Accepted by

Convex Optimization Methods for Model Reduction
by
Kin Cheong Sou

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2008
(© Massachusetts Institute of Technology 2008. All rights reserved.

AUTNOT .
Department of Electrical Engineering and Computer Science
August 29, 2008
Certifled DY . ...
Luca Daniel
Associate Professor
Thesis Supervisor
Certified DY . ..o

Alexandre Megretski
Professor
Thesis Supervisor

Terry P. Orlando
Chairman, Department Committee on Graduate Students






Convex Optimization Methods for Model Reduction

by
Kin Cheong Sou

Submitted to the Department of Electrical Engineering and Computer Science
on August 29, 2008, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

Model reduction and convex optimization are prevalent in science and engineering appli-
cations. In this thesis, convex optimization solution techniques to three different model
reduction problems are studied.

Parameterized reduced order modeling is important for rapid design and optimization of
systems containing parameter dependent reducible sub-circuits such as interconnects and
RF inductors. The first part of the thesis presents a quasi-convex optimization approach to
solve the parameterized model order reduction problem for linear time-invariant systems.
Formulation of the model reduction problem as a quasi-convex program allows the flexi-
bility to enforce constraints such as stability and passivity in both non-parameterized and
parameterized cases. Numerical results including the parameterized reduced modeling of a
large RF inductor are given to demonstrate the practical value of the proposed algorithm.

A majority of nonlinear model reduction techniques can be regarded as a two step
procedure as follows. First the state dimension is reduced through a projection, and then
the vector field of the reduced state is approximated for improved computation efficiency.
Neither of the above steps has been thoroughly studied. The second part of this thesis
presents a solution to a particular problem in the second step above, namely, finding an
upper bound of the system input/output error due to nonlinear vector field approximation.
The system error upper bounding problem is formulated as an L2 gain upper bounding
problem of some feedback interconnection, to which the small gain theorem can be applied.
A numerical procedure based on integral quadratic constraint analysis and a theoretical
statement based on L2 gain analysis are given to provide the solution to the error bounding
problem. The numerical procedure is applied to analyze the vector field approximation
quality of a transmission line with diodes.

The application of Volterra series to the reduced modeling of nonlinear systems is ham-
pered by the rapidly increasing computation cost with respect to the degrees of the poly-
nomials used. On the other hand, while it is less general than the Volterra series model,
the Wiener-Hammerstein model has been shown to be useful for accurate and compact
modeling of certain nonlinear sub-circuits such as power amplifiers. The third part of the
thesis presents a convex optimization solution technique to the reduction/identification of
the Wiener-Hammerstein system. The identification problem is formulated as a non-convex
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guadratic program, which is solved by a semidefinite programming relaxation technique.

It is demonstrated in the thesis that the formulation is robust with respect to noisy mea-

surement, and the relaxation technique is oftentimes sufficient to provide good solutions.

Simple examples are provided to demonstrate the use of the proposed identification algo-
rithm.

Thesis Supervisor: Luca Daniel
Title: Associate Professor

Thesis Supervisor: Alexandre Megretski
Title: Professor



Acknowledgments

| would like to express my gratitude to my advisors Professor Luca Daniel and Professor
Alexandre Megretski, who have shaped me into what | am like today. Luca has taught me
a lot of electrical engineering aspects of my research as well as the attitude that | should
take when | am faced with engineering challenges. In addition, Luca has also spent a lot
of time helping me with my presentation skills, which | hope, will eventually match up to

his standard. Alex, on the other hand, has profoundly influenced my way of conducting
research. Through our discussions (and sometimes arguments), | finally started to learn the
rope of conducting rigorous research. In addition, Alex has also shown to me that a lot
of seemingly intractable problems can actually be solved, and | am oftentimes amazed by
the creative solutions that he comes up with. In addition to my advisors, | would also like

to thank Professor Munther Dahleh and Professor Jacob White for being my committee
members and providing me with helpful suggestions. | would also like to acknowledge
the support of the Interconnect Focus Center, one of the five research centers funded under
the Focus Center Research Program, a Semiconductor Research Corporation and DARPA

program.

Now it is time to mention my folks in the CP group. Sharing my office are Lei Zhang
and Bo Kim. Lei is a good friend of mine and we hang out a lot. His personality changed
the dynamics of the group — | witnessed the change of interactions between the people in the
group before and after his arrival. Yan Li, who is Lei's wife, also happens to be my friend
and we have had many enjoyable chats. Bo is a very charming lady who is also very nice to
everybody that she comes across. | thank her for all those kind words and encouragements
to the group members including me. Brad Bond is the buddy sitting initially behind me and
then next door. We have had a lot of discussions of just about every topics, technical or non-
technical. | also thank him for inviting me to his home in Tennessee during the wonderful
Christmas in the year of 2006. Junghoon Lee also sits next door. He is one of the nicest
guy | have ever met. Dmitry Vasilyev is also a good friend of mine. We have had lots of
technical discussions, but we also have had lots of skiing trips together. Other members and

former members of the group are also gratefully acknowledged. Tarek ElI Moselhy, Steve

5



Leibman, Laura Proctor, Homer Reid, Jaydeep Bardhan, Xin Hu, Shih-Hsien Kuo, Carlos
Pinto Coelho, David Willis together made my stay in the CP group very enjoyable.

| thank my parents for their support and their constant updates of the home front. With-
out their sacrifice | could not have achieved what | have achieved today. | have been away
from home for too long, and | think it must be very hard on them because of the separation.
| sincerely appreciate their patience for waiting for me to complete my long journey to
obtain my PhD.

