all k andv > vN,

w1 + w2−w1
v2−v1

(v−v1) if v 6= vk, for all k andv < v1.

(4.9)

In general, when the samples given in the lookup table are dense enough, the linear in-

terpolation scheme in eq. (4.9) is sufficient to provide an accurate characterization of the

nonlinearityφ. An added benefit of the linear interpolation scheme is that ifφ satisfies the

sector bound eq. (4.3) atvk (specifying the lookup table), then it satisfies the sector bound

for all values of its input argument as well (see Lemma 4.3.1 in Subsection 4.3.1).

4.3 Identification of Wiener-Hammerstein System – No Mea-

surement Noise

The first problem to be considered in this chapter is the identification of the Wiener-

Hammerstein system without the feedback or the output measurement noise. The identifi-

cation problem will be formulated as two equivalent optimization problems in Subsections

4.3.1 and 4.3.3 respectively. The solution technique for the optimization problems will be

described in Section 4.4.
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4.3.1 System identification problem formulation

4.3.1 A: Problem data

The problem data is the input signalu and the output measurement signaly of the true (but

unknown) systemS∗ in Figure 4-1. For ease of exposition, a signal will also be denoted as

the vector of its non-zero values. For example,

u :=
[
u[0] u[1] . . . u[N−1]

]′
.

The symbol(u,y) will denote a pair of corresponding input and output measurement. In

a realistic system identification setup, there are more than one pair of(u,y). However, for

simplicity, this chapter will only deal with the case with only one pair. Nevertheless, the

technique introduced in this chapter can be extended to the general case.

4.3.1 B: System identification model and decision variables

It is natural to choose a model with the same structure as the true but unknown system (i.e.,

the Wiener-Hammerstein structure in Figure 4-2). In the model in Figure 4-2 theG and

H are FIR systems, andφ is a scalar memoryless nonlinearity (i.e., a nonlinear function).

Obviously, the model is specified whenG, H andφ are specified.

G φ H
-1

Figure 4-2: The Wiener-Hammerstein model –G andH are FIR systems, andφ is a scalar
memoryless nonlinearity. The last block is chosen to beH−1 for computation reasons.

FIR systemsG andH are characterized by their impulse responses of lengthNg andNh

respectively. That is,

g :=
[
g0 g1 . . . gNg−1

]′
,

h :=
[
h0 h1 . . . hNh−1

]′
,

(4.10)
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and the corresponding transfer functions ofG andH are

G(z) = g0 +g1z−1 + . . .+gNg−1z−(Ng−1),

H(z) = h0 +h1z−1 + . . .+hNh−1z−(Nh−1).
(4.11)

The identification of the nonlinearityφ is non-parametric. That is,φ is specified only

by some samples of its input/output pair. The values ofφ other than those given by the

samples can be obtained using an interpolation scheme (e.g., eq. (4.9) in Subsection 4.2.3).

In addition, the samples will be restricted to those computable by the FIR impulse response

g andh. Therefore,g andh are the decision variables sufficient to specifyφ as well as the

full model in Figure 4-2.

4.3.1 C: Treatment of the passivity constraint

In order to be a candidate solution of the system identification problem according to Defi-

nition 4.2.1 in Subsection 4.2.2, the model in Figure 4-2 must be stable.

A sufficient condition for stability is that the FIR systemH in Figure 4-2 is positive real

passive. That is,

Re
{

H
(
ejω)}

= h0+h1cos(ω)+ . . .+hNh−1cos((Nh−1)ω) > 0, ∀ω∈ [0,2π) . (4.12)

ThenH−1 will also be positive real passive, and then the “feedback loop” ofH−1 and the

monotonic nonlinearity of a zero function will be stable by the circle criterion (see [109],

Chapter 3). Consequently, the entire model in Figure 4-2 will be stable.

Ideally the positive real constraint in eq. (4.12) should be enforced. However, constraint

eq. (4.12) turns out to be inconsistent with the solution technique proposed. Therefore,

in all subsequent sections the stability requirement will not be dealt with explicitly. In

Subsection 4.4.3 this issue will be revisited, and a post-processing algorithm will be given

to enforce the passivity ofH (and hence the stable of the final model).
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4.3.1 D: System identification problem formulation – a feasibility problem

The only requirement left for a model to become a solution to the system identification

problem according to Definition 4.2.1 is that the input/output measurement(u,y) is satis-

fied by the model. The satisfiability problem is formulated as a feasibility problem in the

following sense. Consider the Wiener-Hammerstein model in Figure 4-3 in which the out-

put and the input are constrained to be the given data(u,y). Let’s investigate the possible

the choices of the decision variablesg andh so that there exist signalsv ∈ RN andw ∈ RN

with the property that(u,v), (v,w), (y,w) are valid input/output pairs of the blocksG, φ

andH respectively.

G φ H
-1u yv w

Figure 4-3: A feasibility problem to determine the impulse responses of the FIR systems
G andH. Hereu andy are the given input and output measurements generated by the true
(but unknown) system. The signalsv andw are the outputs ofG andH, respectively.v and
w are chosen so that they define a functionφ satisfying sector bound constraint eq. (4.16).

The pairs(u,v) and(y,w) satisfy the following convolution relationship.

v = Ug,

w = Yh,
(4.13)

whereU ∈ RN×Ng andY ∈ RN×Nh are defined as

U :=




u[0] 0 . . . 0

u[1] u[0] .. .
...

.. . 0
...

... u[0]
...

u[N−1] u[N−2] . . . u[N−Ng]




N×Ng

, (4.14)
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Y :=




y[0] 0 . . . 0

y[1] y[0] . ..
...

. .. 0
...

... y[0]
...

y[N−1] y[N−2] . . . y[N−Nh]




N×Nh

. (4.15)

For the pair(v,w), in principle, the only constraint imposed is that there exists some

function φ such thatwi = φ(vi) , ∀ i = 0,1, . . . ,N−1. However, to maximally reduce the

redundancy of the possible choices of(v,w), the addition constraint is enforced thatφ

should satisfy the sector bound of the form of eq. (4.3). That is,

(φ(b)−φ(a))(φ(b)−φ(a)−βb+βa)≤ 0, ∀a,b∈ R. (4.16)

Constraint eq. (4.16) imposed on the functionφ :R 7→R is equivalent to a constraint on the

generating pair(v,w) as

(
wi−w j

)(
wi−w j −βvi +βv j

)≤ 0, ∀N−1≥ i > j ≥ 0. (4.17)

The following lemma certifies the equivalence.

Lemma 4.3.1.Let (v,w) ∈ RN×RN, then there exists a functionφ : R 7→ R such that

1. φ(vk) = wk, ∀k = 0,1, . . . ,N−1.

2. Constraint eq. (4.16) is satisfied byφ.

if and only if constraint eq. (4.17) is satisfied by(v,w). ¥

Proof of Lemma 4.3.1. The “only if” part is trivially shown by applying statement 1 to

constraint eq. (4.16), which is assumed true by statement 2.