The last semester at MIT has been particularly eventful for me. It has been laden with
difficulties and setbacks for me, one after another. The trace of this half year will forever
live in my mind. Especially memorable in this difficult semester is Qin, who proved to me,

finally there is something I really care about.



Contents

1

Introduction 19
1.1 Motivations . . . . . . . . . e, 19
1.2 Dissertation Outline . . . . . . . . . . . e 22

Model Order Reduction of Parameterized Linear Time-Invariant Systems via

Quasi-Convex Optimization 23

2.1 TechnicalBackground . . .. .. .. .. ... .. ... .. .. .. .... 25
2.1.1 Tustin transform and continuous-time model reduction . . . . . . . 25
2.1.2 #H, norm of a stable transfer function . . . .. ... ........ 26
2.1.3 Optimal#, norm model reduction problem . . . . . .. ... ... 26
2.1.4 Convex and quasi-convex optimization problems . . . . ... ... 27
2.1.5 Relaxation of an optimization problem. . . . . .. .. ... .. .. 29

2.2 Relaxation Scheme Setup . . . . . . . . . .. ... o 29
2.2.1 Relaxation of thé{, norm optimization . . . . .. ... ... ... 30
2.2.2 Change of decision variables in the relaxation scheme . .. .. .. 31

2.3 ModelReductionSetup . . . . . . . .. ... .. 37
2.3.1 Cuttingplanemethods . . . .. .. ... ... ... ... ..., 37
2.3.2 Solving the relaxation via the cutting plane method . . . . . . . .. 39
2.3.3 Constructing thereducedmodel . . . . .. ... ... ....... 42
2.3.4 Obtaining models of increasingorders . . . . . ... ........ 42

2.4 ConstructingOracles . . . .. ... . ... .. . . . .. 43
2.4.1 Stability: Positivity constraint . . . . . . ... ... .. ... 44
2.4.2 Passivity for impedance systems: Positive real constraint . . . . . . 45

7



2.5

2.6

2.7
2.8

2.9

2.4.3 Passivity for S-parameter systems: Bounded real constraint . . . . . 45

2.4.4 Multi-port positive real passivity . . . . . .. ... .. ... ..., 46
245 Objectiveoracle . .. ... ... ... ... .. .. . .. 0. 49
ExtensiontoPMOR . . . . . . . . . .. 50

2.5.1 Optimal*, norm parameterized model order reduction problem

andrelaxation. . . . . . .. ... ... .. 50
2.5.2 PMOR stability oracle — challenge and solutionidea . . .. .. .. 51

2.5.3 From polynomially parameterized univariate trigonometric poly-

nomial to multivariate trigonometric polynomial . . . . .. .. .. 54
2.5.4 Multivariate trigonometric sum-of-squares relaxation . . . . . . . . 61
2.5.5 PMOR stability oracle —a SDP based algorithm . . . . . . . .. .. 67
2.5.6 PMOR positivity oracle with two design parameters . . . . . . .. 70
Additional modifications based on designers’need . . ... .. ... ... 72
2.6.1 Explicit approximation of quality factor . . . . . . ... ... ... 72
2.6.2 Weighted frequency responsesetup . . .. .. ... ... .. ... 73
2.6.3 Matching of frequency samples . . . . ... .. ... ... .... 74
2.6.4 System with obvious dominantpoles . ... .. .......... 74
Computational complexity . . . . . . . . .. ... o 75
Applicationsand Examples . . . . . . . ... Lo 76
2.8.1 MOR: ComparisonwithPRIMA . . . . . .. .. ... ....... 76
2.8.2 MOR: Comparison with a rational fit algorithm . . . . . . . . . .. 79

2.8.3 MOR: Comparison to measured S-parameters from an industry pro-

videdexample . . ... .. .. . .. ... .. 79
2.8.4 MOR: Frequency dependent matricesexample . . ... ... ... 81
2.8.5 MOR: Two coupled RFinductors . . ... .. ........... 81
2.8.6 PMOR of fullwave RF inductor with substrate . . . . . ... ... 81
2.8.7 PMOR of alarge power distributiongrid . . . .. ... ...... 82
Conclusion . . . . . . . 83



3 Bounding L2 Gain System Error Generated by Approximations of the Nonlin-

ear Vector Field 85
3.1 A motivating application . . . .. ... ... 87
3.2 Technical Background . . .. .. .. ... .. ... .. ... . ... ... 90
3.2.1 L2 gainof amemoryless nonlinearity . . . . ... ......... 90
3.2.2 L2gainofadynamicalsystem . . . .. ... ... .. ....... 90
3.2.3 Incremental L2gainofasystem . . ... ... ... ........ 91
3.24 Smallgaintheorem . . . . . . ... .. ... .. .. ... ..., 91
3.2.5 Nonlinear system L2 gain upper bounding using integral quadratic
constraints (IQC) . . . . . . . . . . . . ... 92
3.3 Error Bounding with the Small Gain Theorem . . . . . . ... ... .... 94
3.3.1 System error bounding problem . . . ... ... .. 0oL, 95
3.3.2 Difference system formulated as a feedback interconnection . . . . 95
3.3.3 Small gain theorem applied to a scaled feedback . . ... ... .. 96
3.4 ATheoretical Linear Error Bound inthe Limit . . . . . .. ... ... ... 97
3.4.1 Apreliminarylemma . . .. ... .. ... .. ... ... 98
3.4.2 Thelinearerror boundinthelimit . . . . ... ... ........ 101
3.5 A Numerical Error BoundwithIQC . . . . . ... .. ... ........ 103
3.5.1 Thenumericalprocedure . . . . ... .. ... ... ... ..... 103
3.6 Numerical Experiment . . . . .. . ... ... ... 104
3.7 Conclusion . . ... ... 106

A Convex Relaxation Approach to the Identification of the Wiener-Hammerstein

Model 107

4.1 IntroducCtion . . . . . . . . . 107

4.2 Technical Background and Definitions . . . . . .. .. .. ... ... ... 109
421 Systemandmodel ... ... ... ... 109
4.2.2 Input/output system identification problem . . .. ... ... ... 110
4.2.3 Feedback Wiener-Hammersteinsystem . . . ... ... ... ... 110
4.2.4 Non-parametric identification of nonlinearity . . . ... ... ... 113

9



4.3 Identification of Wiener-Hammerstein System — No Measurement Noise . . 114

4.3.1 System identification problem formulation . . . . .. ... .. .. 115
4.3.2 Non-uniqueness of solutions and normalization . . . . . ... ... 121
4.3.3 Formulation of the system identification optimization problem . . . 123
4.3.4 Properties of the system identification optimization problem . . . . 125
4.4 Solving the Optimization Problem . . . . . . ... ... ... ... .... 127
4.4.1 Semidefinite programming relaxation . . . . . . . ... ... ... 127
442 Localsearch . .. ... ... .. . ... ... 131
4.4.3 Finaloptimizations . . . . . . .. ... ... ... .. ... 132
4.4.4 System identification algorithm summary . . . . ... . ... ... 134

4.5 Identification of Wiener-Hammerstein System — with Measurement Noise . 134

45.1
45.2
45.3
454

System identification problem formulation . . . . .. ... .. .. 135
Formulation of the system identification optimization problem . . . 136
Reformulation of SDP relaxation. . . . . .. ... ... ... ... 139
Sectionsummary . . . . . . ... 140

4.6 Identification of Wiener-Hammerstein System — with Feedback and Noise . 141

4.7 Complexity Analysis . . . . . . . . . 144
4.8 ApplicationExamples. . . . . . .. ... ... 144
4.8.1 Identification of randomly generated Wiener-Hammerstein system

withfeedback . . . . . . .. . ... 144
4.8.2 Identification of a transmission line with diodes . . . . . . . .. .. 145
4.8.3 Identification of an open loop operational amplifier . . . . . .. .. 147

4.9 Conclusion . . . . ... 149

5 Conclusions

10



List of Figures

2-1

2-3

2-4

2-5

2-6

2-7

2-9

A one dimensional quasi-convex function which is not convex. All the

sub-level sets of the function are (convex) intervals. However, the function

values lie above the line segment (the dash line in the figure). . . . . . . .. 28
Magnitude of admittance of an RLC line. Solid line: full model. Solid with

Stars: PRIMA 10thorderROM. . . . . . . . . ... ... ... ... ... 78
Magnitude of admittance of an RLC line. Solid line: full model. Solid with

Stars: QCO 10thorderROM. . . . . . . . . . . . . .. . . 78
Inductance of RF inductor for different wire separations. Dash: full model.
Dash-dot: moment matching 12th order. Solid: QCO 8th order. . . . . . . . 79
Identification of RF inductor. Dash line: measurement. Solid line: QCO

10th order reduced model. Dash-dot line: 10th order reduced model using
methods from{14,5557]. . . . . . . . ... 80
Magnitude of one of the port S-parameters for an industry provided ex-

ample. Solid line: reduced model (order 20). Dash line: measured data

(almostoverlapping). . . . . . . . .. 80
Quality factor of an RF inductor with substrate captured by layered Green’s
function. Full model is infinite order and QCO reduced model orderis 6. . 81
S12 of the coupled inductors. Circle: Full model. Solid line: QCO reduced
model. . . . . 82
Quality factor of parameterized RF inductor with substrate. Cross: Full
model from field solver. Solid line: QCO reduced model. . . . . .. .. .. 82

2-10 Real part of power distribution grid@t=8.25mm andV =4,8,12,14,18

um. Dash: Full model. Solid: QCO reduced model. . . . .. ... ... .. 83

11



2-11 Real part of power distribution grid@t=8.75mm andV =4,8,12,14,18
um. Dash: Full model. Solid: QCO reduced model. . . . .. ... ... ..