For the “if” part, first notice that eq. (4.17) implies thatwi = w j if vi = v j . Therefore,

it can be assumed that the entries ofv are unique (i.e.,vi 6= v j if i 6= j). In addition, let

ṽ be a sorted version ofv (i.e., ṽi > ṽ j if i > j) with the corresponding̃w, then eq. (4.9)
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can be applied to define a piecewise linear functionφ such that statement 1 is satisfied.

Furthermore, eq. (4.17) implies that

(w̃k+1− w̃k)(w̃k+1− w̃k−βṽk +βṽk+1)≤ 0, ∀k = 0,1, . . . ,N−2. (4.18)

Using a similar argument as in the proof of Lemma 4.2.4 in Subsection 4.2.3, eq. (4.18)

implies that

φ(ṽk+1)≥ φ(ṽk), ∀k = 0,1, . . . ,N−2 (4.19a)

φ(ṽk+1)−φ(ṽk)≤ β(ṽk+1− ṽk) , ∀k = 0,1, . . . ,N−2. (4.19b)

That is,φ is piecewise monotonic and has piecewise slope upper bound.

Now to prove statement 2, it suffices to prove the case whenb > a (the case ofa = b

is trivially true, and the case ofb < a is the same as the case ofb > a). By Lemma 4.2.4,

constraint eq. (4.16) is equivalent to the following two constraints

φ(b)≥ φ(a), ∀b > a (4.20a)

φ(b)−φ(a)≤ β(b−a) , ∀b > a. (4.20b)

First consider the case whena andb are in one “piece” of the piecewise linear function

φ. There are three possibilities:i) there is nok∈ {1,2, . . . ,N−2} such thata < ṽk < b, ii)

ṽN−2 ≤ a < b, or iii) a < b≤ ṽ1. According to eq. (4.9), there existsi ∈ {0,1, . . . ,N−2}
such that

φ(b) = φ(a)+
φ(ṽi+1)−φ(ṽi)

ṽi+1− ṽi
(b−a) . (4.21)

Application of eq. (4.19a) and eq. (4.19b) to eq. (4.21) shows eq. (4.20a) and eq. (4.20b),

respectively.

Next consider the case whena andb are in different “pieces” of the piecewise linear

functionφ. That is, there existsk∈ (1,2, . . . ,N−2) such thata< ṽk < b. According to eq.
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(4.9), there existsi ≥ j ∈ {0,1, . . . ,N−2} such that

φ(b) = φ(a)+
φ(ṽi+1)−φ(ṽi)

ṽi+1− ṽi
(b− ṽi)+

φ(ṽ j+1)−φ(ṽ j)
ṽ j+1− ṽ j

(
ṽ j+1−a

)

+
i−1

∑
k= j+1

φ(ṽk+1)φ(ṽk)
ṽk+1− ṽk

(ṽk+1− ṽk) .

(4.22)

Application of eq. (4.19a) and eq. (4.19b) to eq. (4.22) shows eq. (4.20a) and eq. (4.20b),

respectively. ¥

In summary, the Wiener-Hammerstein system identification problem in the noiseless

case can be defined as

Definition 4.3.2. [Wiener-Hammerstein system identification problem – noiseless case]

Given the input/output measurement(u,y)∈ RN×RN of an unknown Wiener-Hammerstein

system and positive integersNg and Nh, find decision vectorsg∈ RNg and h ∈ RNh such

that there exist signalsv ∈ RN andw ∈ RN satisfying eq. (4.13, 4.17). ¥

Remark4.3.3. It is assumed that(u,y) sufficiently represents the dynamics of the true (but

unknown) system. Therefore, a Wiener-Hammerstein model specified by the solution of

the problem in Definition 4.3.2 should reasonably describes the dynamics of the system of

interest. ¥

Remark4.3.4. The signals(v,w) can be used as the input/output samples of the nonlinearity

φ in Figure 4-2. φ can be defined, for example, using the linear interpolation scheme

described in eq. (4.9) in Subsection 4.2.3. ¥

Remark4.3.5. Under the assumption thatNg and Nh are large enough, the impulse re-

sponses of the true (but unknown) systemg∗ andh∗ constitute a solution to the problem

in Definition 4.3.2. Therefore, the problem has at least one solution. The case whenNg

andNh are not large enough can be handled. The discussion will be deferred to Subsection

4.5.2. ¥

Remark4.3.6. Typically there are infinitely many solutions of the problem in Definition

4.3.2, the corresponding normalization issue will be discussed in Subsection 4.3.2.¥
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4.3.1 E: Comparison with the model validation techniques

The principles of the identification problem in Definition 4.3.2 and that of the problem of

model validation (e.g., [99]) are very similar. Both problems call for a certificate to the sat-

isfiability of the input/output relationships of the blocks in the respective model structures

concerned. Definition 4.3.2 seeks a feasibility certificate while model validation seeks an

infeasibility certificate. However, there are two major distinctions between the proposed

identification setup and the model validation setup. First, for the model validation problem,

proving theexistenceof the infeasibility certificate is sufficient. For example, in [99, 104]

the question of whether an infeasibility certificate exists is answered by a structured singu-

lar value bounding problem. The Wiener-Hammerstein identification problem in Definition

4.3.2, on the other hand, requires the computation of all signals presented in the model. This

computation can potentially be expensive. The second distinction of the proposed identi-

fication setup from the model validation setup is that the feasibility problem in Definition

4.3.2 will lead to anon-convexquadratic program, while most of the previously considered

model validation setups lead to the formulation of convex problems. The convexity prop-

erties of the optimization problems also lead to a distinction in the solution approaches.

The published model validation results are mostly based on rigorous analysis, while the

approach adopted in this chapter will be more experimental – some observations will be

substantiated by numerical experiments only.

4.3.2 Non-uniqueness of solutions and normalization

The system identification problem in Definition 4.3.2 is feasible with decision vectorsg∗

andh∗ (i.e., the impulse responses of the FIR systems in Figure 4-1). However, there are ac-

tually infinitely many solutions. Figure 4-4 depicts a way to generate those solutions. The

non-uniqueness of solutions requires the normalization ofg andh. However, the normal-

ization issue is not trivial. In fact, uniqueness of solutions cannot be guaranteed in general

for the identification problem in this chapter. Two normalization schemes are allowed in

Figure 4-4:
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Figure 4-4: Non-uniqueness of the optimal solutions without normalization. GivenG∗ and
H∗, G andH characterize the family of FIR systems with the same input/output relation-
ship. c1 andc2 are positive because(G∗,H∗) and(G,H) are assumed/constrained to be
positive-real.

• Partial normalization : Only one ofg or h is normalized. For example, supposeh

is normalized, thenc2 is fixed. Then the identification engine can pickc1 to be any

positive number smaller thanc2, so thatφ(·) = φ∗ (c1·)/c2 satisfies constraint (4.16).

Therefore, there will be an infinite number of solutions.

• Full normalization : Both g andh are normalized. Then the identification engine

must fix bothc1 andc2 to be some function (depending on the type of normalization

chosen) ofg∗ and h∗, respectively. Ifβ∗ is the maximum value of the derivative

(where it is defined) ofφ∗, thenφ(·) = φ∗(c1·)/c2 has maximum derivativec1β∗/c2

(again, where it is defined). It is clear that sector bound condition eq. (4.16) would

not allow the identification engine to choose the appropriateφ if c1/c2 is too large

(i.e., whenc1/c2 > β/β∗). Here the problem is that there is no upper bound ofc1/c2.

For any given normalization scheme, there existg∗ andh∗ such thatc1/c2 > β/β∗.

Therefore, normalizing bothg andh might be too restrictive in the sense that the

identification cannot return any solution when there should be one.

Two conclusions can be made in this subsection:
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• Partial normalization should be used because it does not cause any restriction. How-

ever, this implies non-uniqueness of the solutions. Therefore, for the rest of the

chapter, a particular choice of partial normalization will be assumed:

h0≡ 1. (4.23)

While the choice of normalization in eq. (4.23) is somewhat arbitrary, it is not unjus-

tified becauseh0 =
2π∫
0

Re
{

H
(
ejω)}

dω > 0.

• With partial normalization, the constantβ in sector bound (4.17) can always be as-

sumed to be one, otherwise it can be absorbed in the part of the decision vector which

is not normalized. Therefore, throughout this chapter, all sector bound constraints

have their values ofβ equal to one.

4.3.3 Formulation of the system identification optimization problem

In this subsection the system identification problem defined in Definition 4.3.2 will be

simplified and put in a format that would facilitate the study of its solution strategy. Some

properties of the optimization problem will also be discussed in Subsection 4.3.4.

Definition 4.3.2 defines a system identification feasibility problem with three con-

straints given in eq. (4.13) and eq. (4.17). The discussion in Subsection 4.3.2 concludes

that a partial normalization ofh (i.e., eq. (4.23)) can be assumed. In addition, with the

partial normalization,β in eq. (4.17) can be assumed to be one. Substituting the variables

v andw using eq. (4.13), the constraint set eq. (4.13) and eq. (4.17) reduces to

(
∆Y i j h

)2− (
∆Y i j h

)(
∆Ui j g

)≤ 0, ∀N−1≥ i > j ≥ 0, (4.24)

where
∆Ui j := Ui−U j ,

∆Y i j := Y i−Y j ,
(4.25)
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and
Ui ∈ R1×Ng, Ui :=

[
U(i,1) U(i,2) · · · U(i,Ng)

]
,

Y i ∈ R1×Nh, Y i :=
[

Y (i,1) Y (i,2) · · · Y (i,Nh)
]
,

with U andY defined in eq. (4.14) and eq. (4.15), respectively.

Conforming to the standard notation in the field of optimization, define the vector of

decision variablesx∈ RNg+Nh as

x :=


 g

h


 , (4.26)

then corresponding to eq. (4.23), the partial normalization constraint set will be denoted as

X :=



x =


 g

h


 ∈ RNg+Nh h0 = 1



 . (4.27)

In addition, define the matricesAi j ∈ R(Ng+Nh)×(Ng+Nh) as

Ai j :=




(
∆Y i j

)′ (∆Y i j
) −1

2

(
∆Y i j

)′ (∆Ui j
)

−1
2

(
∆Ui j

)′ (∆Y i j
)

0


 . (4.28)

Then eq. (4.24) is the same as

x′Ai j x≤ 0, ∀N−1≥ i > j ≥ 0. (4.29)

Using the notationAi j defined in eq. (4.28), the system identification optimization problem

can be formulated as follows.

minimize
x∈X ,r∈R

r

subject to x′Ai j x≤ r, ∀ i > j

r ≥ 0,

(4.30)

whereX is defined in eq. (4.27) andAi j are defined in eq. (4.28). Program (4.30) and

the feasibility problem in Definition 4.3.2 are equivalent in the following sense:x̂ is an

optimal of program (4.30) if and only if the correspondingĝ and ĥ (see eq. (4.26)) is a
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feasible solution of the problem in Definition 4.3.2. The equivalence can be explained in

the following schematics (witĥx andĝ andĥ related by eq. (4.26)).

ĝ andĥ is a solution according to Definition 4.3.2.

⇐⇒ ĝ andĥ satisfies eq. (4.24).

⇐⇒ x̂ satisfies eq. (4.29)

⇐⇒ x̂ is an optimal solution of program (4.30).

(4.31)

In eq. (4.31) all but the last equivalence have been discussed. The last equivalence is true

only in the noiseless identification case – the normalized FIR system coefficientsg∗ andh∗

is an optimal solution of program (4.30) with an optimal objective value of zero, hence any

optimal solution of program (4.30) satisfies eq. (4.29).

The reason for formulating the system identification problem as an optimization prob-

lem in (4.30) will become clear in Section 4.5, in which an optimization problem of the

same form will be formulated.

4.3.4 Properties of the system identification optimization problem

The matricesAi j in (4.28) can be written as

Ai j = pi j
(
pi j

)′−qi j
(
qi j

)′
,

where

pi j =




(
∆Y i j

)′

−1
2

(
∆Ui j

)′


 and qi j =


 0

−1
2

(
∆Ui j

)′


 (4.32)

From (4.32), it can be seen thatAi j are rank two matrices with one positive eigenvalue

and one negative eigenvalue. Therefore, program (4.30) is a non-convex QP, which isN P

hard.

On the other hand, it can be seen that the absolute value of the positive eigenvalue is

(much) greater than that of the negative eigenvalue. This fact suggests that program (4.30)

might be an “easy”N P hard problem. This hypothesis is indeed justified by the following
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numerical experiment. Define a proximity functionR : RNg+Nh 7→ R+ as

R(x) := max
N−1≥i> j≥0

{
0,x′Ai j x

}
. (4.33)

Then let d̃ ∈ RNg+Nh be such thatd̃(i) is a zero mean unit variance Gaussian random

variable for alli, and letx∗ be the vector corresponding tog∗ andh∗. Then normalized̃

to d such thatx∗+sd∈ X for all s∈ R and‖d‖ = 1. Consider one dimensional function

R̃ : R 7→ R+ such thatR̃(s) := R(x∗+sd). Plot this function for a range ofs (e.g.,s∈
[−0.1,0.1]). Repeat the process with another randomly generatedd for many times and

check the shape of the functioñR (for different d) arounds = 0. The outcome of the

numerical experiment is shown in Figure 4-5. Figure 4-5 suggests that program (4.30) is
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Figure 4-5: Plot ofR̃(s) in 200 (normalized) randomly generated directions. Note thatR̃(s)
is not a convex function, but it is almost convex.

almost convex, substantiating the previous notion that program (4.30) should not be a too

difficult problem to solve.

Finally, the following properties of the proximity functionR defined in eq. (4.33) will

be assumed but not formally proved.

∃K ∈ R+ : ∀x∈ X , ∃x̂∈ argmin
x̃∈X

R(x̃) : ‖x− x̂‖ ≤ KR(x), (4.34)
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and

lim
‖x‖→∞

R(x) = ∞. (4.35)

4.4 Solving the Optimization Problem

Subsection 4.3.3 concludes with the formulation of program (4.30), which is repeated here

minimize
x∈X ,r∈R

r

subject to x′Ai j x≤ r, ∀ i > j

r ≥ 0,

(4.36)

whereX ⊂ RNg+Nh (defined in (4.27)) is the normalization constraint set, andAi j are sign-

indefinite matrices defined in (4.28) and (4.32). Optimization problem (4.36) is a non-

convex QP, which isN P hard. The solution to this computation challenge will be the topic

for the rest of this section.