3-1 The difference system setup. The original system in eq. (3.1) and the ap-
proximated system in eq. (3.2) are driven by the same inpand the
difference between the corresponding outputs is taken to be the difference
system output denoted asThe L2 gain (to be defined in Subsection 3.2.2)
from u to e for the difference system is a reasonable metric for the approx-

imation quality between the systemsineq. (3.1)andeq. (3.2). . ... ...
3-2 Feedback interconnection of a nominal pl@mnd disturbanca. . . . . . 91

3-3 Feedback interconnection of a nominal pl@rgnd disturbanca with mu-

tually cancelling parameterga and \/ia G; is the original plant parame-

terizedbythescala. . . ... ... .. ... ... ... ... ..., 96

83

3-4 Atransmission linewithdiodes. . . . . . . . . . . ... ... ... .... 104

3-5 Transmission line example. The upper line (circles) is the numerical upper
bound for the L2 gain of the difference system. The lower line (triangles)
Is the minimum allowabl& such thatm% < 1, and hence the small gain
theorem still applies. For instance, if we want the system L2 gain error to
be less tharl0~2, thena should be at mos2 x 10~°, corresponding to a

maximum allowable vector field errgg of aboutl03. . . . . . ... ... 105

4-1 The Wiener-Hammerstein system with feedb&8kdenotes the unknown
system. K = 0 corresponds to the Wiener-Hammerstein system without

feedback. The output measuremgig assumed to be corrupted by some

NOISEN™ . . . . . . . 111

4-2 The Wiener-Hammerstein modelG-andH are FIR systems, anglis a

scalar memoryless nonlinearity. The last block is chosen tél bk for

computation reasons. . . . . . . .. e 115

12



4-3

4-4

4-5

4-7

A feasibility problem to determine the impulse responses of the FIR sys-
temsG andH. Hereu andy are the given input and output measurements
generated by the true (but unknown) system. The signalsdw are the
outputs ofG andH, respectivelyv andw are chosen so that they define a

function @ satisfying sector bound constrainteq. (4.16). . . . . ... .. .. 117

Non-uniqueness of the optimal solutions without normalization. G&%en
andH*, G andH characterize the family of FIR systems with the same in-
put/output relationshipc; andc; are positive becaus&*,H*) and(G,H)

are assumed/constrained to be positive-real. . . .. ... ... ... .... 122

Plot ofR(s) in 200 (normalized) randomly generated directions. Note that

~

R(s) is not a convex function, butitis almostconvex. . . . . ... ... .. 126

Hyperbolic tangent test case Histogram of the percentage of the second
largest singular value to the maximum singular value of the optimal SDP
relaxation solution matriX. The second largest singular values never ex-
ceed 1.6% of the maximum singular values in the experiment. Data was

collected from 100 randomly generated test caligs=Ng=4. . . . . . . 129

Saturated linearity test case Histogram of the percentage of the second
largest singular value to the maximum singular value of the optimal SDP
relaxation solution matriX. X is practically a rank one matrix. Data was

collected from 100 randomly generated test calgs=Ng=4. . . . . . . 130

Cubic nonlinearity test case Histogram of the percentage of the second
largest singular value to the maximum singular value of the optimal SDP
relaxation solution matriX. For a lot of cases, the second largest singular
values never exceed 5% of the maximum singular values in the experiment,
but there are some cases when the SDP relaxation performs poorly. Data

was collected from 100 randomly generated test cddes:Ng=4. . . . . 130

13



4-9 A feasibility problem to determine the impulse responses of the FIR sys-
temsG andH. Hereu andy are the given input and output measurement
generated by the true (but unknown) system. The signalsdw are the
outputs ofG and H, respectively. The signal is the noise corrupting
the output measurement. In the feasibility problemw andn are extra
variables chosen so that, together witland h, they define a functiomp

satisfying sector bound constrainteq. (4.16). . . . . . . .. . ... ... .. 135
4-10 The Wiener-Hammerstein model with feedback. . . . . . . . .. . ... .. 141

4-11 A feasibility problem to determine the impulse response&,0H and
K« H. Hereu andy are the given input and output measurement gener-
ated by the true (but unknown) system. The sigradsidw are the input
and output of the nonlinearity. The signaln is the noise corrupting the
output measurement. In the feasibility problemy andn are extra vari-
ables chosen so that, together withh andk « h, they define a functiop
satisfying sector bound constrainteq. (4.16). . . . . . .. .. ... .. ... 142

4-12 Matching of output signals by the original (unknown) system and the iden-
tified model. y[k] denotes the output by the original system (stafifk]|
denotes the output by the identified model (line). The plots of two output

signals almostoverlap. . . . . . . ... ... 145

4-13 Matching of the original nonlinearity (star) and the identified nonlinearity
(line). . . . . e e 145

4-14 Atransmissionlinewithdiodes. . . . . . . . . . . . ... .. .. ... .. 146

4-15 Matching of the output time sequences of the original transmission line sys-
tem and the identified Wiener-Hammerstein model. Star: original system.
Solid: identified model. . . . . . . .. ... o 147

4-16 The inverse function of the identified nonlineargtyit looks like the expo-

nential V-A characteristic with an added linear function. . . . .. . .. .. 147

4-17 Block diagram of an operational amplifier. . . . . . . .. .. ... .. ... 148

14



4-18 First order model for the OP-AMP. The pole of the model is a nonlinear
function of the outpuy. The model fit in the feedback Wiener-Hammerstein
structure discussed inthissection. . . . . .. . ... ... ... ... .. 149

4-19 Matching of the output time sequence for a low frequency input test signal.
Dash: SPICE simulated output time sequence. Dots: subset of samples of
the SPICE simulated output. Solid: identified model. . . . .. .. ... .. 149