The solution procedure for solving optimization problem (4.36) can be divided into

three steps, which will be discussed in detail in the following three subsections.

1. A convex semidefinite programming (SDP) relaxation of (4.36) is set up and solved.

2. The optimal solution of the SDP relaxation will be used as an initial guess for a local

minimization algorithm, which brings the solution closer to the true optimum.

3. A partial optimization is performed to find the lookup table for the nonlinearityφ.

Another (easily solvable) convex optimization will be solved to make sure that the

FIR systems of the final identified model will be positive real passive.

4.4.1 Semidefinite programming relaxation

SDP relaxation is a standard attempt to solve non-convex QP’s (e.g., [113]). To understand

the relaxation, it is noted that in optimization problem (4.36) the following is true

x′Ai j x = Tr
(
Ai j xx′

)
= Tr

(
Ai j X

)
, X = X′ ≥ 0, rank(X) = 1. (4.37)
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A standard procedure to obtain a SDP relaxation is to drop the rank constraint in (4.37),

which leads to
minimize
X∈Xs,r∈R

r

subject to Tr
(
Ai j X

)≤ r, ∀ i > j

r ≥ 0

X = X′ ≥ 0,

(4.38)

whereXs is the normalization constraint set forX corresponding toX for x. For example,

if it is a constraint in (4.36) thatx(i) = 1 for somei ∈ N, then the corresponding constraint

for X in (4.38) isX(1, i) = X(i,1) = X(i, i) = 1. Once the relaxation (4.38) is solved, the

singular vector corresponding to the largest singular value of the matrix solution is returned

as the best suboptimal solution to (4.36). It is obvious that the lower the rank ofX is, the

better the quality of the suboptimal solution will be.

For the noiseless setup in this section, the minimum value ofr is actually zero, attain-

able by, for example,x∗ :=
[
(g∗)′ (h∗)′

]′
. Hence, the matrix solutionX∗ ≡ x∗x∗′ is an

optimal solution to relaxation (4.38). This in turn allows (4.38) to be formulated as a mini-

mization problem with an objective function. The choice of a zero objective function leads

back to program (4.36), but a more reasonable choice is the trace of the matrix because it

has been shown that minimizing this objective function leads to low rank matrix solutions

(e.g., [114]). Consequently, the relaxation of (4.38) is reformulated as

minimize
X∈Xs

Tr(X)

Subject to Tr
(
Ai j X

)≤ 0

X = X′ ≥ 0

(4.39)

The tightness of the relaxation depends upon the nonlinearity in Figure 4-2, but not too

much on the FIR systemsG andH. The above observation is made through the following

numerical experiment: 300 instances of program (4.39) were solved. The input/output data

were generated by driving 300 randomly generated Wiener-Hammerstein systems with the

block diagram in Figure 4-2.GandH were randomly generated, but the nonlinearityφ were

fixed. For the first one hundred cases,φ was a hyperbolic tangent (i.e.,φ(v) = tanh(v)). For
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the next one hundred cases,φ was a saturated linearity (i.e.,φ(v) = sgn(v)max{|v| ,1}).
For the last one hundred cases,φ was a cubic nonlinearity (i.e.,φ(v) = v3). It is clear that the

cubic nonlinearity does not have a derivative bound, whereas the former two nonlinearities

have. After solving the 300 instances of program (4.39), the histograms of the percentage

ratios of the second largest and the largest singular values of the symmetric solution matrix

X are plotted in Figure 4-6, Figure 4-7 and Figure 4-8, respectively.
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Figure 4-6: Hyperbolic tangent test case. Histogram of the percentage of the second
largest singular value to the maximum singular value of the optimal SDP relaxation solution
matrix X. The second largest singular values never exceed 1.6% of the maximum singular
values in the experiment. Data was collected from 100 randomly generated test cases.
Nh = Ng = 4.

While the relaxation (4.39) provides a reasonably good approximation to the true opti-

mal solution of the original non-convex problem (4.36), the approximation should always

be refined by some inexpensive procedure such as a linearized local search described in the

next subsection.

129



0 0.5 1 1.5 2 2.5

x 10
−8

0

10

20

30

40

50

60

70

80

90

100

σ
2
/σ

1
 × 100

nu
m

be
r 

of
 c

as
es

Figure 4-7: Saturated linearity test case. Histogram of the percentage of the second
largest singular value to the maximum singular value of the optimal SDP relaxation solution
matrix X. X is practically a rank one matrix. Data was collected from 100 randomly
generated test cases.Nh = Ng = 4.
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Figure 4-8: Cubic nonlinearity test case. Histogram of the percentage of the second
largest singular value to the maximum singular value of the optimal SDP relaxation solu-
tion matrix X. For a lot of cases, the second largest singular values never exceed 5% of
the maximum singular values in the experiment, but there are some cases when the SDP
relaxation performs poorly. Data was collected from 100 randomly generated test cases.
Nh = Ng = 4.
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4.4.2 Local search

A local search is the following optimization procedure:

Definition 4.4.1. Given an initial guessx0 ∈ RNg+Nh, generate a sequence{x1,x2, . . . ,xm}
using the formula

xk+1 = xk +sk∆xk, k = 0,1, . . . ,m−1

where∆xk∈ RNg+Nh is the search direction andsk∈ R is the step length defined to minimize

some objective function. The sequence{xk} terminates when certain criterion is met (e.g.,

‖∆xk‖< ε for some pre-specified small numberε > 0). ¥

In this thesis, the search direction is chosen such that thelinearized (at the current

iteratexk) proximity function defined in eq. (4.33) in Subsection 4.3.4 is minimized. Given

the current iteratexk, a search direction∆xk should also be admissible. That is,

∆xk ∈ X∆ (xk) :=
{

y∈ RNg+Nh xk +sy∈ X , ∀s∈ R}

Then it is natural to seek∆xk ∈ X∆ (xk) such that

max
i> j

{
0,(xk +∆xk)

′Ai j (xk +∆xk)
}→min. (4.40)

Problem (4.40), however, is as difficult as (4.36). Nevertheless, if the term(∆xk)
′Ai j ∆xk is

ignored, then it leads to

minimize
∆xk,r∈R

r

subject to x′kAi j xk +2x′kAi j ∆xk ≤ r, ∀ i > j

r ≥ 0

∆xk ∈ X∆ (xk) .

(4.41)

Optimization problem (4.41) is a linear program (LP) with respect to decision variablesr

and∆xk. It can be solved relatively cheaply [65].

Once the search direction∆xk has been found by solving program (4.41), the line search
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procedure can be applied to solve thenonlinearproblem for the optimal step length.

sk := argmin
s

max
i> j

{
0,(xk +s∆xk)

′Ai j (xk +s∆xk)
}

. (4.42)

Note that program (4.42) is typically a non-convex problem, and therefore it is not supposed

to be solved to optimality. Nevertheless, program (4.42) is a one-dimensional optimization

problem and good algorithms exist to approximately solve it. For example, the algorithm

implemented in this thesis work was based on a quadratic function approximation scheme

described in [115].

4.4.3 Final optimizations

There are two reasons for performing some optimizations after the SDP relaxation (Sub-

section 4.4.1) and the local search (Subsection 4.4.2). The two reasons will lead to two

optimization tasks:partial optimization andpassivity enforcement.

The first reason is to solve some relatively inexpensive problems to further improve

the quality of the identification. Note that the constraint eq. (4.24) is convex with respect

to g andh individually – eq. (4.24) is a linear constraint with respect tog, and a convex

quadratic constraint with respect toh. Supposêg andĥ are the solutions of the local search.

Then the following optimization problem can be solved to improve the quality ofĝ.

minimize
r, g:(g,ĥ)∈X

r

subject to
(
∆Y i j ĥ

)2− (
∆Y i j ĥ

)(
∆Ui j g

)≤ r, ∀ i > j,

r ≥ 0.

(4.43)

Program (4.43) is a LP with decision variablesr andg. It can be solved efficiently [65].

Conversely, the following optimization problem can be solved to improve the quality ofĥ.

minimize
r, h:(ĝ,h)∈X

r

subject to
(
∆Y i j ĝ

)2− (
∆Y i j ĝ

)(
∆Ui j h

)≤ r, ∀ i > j,

r ≥ 0.

(4.44)
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Program (4.44) is a convex QP with decision variablesr and h. It can also be solved

efficiently [116]. Other partial refinements in the spirit of programs (4.43) and (4.44) are

also possible. See [108] for an example.

The second reason for the final optimization is the positive real passivity enforcement

of the final model ofh. Recall the definition of positive real passivity

Re
{

H
(
ejω)}

= h0 +h1cos(ω)+ . . .+hNh−1cos((Nh−1)ω) > 0. (4.45)

It can be verified (see [117], for example) that eq. (4.45) is true if and only if there exists

Q = Q′ ∈ R(Nh−1)×(Nh−1) such that


 Q 1

2ȟ
1
2ȟ′ h0


−


 0 0

0 Q


 > 0, (4.46)

where

ȟ :=
[

hNh−1 hNh−2 · · · h1

]′
∈ RNh−1,

and inequality (4.46) means that the left side is a positive definite matrix. Note that (4.46)

is a linear matrix inequality with variablesQ, h0 andȟ (a truncated reversed version ofh).

Now supposêh is the identified FIR system impulse response coefficients by the relax-

ation/local search procedure. Then the passive refinement ofĥ can be found by solving

minimize
h

∥∥h− ĥ
∥∥

2

subject to (4.46).
(4.47)

Optimization problem (4.47) is a SDP with very few decision variables and constraints. It

can be solved efficiently [67]. In addition, it is noted that while program (4.47) is given

with h being the decision variables, exactly the same procedure can be applied to enforce

the passivity ofg as well.

Finally, note that while the tasks of partial optimization and passivity enforcement are

described separately, they can be combined to formulate a single optimization problem. For

example, constraint (4.46) can be incorporated into program (4.44) to form a convex SDP.
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Similarly, an analogous version of (4.46) can also be incorporated into program (4.43).

4.4.4 System identification algorithm summary

The solution procedure to solve the Wiener-Hammerstein system identification problem

according to Definition 4.3.2 can be summarized into the following steps.

Algorithm: W-H (noiseless)

Input: Input/output measurement(u,y) ∈ RN×RN, lengths of FIR systemsNg andNh

Output: FIR system coefficients
(
ĝ, ĥ

) ∈ RNg×RNh, piecewise linear nonlinearitŷφ

1. Given(u,y), use eq. (4.14) and eq. (4.15) to define Toeplitz matricesU andY.

2. Use eq. (4.28) and eq. (4.25) to define sign indefinite matricesAi j for all time indices

N−1≥ i > j ≥ 0.

3. Set up and solve SDP (4.39) to obtain the solution matrixX. Denotex0 as the domi-

nant singular vector ofX.

4. With x0 being the initial guess, solve the local search problem in Definition 4.4.1.

5. Refine the optimal solution of the local search by apply the positive real passivity

enforcement program (4.47) and/or the partial optimization of program (4.44), (4.43).

Denotex̂ as the optimal solution after all the final optimizations.

6. Define
(
ĝ, ĥ

)
:= x̂, andv̂ := Uĝ, ŵ := Yĥ. Define the output nonlinearitŷφ specified

by (v̂, ŵ) (sorting and extracting uniquêv entries if necessary) using eq. (4.9). Return

the outputs
(
ĝ, ĥ, φ̂

)
.

4.5 Identification of Wiener-Hammerstein System – with

Measurement Noise

The development of this section will be parallel to the combination of Section 4.3 and

Section 4.4. Differences between the noiseless and the noisy cases will be highlighted.
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4.5.1 System identification problem formulation

The model to be identified is still of the Wiener-Hammerstein structure in Figure 4-2 with

decision variablesg andh andφ being specified by a lookup table. Because of the output

measurement noise, however, the system identification feasibility problem will be different

and it is shown in Figure 4-9.

G φ H
-1u v w y

n

Figure 4-9: A feasibility problem to determine the impulse responses of the FIR systemsG
andH. Hereu andy are the given input and output measurement generated by the true (but
unknown) system. The signalsv andw are the outputs ofG andH, respectively. The signal
n is the noise corrupting the output measurement. In the feasibility problem,v, w andn
are extra variables chosen so that, together withg andh, they define a functionφ satisfying
sector bound constraint eq. (4.16).

There is an extra signaln ∈ RN to be determined in the feasibility problem in Figure 4-9.

Define the Toeplitz matrixN ∈ RN×Nh :

N :=




n[0] 0 . . . 0

n[1] n[0] .. .
...

.. . 0
...

... n[0]
...

n[N−1] n[N−2] . . . n[N−Nh]




N×Nh

. (4.48)

The constraint set defined in Figure 4-9 can be given as follows.

v = Ug, (4.49a)

w = (Y−N)h, (4.49b)
(
wi−w j

)(
wi−w j −vi +v j

)≤ 0, ∀N−1≥ i > j ≥ 0. (4.49c)
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Then the Wiener-Hammerstein system identification problem with output measurement

noise can be defined as

Definition 4.5.1. [Wiener-Hammerstein system identification problem – noisy case]

Given the input/output measurement(u,y)∈ RN×RN of an unknown Wiener-Hammerstein

system and positive integersNg andNh, find decision vectorsg∈ RNg andh∈ RNh such that

there exist signalsv ∈ RN, w ∈ RN andn ∈ RN satisfying eq. (4.49a, 4.49b, 4.49c). ¥

4.5.2 Formulation of the system identification optimization problem

Parallel to the development in Subsection 4.3.3, the feasibility problem in Definition 4.5.1

will be simplified. However, instead of formulating and solving an equivalent optimization

problem as it was in Subsection 4.3.3, arelaxationwill be formulated due to computation

considerations.