4-20 Matching of the output time sequence for a high frequency input test signal.
Dash: SPICE simulated output time sequence. Dots: subset of samples of
the SPICE simulated output. Solid: identified model. . . . .. .. ... .. 150

4-21 Identified nonlinearityp in the feedback Wiener-Hammerstein model of
Figure 4-10. Notice that there is a strong saturation for input values at the

negative side, explaining the saturation phenomena in Figure 4-19. . . . . . 150

15



16



List of Tables

2.1 Reduction of RF inductor from field solver data using QCO and PRIMA . . 77

4.1 Theorganizationof Chapter4 . . .. ... .. .. ... .. ... ..... 109

17



18



Chapter 1

Introduction

1.1 Motivations

Model reduction is a widely accepted practice to facilitate system simulation and optimiza-
tion. Different levels of success have been achieved depending on the specific model re-
duction applications. Algorithms for model reduction for linear time-invariant (LTI) system
analysishave been successfully developed by many groups of researchers. For example,
balanced truncation (or truncated balanced realization) [1, 2, 3] and the optimal Hankel
norm model reduction [4] are expensive model reduction algorithms (by the standard of
the electronic design automation community) but they are very accurate and possess hice
theoretical guarantees such as reduced model stability and error bound. On the other hand,
moment matching (Krylov subspace methods) [5, 6, 7, 8] and proper orthogonal decompo-
sition [9] are relatively inexpensive model reduction algorithms, but they do not in general
offer much guarantee in terms of ready-to-use accuracy measures#g.gorm error
bound) or reduced model properties such as stability. Only in some special cases can the
stability of the reduced models be assumed [8]. In addition, compromises between the
two groups exist approximating the first group using the operations allowed in the second
group [10, 11, 12]. All the aforementioned algorithms construct reduced models by operat-
ing on the state space representation (i.e., system matrices) of the full model and therefore
are restricted to the model reduction problems of finite dimensional LTI systems. On the

other hand, there are optimization/identification based model reduction algorithms which
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directly find the coefficients of the reduced model without using the state space information
of the full model. Rational transfer function fitting algorithms are well-known optimization
based examples [13, 14]. In addition, rational transfer function fitting algorithms can en-

force additional constraints such as stability and passivity. This will be shown in Chapter 2.

For thedesignandoptimizationof LTI systems, model reduction approaches have been
less successful. One way to apply standard model reduction techniques to system design
is to construct a reduced model for every full model ever considered by the design op-
timizer. This path tends to be time-consuming because typically a large number of full
models have to be considered and reduced. Another way to apply model reduction tech-
niques to system design is to constrpetrameterizededuced models. Once such re-
duced models have been constructed, the design optimization process can be greatly facil-
itated. Due to their popularity in the non-parameterized case, the moment matching tech-
niques have been extended to the parameterized reduction case by many previous attempts
[15, 16, 17, 18, 19, 20, 21, 22, 23]. One significant drawback of the moment matching
based parameterized model reduction techniques is that to increase the accuracy of the re-
duced model, more moments need to be matched and this results in an increase in the order
of the reduced model. The increase in order does not scales well with the number of param-
eters. On the other hand, optimization based techniques such as rational transfer function
fitting can be generalized to the parameterized case, constructing reduced models with or-
ders independent of the number of parameters, even if an increase in accuracy is desired.
However, the challenge with rational transfer function fitting is that with constraints such
as stability, the reduced model construction process can be very time-consuming (because
the optimization problems are not convex in general). Therefore, the development of a sta-
ble reduced model generating rational transfer function fitting algorithm, which is efficient
in both the model construction process and the simulation of the reduced models, would
greatly benefit the design and optimization of LTI systems. The development of such an

algorithm will be the main focus of Chapter 2.

The picture concerning the nonlinear model reduction problem is less clear simply be-
cause “nonlinear” is a very general collective term for systems other than LTI. First attempt

approaches for nonlinear model reduction include trajectory piecewise linear/polynomial
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based methods [24, 25, 26, 27, 28, 29, 30] and Volterra series based projection methods
[31, 32, 33, 34, 35, 36]. Trajectory based methods can be considered as two step proce-
dures as follows: first the dimension of the system state is reduced by a projection, then an
approximation is made to the reduced vector field for efficient simulation. \Volterra series
based projection methods, on the other hand, first approximate the vector field using poly-
nomials and then reduce the approximated model using projection schemes. To make a
tradeoff between reduced model accuracy and complexity (time required for model simula-
tion), it would be necessary to understand how to quantify the error in the two steps. While
in some cases the projection error (e.g., trajectory piecewise linear method with balanced
truncation [27]) can be quantified, the error due to vector field approximation (i.e., the sec-
ond step in trajectory based methods and the first step in Volterra series based projection
methods) is not very well-known. An attempt to solve the vector field approximation error

estimation problem will be presented in Chapter 3.