Substituting eq. (4.49a) and eq. (4.49b) into eq. (4.49c) yields

(
∆Y i j h

)2−(
∆Y i j h

)(
∆Ui j g

)≤ (
∆Ni j h

)(
2∆Y i j h−∆Ui j g

)−(
∆Ni j h

)2
, ∀ i > j, (4.50)

where

∆Ni j := Ni−N j (4.51)

and

Ni ∈ R1×Nh, Ni :=
[

N(i,1) N(i,2) · · · N(i,Nh)
]
,

with N defined in eq. (4.48). Constraint (4.50) is difficult to handle because of the terms in

the right-hand side with the extra variables ofn. Therefore, it is proposed in this thesis that

the followingrelaxedconstraint should be imposed instead. That is,

(
∆Y i j h

)2− (
∆Y i j h

)(
∆Ui j g

)≤ r i j , ∀N−1≥ i > j ≥ 0, (4.52)

with variablesg, h andr ∈ RN(N−1)/2
+ . Constraint eq. (4.52) is linear with respect tor , and

therefore it is no more difficult to handle than eq. (4.24) in Subsection 4.3.3. Based on the

“robustness principle” that eq. (4.50) should be satisfied by a noise vectorn with the min-
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imum norm, the relaxed system identification optimization problem should be formulated

to minimize some kind of norm ofr as well. In this thesis, the norm is chosen to be the

infinity norm. Then, using the notationsx defined in eq. (4.26),X defined in eq. (4.27)

andAi j in eq. (4.28) in Subsection 4.3.3. The relaxed system identification optimization

problems can be given as

minimize
x∈X ,r∈R

r

subject to x′Ai j x≤ r, ∀ i > j

r ≥ 0.

(4.53)

Note that program (4.53) has exactly the same form as program (4.36), the noiseless case

in Subsection 4.3.3. However, in general, the minimum objective value of program (4.53)

will not be zero. Accordingly, the solution procedure described in Section 4.4 should be

modified. This will be explained in Subsection 4.5.3.

A question of great concern is how good the relaxed optimization problem (4.53) is.

This can be answered by a characterization of the distance between the optimal solutions to

program (4.53) with or without output measurement noise. The following statement gives

a theoretical guideline.

Lemma 4.5.2.Denoten∗ as the vector of output measurement noise. Letĝ and ĥ be a so-

lution of program (4.53) when the matricesAi j are defined with input/output measurement

(u,y) with noisen∗. Letg∗ andh∗ be a solution of program (4.36) when the matricesAi j

are defined with input/output measurement(u,y) without noisen∗. Then if the proximity

function property in eq. (4.34) (whenAi j are defined with noise) is satisfied, then

∥∥(
ĝ, ĥ

)− (g∗,h∗)
∥∥

2 = O(‖n∗‖2) , when‖ n∗‖2 is small enough. (4.54)

¥

Proof of Lemma 4.5.2. First, note thatg∗ andh∗ satisfies the sector bound (with system
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inputu and outputy−n∗), which simplifies to

(
∆Y i j h∗

)2− (
∆Y i j h∗

)(
∆Ui j g∗

)≤ (
∆N∗i j h

∗)(
2∆Y i j h∗−∆Ui j g∗

)− (
∆N∗i j h

∗)2
, ∀ i > j,

(4.55)

where

∆N∗i j := N∗i −N∗j

and

N∗i ∈ R1×Nh, N∗i :=
[

N∗ (i,1) N∗ (i,2) · · · N∗ (i,Nh)
]
,

with

N∗ :=




n∗[0] 0 . . . 0

n∗[1] n∗[0] .. .
...

.. . 0
...

... n∗[0]
...

n∗[N−1] n∗[N−2] . . . n∗[N−Nh]




N×Nh

.

Then, comparing the definition ofR in eq. (4.33), the relation in eq. (4.55) suggests that

R((g∗,h∗)) = max
i> j

{
0,

(
∆Y i j h∗

)2− (
∆Y i j h∗

)(
∆Ui j g∗

)}

= O(‖n∗‖2‖h∗‖2) , when‖n∗‖2 is small,
(4.56)

where the fact that∆N∗i j h
∗ = O(‖n∗‖2‖h∗‖2) has been used because∆N∗i j is a linear func-

tion of n∗.

On the other hand, by the statement
(
ĝ, ĥ

)
is a minimizer ofR. Therefore,

R
((

ĝ, ĥ
))≤ R((g∗,h∗)) ,

and hence

R
((

ĝ, ĥ
))

= O(‖n∗‖2‖h∗‖2) . (4.57)
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Application of the triangular inequality to eq. (4.56) and eq. (4.57) yields

∥∥R
((

ĝ, ĥ
))−R((g∗,h∗))

∥∥
2 = O(‖n∗‖2‖h∗‖2) . (4.58)

Finally, applying proximity function property in eq. (4.34) to eq. (4.58) implies the exis-

tence of a constantK such that

‖(
ĝ, ĥ

)− (g∗,h∗)‖2 = O(K ‖n∗‖2‖h∗‖2)

= O(‖n∗‖2) ,

thus concluding the proof. ¥

Remark4.5.3. Eq. (4.54) in Lemma 4.5.2 states that the difference of the solutions in the

noisy and noiseless setups are linearly upper bounded by the norm of the noise vectorn.

This justifies the use of the relaxed system identification optimization problem (4.53).¥

Remark4.5.4. The proximity function property defined in eq. (4.34) is central to the proof

of Lemma 4.5.2 – it relates the proximity in terms of objective function value to the prox-

imity in terms of the decision vector itself. Although a formal proof is not available at this

stage, this conjecture is supported by numerical evidence shown in Figure 4-5. ¥

Finally, it is noted that the minimization of the norm ofr in program (4.53) has ad-

ditionally the following implication: suppose the lengthsNg or Nh is not large enough to

sufficiently represent the impulse response of the corresponding FIR systems in the true

(but unknown) system, then the minimization ofr seeks to minimize the violation of feasi-

bility of the left-hand side of eq. (4.52).

4.5.3 Reformulation of SDP relaxation

The relaxation of the feasibility problem in Definition 4.5.1 leads to the optimization prob-

lem (4.53), which has exactly the same form as program (4.36) with only one exception

– the minimum of program (4.53) is not necessarily zero in the presence of output mea-

surement noise. Therefore, all of the solution steps described in Section 4.4 apply to the

noisy problem (4.53) with the exception that the feasibility problem (4.39) is infeasible,
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and hence it cannot be part of the solution procedure. The following SDP will be solved in

place of program (4.39).

minimize
X∈Xs,r∈R

Tr(X)+λr

Subject to Tr
(
Ai j X

)≤ r

X = X′ ≥ 0

r ≥ 0

(4.59)

In program (4.59) the constraint setXs is defined in (4.39), and the matricesAi j are defined

in eq. (4.28).λ > 0 is a tuning parameter. It turns out thatλ = 100 works pretty well in

general. Note that the objective function in program (4.59) represents a tradeoff between

the desire to obtain a low-rank solution and the minimization of the norm of the noise.