Sometimes the only available information regarding the full model is its input and out-
put measurements. On these occasions the projection based methods described above do
not work. Instead, input/output based system identification techniques must be used to con-
struct the reduced models. There is a very large body of input/output system identification
techniques. See, for instance, [37, 38] for the descriptions of some of the techniques. The
block diagram oriented identification technigue based on the Wiener/Hammerstein/Wiener-
Hammerstein structure is one of the most popular choices because of its simplicity, its abil-
ity to model complicated nonlinear effects, and its applicability to model realistic devices
such as power amplifiers and RF amplifiers [39, 40, 41]. Being a classical problem, the
identification of the Wiener and Hammerstein systems and their combinations has been
considered in a large number of references [42, 43, 44, 45, 46, 47, 48]. However, very few
of the aforementioned references actually consider the Wiener-Hammerstein identification
problem itself (i.e., two LTI systems sandwiching a memoryless nonlinearity) because of
the “non-separability” issue (i.e., the cascading of three blocks with unknown coefficients
makes the identification task much more difficult than the Wiener or Hammerstein setup
with only two unknown blocks). The non-separability issue is oftentimes addressed by

making certain assumptions on one of the blocks (e.g., assuming the nonlinearity to be of
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certain forms such as polynomial), which might make the approaches restrictive in some
cases. On the other hand, if no assumptions are made, the resulting identification decision
problem would be very difficult (e.g., non-convex), and in general it is solved by a general
purpose solver which might not be efficient. The purpose of the third part of the thesis is
to investigate whether the identification decision problem possesses any special properties
due to the underlying Wiener-Hammerstein structure, and whether these properties can be
exploited in facilitating the optimization solution process. Chapter 4 presents in detail the

relevant results.

1.2 Dissertation Outline

The following three chapters contain the contributions of this thesis. In Chapter 2 a quasi-
convex optimization based parameterized model reduction algorithm for LTI systems will
be presented. In Chapter 3 the problem of bounding the system error due to an approxima-
tion to the nonlinear vector field will be considered. A convex optimization based numerical
procedure and a theoretical statement will be given as solutions to the problem. In Chapter 4
a special case of the nonlinear model reduction problem, namely the Wiener-Hammerstein
system identification problem, will be studied. A convex semidefinite programming based

algorithm will be presented. Chapter 5 concludes the thesis.
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Chapter 2

Model Order Reduction of
Parameterized Linear Time-Invariant

Systems via Quasi-Convex Optimization

Developing parameterized model order reduction (PMOR) algorithms would allow digital,
mixed signal and RF analog designers to promptly instantiate field solver accurate small
models for their parasitic dominated components (interconnect, RF inductors, MEM res-
onators etc.). The existing PMOR techniques are based either on statistical performance
analysis [49, 50, 51, 52, 10] or on moment matching [15, 16, 17, 18, 19, 20, 21, 22, 23].
Some non-parameterized model order reduction or identification techniques based on an
optimization approach are present in literature. References [53] and [54] identify systems
from sampled data by essentially solving the Yule-Walker equation derived from a linear
least squares problem. However, these methods might not be satisfactory since the ob-
jective of their minimization is not the norm of the difference between the original and
reduced transfer functions, but rather the same quantity multiplied by the denominator of
the reduced model. References [14] and [55] directly formulate the model reduction prob-
lem as a rational fit minimizing thé4 norm error, and therefore they solve a nonlinear
least squares problem, which is not convex. To address the problem, those references pro-
pose solving linear least squares iteratively, but it is not clear whether the procedure will

converge, and whether they can handle additional constraints such as positive real passiv-
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ity. In order to reduce positive real systems, the authors of [13] propose using the KYP
Lemma/semidefinite programming relationship [56], and show that the reduction problem
can be cast into a semidefinite program, if the poles of the reduced models are given a pri-
ori. Reference [57] uses a different result derived from [58], to check positive realness. In
that procedure, a set of scalar inequalities evaluated at some frequency points are checked.
Reference [57] then suggests an iterative scheme that minimize/%therm of the error
system for the frequency points given in the previous iteration. However, this scheme does
not necessarily generate optimal reduced models, since in order to do that, both the sys-
tem model and the frequency points should be considered as decision variables. In short,
the available methods lack one or more of the following desirable properties: rational fit,
guaranteed stability and passivity, convexity, optimality or flexibility to impose constraints.

In principle, the method proposed in this thesis is a rational approximation based model

reduction framework, but with the following three distinctions:

¢ Instead of solving the model reduction directly, the proposed methodology solves a

relaxation of it.

e The objective function to be minimized is not thé norm, but rather thé{, norm.
As it turns out, the resultant optimization problem, as described in Section 2.2, is
equivalent to a quasi-convex program, i.e., an optimization of a quasi-convex func-
tion (all sub-level sets are convex sets) over a convex set. This property implies the
following: 1) there exists a unique optimal solution to the problem; 2) the oftentimes
efficient convex optimization solution techniques can be applied. Also, since the
proposed method involves only a single optimization problem, it is near optimal with

respect to the objective function uset{ norm of error).

¢ In addition to the mentioned benefits, it will be demonstrated in the thesis that some
commonly encountered constraints or additional objectives can be added to the pro-
posed optimization setupithoutsignificantly increasing the complexity of the prob-

lem. Among these features are guaranteeing stability, positive realness (passivity of
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impedance systems), bounded realness (passivity of scatter parameter systems), qual-
ity factor error minimality. Also, the optimization setup can be modified to generate
an optimal parameterized reduced model that is stable for the range of parameters of

interest.