4.5.4 Section summary

A feasibility problem is given in Definition 4.5.1 to characterize the solution of the Wiener-

Hammerstein system identification problem with output measurement noise. The feasibil-

ity problem turns out to be difficult to solve and therefore it is further relaxed to form an

optimization problem in (4.53). The quality of the relaxation is characterized by Lemma

4.5.2. The relaxation has the same form as program (4.36) in the noiseless case with only

one exception – the minimum objective value of the relaxation is above zero. Accordingly,

the algorithm for solving the relaxation is the same as that for the noiseless setup except

for step 3 below.

Algorithm: W-H (noisy)

Input: Input/output measurement(u,y) ∈ RN×RN, lengths of FIR systemsNg andNh

Output: FIR system coefficients
(
ĝ, ĥ

) ∈ RNg×RNh, piecewise linear nonlinearitŷφ

1. Given(u,y), use eq. (4.14) and eq. (4.15) to define Toeplitz matricesU andY.

2. Use eq. (4.28) and eq. (4.25) to define sign indefinite matricesAi j for all time indices

N−1≥ i > j ≥ 0.

3. Set up and solve SDP (4.59) to obtain the solution matrixX. Denotex0 as the domi-

nant singular vector ofX.
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4. With x0 being the initial guess, solve the local search problem in Definition 4.4.1.

5. Refine the optimal solution of the local search by apply the positive real passivity

enforcement program (4.47) and/or the partial optimization of program (4.44), (4.43).

Denotex̂ as the optimal solution after all the final optimizations.

6. Define
(
ĝ, ĥ

)
:= x̂, andv̂ := Uĝ, ŵ := Yĥ. Define the output nonlinearitŷφ specified

by (v̂, ŵ) (sorting and extracting uniquêv entries if necessary) using eq. (4.9). Return

the outputs
(
ĝ, ĥ, φ̂

)
.

4.6 Identification of Wiener-Hammerstein System – with

Feedback and Noise

Figure 4-10 shows the feedback Wiener-Hammerstein model which is specified by the FIR

G φ H
-1

K

-

Figure 4-10: The Wiener-Hammerstein model with feedback.

systemsG, H, K and the nonlinearityφ, which will again be identified in a non-parametric

fashion. The setup of the identification feasibility problem, given in Figure 4-11, is slightly

different from the model in Figure 4-10. In addition to the decision variablesg∈ RNg and

h ∈ RNh seen in the previous sections, there are decision variables associated with the FIR

systemK, which is implicitly characterized by the impulse response of the product ofK and

H denoted ask ∗h ∈ RNk+Nh−1 and the impulse response ofH denoted ash ∈ RNh. Once

the vectorsk ∗h andh have been determined, a deconvolution can be applied to retrieve

the impulse response ofK.
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-

ywv

n

Figure 4-11: A feasibility problem to determine the impulse responses ofG, H andK ∗
H. Hereu andy are the given input and output measurement generated by the true (but
unknown) system. The signalsv andw are the input and output of the nonlinearityφ. The
signaln is the noise corrupting the output measurement. In the feasibility problem,v, w
andn are extra variables chosen so that, together withg, h andk ∗h, they define a function
φ satisfying sector bound constraint eq. (4.16).

The feasibility problem setup in Figure 4-11 leads to the following set of constraints.

v = Ug−Y (k ∗h) , (4.60a)

w = (Y−N)h, (4.60b)
(
wi−w j

)(
wi−w j −vi +v j

)≤ 0, ∀N−1≥ i > j ≥ 0, (4.60c)

with U, Y andN defined in eq. (4.14), eq. (4.15) and eq. (4.48), respectively. Note that if

the following notations are defined

Ũ :=
[

U −Y
]

and g̃ :=


 g

k ∗h


 , (4.61)

then the constraint set eq. (4.60a,4.60b,4.60c) can be written as

v = Ũg̃, (4.62a)

w = (Y−N)h, (4.62b)
(
wi−w j

)(
wi−w j −vi +v j

)≤ 0, ∀N−1≥ i > j ≥ 0. (4.62c)

As far as the proposed system identification algorithm is concerned, constraint set eq.

(4.62a,4.62b,4.62c) has the same form and properties as eq. (4.49a,4.49b,4.49c) in the no
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feedback case. Therefore, the analysis and algorithm in Section 4.5 can be applied to the

feedback Wiener-Hammerstein system identification simply by replacing constraint set eq.

(4.49a,4.49b,4.49c) with eq. (4.62a,4.62b,4.62c). Once the optimal values of the decision

vectorsg, h andk ∗h have been found, a deconvolution can be applied to obtain the value

of k (corresponding to the impulse response ofK in Figure 4-10). To summarize, the

algorithm for the feedback Wiener-Hammerstein identification case is as follows.

Algorithm: W-H feedback (noisy)

Input: Input/output measurement(u,y) ∈ RN×RN, lengths of FIR systemsNg, Nh and

Nk.

Output: FIR system coefficients
(
ĝ, ĥ, k̂

) ∈ RNg×RNh×RNk, piecewise linear

nonlinearityφ̂

1. Given(u,y), use eq. (4.14) and eq. (4.15) to define Toeplitz matricesU andY. Then

defineŨ according to eq. (4.61).

2. With Ũ in place ofU, use eq. (4.28) and eq. (4.25) to define sign indefinite matrices

Ai j for all time indicesN−1≥ i > j ≥ 0.

3. Set up and solve SDP (4.59) to obtain the solution matrixX. Denotex0 as the domi-

nant singular vector ofX.

4. With x0 being the initial guess, solve the local search problem in Definition 4.4.1.

5. Refine the optimal solution of the local search by apply the positive real passivity

enforcement program (4.47) and/or the partial optimization of program (4.44), (4.43).

Denotex̂ as the optimal solution after all the final optimizations.

6. Define
(

ĝ, ˆ(k ∗h), ĥ
)

:= x̂, and v̂ := Uĝ−Y ˆ(k ∗h), ŵ := Yĥ. Define the output

nonlinearityφ̂ specified by(v̂, ŵ) (sorting and extracting uniquêv entries if neces-

sary) using eq. (4.9). Obtain̂k by deconvoluting ˆ(k ∗h) with ĥ. Return the outputs
(
ĝ, ĥ, k̂, φ̂

)
.
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4.7 Complexity Analysis

The complexity of the proposed system identification algorithm is dominated by the solving

of SDP (4.36) or (4.53). DenoteNv := Ng +Nh +Nk with Ng, Nh andNk being the lengths

of the impulse responses of the FIR systemsG, H andK in Figure 4-10. Also, denoteNc :=

N(N−1)/2 with N being the number of samples in the given problem data(u,y). Then

with SeDuMi [76], the complexity of solving program (4.36) or (4.53) isO
(
N2

v N2.5
c +N3.5

c

)

[118]. Typically, the number of samplesN is much larger than the total number of impulse

response samplesNv. Therefore, the complexity can be given asO
(
N7

)
. As a result, there

is a tradeoff between using many input/output measurement samples to accurately represent

the system dynamics and using fewer samples to reduce the computation cost for solving

the system identification problem.

4.8 Application Examples

4.8.1 Identification of randomly generated Wiener-Hammerstein sys-

tem with feedback

The numerical example given in this subsection is the identification of the feedback setup.