The rest of this chapter is organized as follows. Section 2.1 provides some technical
background. Section 2.2 describes the proposed relaxation and explains why it is quasi-
convex after a change of decision variables. Section 2.3 gives an overview of the setup of
the proposed method and some details of it. Section 2.4 demonstrates how to modify the
basic optimization setup to incorporate various desirable constraints. Section 2.5 focuses on
the extension of the optimization setup to the case of parameterized model order reduction.
In Section 2.6 more design oriented modifications will be discussed. As a special case, the
RF inductor design algorithm will be given. In Section 2.7 the complexity of the proposed
algorithm is analyzed. In Section 2.8 several applications examples are shown to evaluate

the practical value of the proposed method in terms of accuracy and complexity.

2.1 Technical Background

2.1.1 Tustin transform and continuous-time model reduction

In order to work with (rational) transfer functions in a numerically reliable way, the fol-
lowing standard procedure will be employed throughout the chapter: given a continuous-
time (CT) system with transfer matriic(s), first apply a Tustin transform (e.g., [59]) to
construct a discrete-time (DT) systéi{z) = Hc(S)|s— a(z—1)/(z+1) (With A being a pre-
specified real number, to be discussed), then construct a reduced DT $y&tpmsing

the proposed model reduction technique, and finally apply the inverse Tustin transform to
obtain the reduced CT systafi(s) := H (2)| 2=(A+s)/(r—s)- The main benefit of the above
procedure is that the transfer function coefficients of the optimally reduced DT model will
be bounded, thus making the numerical procedure more robust. In addition, except for
the somewhat arbitrary choice of the paramatén the Tustin transform, there is no ob-

vious drawback for the model reduction procedure described above. Since the frequency
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responses of the CT and DT systems are the frequency axis scaled versions of each other,
there is an one-to-one correspondence betweenffienprm) optimal reduced model in
CT and DT with the same order. Consequently, model reduction settings for the rest of this
chapter will be described in DT only.

The choice of the center frequenayin the Tustin transform is somewhat arbitrary.
While it is true that extreme choices (e.g., pickingo be 1Hz, while the frequency range
of interest is at 1GHz) can be harmful for the proposed model reduction framework, nu-
merical experiments have shown that a broad choice of center frequencies would allow
the proposed framework to work without suffering any CT/DT conversion problem. In
fact, we have implemented, as part of the proposed model reduction algorithm, an auto-
matic procedure that chooses the center frequency by minimizing the maximum slope of
the magnitude of the frequency response, hence avoiding any possibly numerically harmful

extreme situations.

2.1.2 #H, norm of a stable transfer function

For a stable transfer functidi(z) : C — C, the #, norm is defined as

IH(2)

[

= sup |[H(e®)|. (2.1)
we[0,2m)
The #. norm for the multiple-input-multiple-output (MIMO) case with(z) : C — CP*"
(pP>1n>1)is
IH@) = sup |[H(EY)[,. (2.2)

we[0,2m)
The #, norm can be thought of as the “amplification factor” of a system. In the context
of model reduction, a reduced mod?la{z) is regarded as a good approximation to the full
modelH (z) if the #, norm of the differencélH (z) — H(2)]|, is small.

2.1.3 Optimal #, norm model reduction problem

A reasonable model reduction problem formulation is the optifiahorm model reduc-

tion problem: given a stable transfer functidiiz) (possibly of large or even infinite order)
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and an integem (as the order of the reduced model), construct a stable rational transfer
function with real coefficients
P(2) . PmZ"+ Pm-1Z" 1+ ...+ Po

|:|Z: = ) € R, ER?Vk
@ =40 = Pramam it g ER &

such that order ofi(z) is less than or equal tm, and the errof|H(z) — H(2)||, is mini-

mized:

. _@
mlnggﬂlze HH(Z) a0

00

(2.3)
subjectto def) =m, degp)<m,

q(z) #0, VzeC,|z|>1 (stability).

Unfortunately, because of the stability constraint, program (2.3) is not a convex problem
(see the next subsection for the definition). Up to now, no efficient algorithm for program
(2.3) has been found.

2.1.4 Convex and quasi-convex optimization problems

This subsection will only describe the concepts necessary to the development of the thesis.

For a more detailed description of the subject, consult, for example [60, 61].

A setC c R"is said to be a convex set if

ox+(1—-a)ye C, VxeC,yeC,ae€ [0,1].

In other words, a sef is convex if it contains the line segment connecting any two points

in the set.

A function f : R" — R is said to be convex if

foxa+(1—0)x) <af(x)+(1—a)f(xe), Vxi,%€R"ace [0,1].

In other words, a functiorf is convex if the function value at any point along any line

segment is below the corresponding linear interpolation between the function values at the
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two end points. In addition, a functioh: R" — R is concave is-f is a convex function.

An optimization problem is said to be convex if it minimizes a convex objective func-
tion (or maximizes a concave objective function), and if the feasible set of the problem
is convex. The nice property about a convex optimization problem is that any local opti-
mum is also a global optimum. Convex optimization problems are oftentimes found to be
efficiently solvable.

A relevant concept that will be explored in this chapter is the notion of a quasi-convex
function. A functionf : R" — R is quasi-convex if all its sub-level sets are convex sets.
That is, the sets

{xe R"|f(x) <y} are convex VyeR.

The sub-level sets of a convex function are convex. Therefore, a convex function is auto-
matically a quasi-convex function. However, the converse is not true. See Figure 2-1 for

an illustration of a quasi-convex function which is not convex.