In this test case,G∗, H∗ andK∗ are randomly generated positive real passive FIR filters of

4th order. The nonlinearity isφ∗ = sgn(x){4|x|,0.1|x|+(4−0.1)} . The noise is such that

n[t] is uniformly distributed andn[t] ∈ [−0.01,0.01] for all t.

For the identification, 86 samples of(u[t],y[t]) were used to construct the matricesU

andY. The identification model has the same structure as in Figure 4-10, and the orders of

the FIR filters are also four. Once the identification is completed, the original test system

and the identified model are driven by some test signals (different from the training signals),

and the corresponding outputs are recorded. Figure 4-12 shows the matching of the output

of one of the test scenarios. Figure 4-13 shows the matching of the identified nonlinearity.

The identification took about 5 seconds on a PC with a 3GHz CPU and 3GB of RAM.
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Figure 4-12: Matching of output signals by the original (unknown) system and the identi-
fied model.y[k] denotes the output by the original system (star).yi[k] denotes the output
by the identified model (line). The plots of two output signals almost overlap.
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Figure 4-13: Matching of the original nonlinearity (star) and the identified nonlinearity
(line).

4.8.2 Identification of a transmission line with diodes

The next application example in this section is the transmission line with diodes [83] (also

described in Section 3.6). Figure 4-14 shows the circuit schematic. For simplicity, the

resistance of all resistors is set to 0.1, the capacitance of all capacitors is set to 1 and all the
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Figure 4-14: A transmission line with diodes.

diodes have the following input/output relationship:id (v) = 10−6
(
e40v−1

)
. Excluding

the ground node, there areN nodes in Figure 4-14 and in this subsection,N is assumed to

be 30. The input of the transmission line system is the external current injected to node 1,

and the output of the system is the voltage at node 1. While the transmission line system

does not have the Wiener-Hammerstein structure, numerous investigations have suggested

that it can be well approximated by very low order models.

210 input/output measurement samples from 7 different input/output pairs were used

to construct a feedback Wiener-Hammerstein model based on Algorithm W-H feedback

(noisy) in Section 4.6. The lengths of the impulse responses ofG, H andK in Figure 4-10

are 1, 1 and 10, respectively. The construction of the Wiener-Hammerstein model took

about 17 seconds on the PC with a 3GHz CPU and 3GB of RAM. After the model has

been identified, a different set of input test signals were used to drive the model and the

true transmission line system. Figure 4-15 shows the matching of the outputs of one of the

test cases. While the transmission line does not have the Wiener-Hammerstein structure,

the identified nonlinear does have a structure reminiscent of the exponential V-A charac-

teristic of the diode. Figure 4-16 shows theinverseof the identified nonlinearityφ, which

resembles the sum of a exponential function and a linear function.
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Figure 4-15: Matching of the output time sequences of the original transmission line system
and the identified Wiener-Hammerstein model. Star: original system. Solid: identified
model.
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Figure 4-16: The inverse function of the identified nonlinearityφ. It looks like the expo-
nential V-A characteristic with an added linear function.

4.8.3 Identification of an open loop operational amplifier

The last application example in this section is the identification of an open loop operational

amplifier (OP-AMP) with a block diagram shown in Figure 4-17.

In the construction of the feedback Wiener-Hammerstein model, 300 input/output mea-
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Figure 4-17: Block diagram of an operational amplifier.

surement samples from 6 different input/output pairs were used. The lengths of the impulse

responses ofG, H andK in Figure 4-10 are 1,1 and 2, respectively. The lengths of the im-

pulse responses were chosen so that the Wiener-Hammerstein model can characterize the

following first order system with a nonlinear pole.

k0y[t]+k1y[t−1] = Ψ(y[t])+g0u[t] . (4.63)

Eq. (4.63) fits in the feedback Wiener-Hammerstein structure depicted in Figure 4-18.

The construction of the model took about 26 seconds on the same 3GHz CPU ma-

chine used in the previous examples. Figure 4-19 shows the matching of the output of

the true system simulated using SPICE and the output of the identified feedback Wiener-

Hammerstein model simulated using MATLAB, when the test input signal is of relatively

low frequency. On the other hand, Figure 4-20 shows the output matching for a test input

signal of a relatively high frequency.

The identified nonlinearφ in the model in Figure 4-10 in Section 4.6 is shown in Figure

4-21.
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Figure 4-18: First order model for the OP-AMP. The pole of the model is a nonlinear
function of the outputy. The model fit in the feedback Wiener-Hammerstein structure
discussed in this section.
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Figure 4-19: Matching of the output time sequence for a low frequency input test signal.
Dash: SPICE simulated output time sequence. Dots: subset of samples of the SPICE
simulated output. Solid: identified model.

4.9 Conclusion

In this chapter, the identification problems of the Wiener-Hammerstein system with and

without feedback have been investigated. In the proposed algorithm, the identification of

the nonlinearity is non-parametric. The chapter formulates the system identification prob-

lem as a non-convex QP. Nevertheless, it is demonstrated that the classical SDP relaxation

is able to provide very good suboptimal solution to the formulated non-convex QP. Using

a local search, high quality solutions of identification problem can often be found. Finally,

a numerical example is given to show that the proposed relaxation framework provides an
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(a) output time sequences (full time range)
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Figure 4-20: Matching of the output time sequence for a high frequency input test signal.
Dash: SPICE simulated output time sequence. Dots: subset of samples of the SPICE
simulated output. Solid: identified model.
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Figure 4-21: Identified nonlinearityφ in the feedback Wiener-Hammerstein model of Fig-
ure 4-10. Notice that there is a strong saturation for input values at the negative side,
explaining the saturation phenomena in Figure 4-19.

interesting new way to solve the identification problem of the Wiener-Hammerstein system

with feedback.
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Chapter 5

Conclusions

The value of convex optimization in the field of model reduction has been demonstrated

through three examples in three different parts of the thesis. In the first part of the thesis,

quasi-convex optimization has been shown to provide a flexible framework to solve the LTI

system model reduction problems. The proposed framework can handle stability, passivity

constraints and it has been extended to solve the parameterized model reduction problem

as well. A parameterized reduced model of a large spiral RF inductor has been constructed

using the proposed algorithm. In the second part of the thesis, it has been shown that

the problem of upper bounding the system input/ouput error due to nonlinear vector field

approximation, a typical step in nonlinear model reduction algorithms, can be formulated

as an L2 gain upper bounding problem to which the small gain theorem can be applied.

Application of the small gain theorem led to a theoretical statement, as well as a numer-

ical procedure describing the error bound. The classical example of a transmission line

with diodes has been considered in the application of the proposed error bounding scheme.

Finally in the third part of the thesis the nonlinear Wiener-Hammerstein system identifi-

cation problem has been considered. While the Wiener-Hammerstein structure is simple,

it has the potential to model important nonlinear sub-circuits, and the specific structure

of Wiener-Hammerstein leads to special properties of the corresponding identification op-

timization problem, which has been demonstrated to be an easy non-convex QP. A SDP

relaxation is presented to provide a good solution strategy to solve the non-convex QP.

Wiener-Hammerstein reduced models of several practical circuits have been constructed
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using the proposed identification scheme.
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