A

>

X

Figure 2-1: A one dimensional quasi-convex function which is not convex. All the sub-
level sets of the function are (convex) intervals. However, the function values lie above the
line segment (the dash line in the figure).

A quasi-convex optimization problem is a minimization problem of a quasi-convex
function over a convex set. Quasi-convex optimization problems are not much more diffi-
cult to solve than convex problems. This is suggested by the fact that a local minimum of a

guasi-convex problem is still a global minimum. In Sections 2.2 and 2.3 a specific class of
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guasi-convex optimization problem will be identified, and an efficient algorithm to solve it

will be detailed.

2.1.5 Relaxation of an optimization problem

While optimization provides a versatile framework for many model reduction decision
problems, oftentimes the formulated optimization problems are difficult to solve (i.e., not
convex). Formulating relaxations is a standard attempt to address the computation chal-
lenge above. A relaxation of an optimization problem is a related optimization problem
such that an optimal solution to the original problem is a feasible solution to the relaxation.
A relaxation can be introduced if it is much easier to solve, and the optimal solution to the
relaxation is useful in constructing a reasonably good feasible solution to the original prob-
lem. However, note that such feasible solution might not be in general an optimal solution
to the original problem. Typical ways for obtaining a relaxation include enlarging the fea-
sible set and/or replacing the objective function with another (easier to optimize) function
whose sub-level set contains the sub-level set of the original. It will be shown in Section

2.2 that the relaxation idea is useful in simplifying the proposed model reduction problem.

2.2 Relaxation Scheme Setup

This section describes the main theory of the proposed model reduction framework. The
development of the framework is as follows: first a relaxation of (2.3) is proposed. Then

a change of decision variables is introduced to the relaxation, and it can be shown that
the relaxation is equivalent to a quasi-convex optimization problem, which happens to be

readily solvable.
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2.2.1 Relaxation of the#, norm optimization

Motivated by the optimal Hankel norm model reduction [62], the following relaxation of

the optimal#, norm model reduction was proposed in [63]:

L _p@ _ri1/2
m'B,'Q,}"Ze HH(Z) a2 9(1/2)

00

(2.4)
subjectto def) =m, degp)<m, dedr)<m

q(z) #0, VzeC,|z|>1 (stability).

In program (2.4), an anti-stable rational p%t%, wherer is a real coefficient polynomial

of degree less tham, is added to the setup of (2.3). Because of the associated additional
decision variables (i.e., the coefficients of polynonmiglprogram (2.4) is a relaxation of
(2.3). After solving program (2.4), a (suboptimal) stable reduced model can simply be
obtained asFI(z) = %. The following lemma, from [63], gives an error bound of the

relaxation.

Lemma 2.2.1.Let(p*,q",r*) be the optimal solution of program (2.4) with reduced order

m,
B _p(@ r(1/7
v =ne- G -Fam).

and

1. P2

@)= a(2)
be a stable reduced model, then

min{||H (2 —-H (@2 -DJ } < (m+1)y". (2.5)

DeR
|

Remark2.2.2 By definition y* is a lower bound of the error of the optimal, norm
model reduction problem (2.3) and Lemma 2.2.1 states that the suboptimal reduced model
provided by the proposed framework has an error upper bdomd 1) times its error

lower boundy*. In the IemmaH(z) = 88 Is the outcome of the solving program (2.4) or
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program (2.14), to be discussed in the next subsection. It should be noted that th®scalar
in (2.5) can be incorporated into the reduced matigif H is not a strictly proper transfer
function. Therefore the reduced model should really be understost{ s+ D* where

D* is chosen to be the optimizidg. In Section 2.3 procedure (2.26) will be discussed to

construct a reduced model that always picks the optimiBing |

2.2.2 Change of decision variables in the relaxation scheme

The benefit of the relaxation (2.4) is not immediately obvious: program (2.4) still retains
the non-convex stability constraigtz) # 0, Vze C,|z| > 1. More formally, it can be
stated that the set of the coefficients of the polynomials,

m
Qq pr

1= {(q, B,7) € RMx R™1x RM:
q(2) = 2"+ Gm_1Z" 1 ...+ T1z+ o
P(2) = Pmz"+ Pm_12™ 1 +... + P12+ Po (2.6)
r(z) = T’m,]_Zm_l +F'm,22m_2 +...+T1z+To

satisfying q(z) #0, vze C:|z > 1}

is not convex ifm> 2. As the first step to address the non-convexity difficulty, the following
set of decision variables is proposed,

Qm

abc

- { (a,b’,e) € RMx R™L 5 RM:
a(2) = 8n(Z"+z M +dn 1 (2" ™Y) 1 11

b(2) = bn(Z"+Z™) + b1 (Z" 2™ 4.+ b (2.7)
c(2) = %(ém(zm—z*m) +...+C(z-zY)

satisfying a(z) >0 Vze C:|z|= 1.}

Note that the coefficiengy, in eq. (2.6) is normalized to one because stability con-
dition (i.e., % cannot have a pole at infinity) does not allow it to be zero. Likewise,
the coefficientag in eq. (2.7) is also normalized to one because positivity condition (i.e.,

ag = fozna(ej‘*’) dw) does not allow it to be zero. However, it should be pointed out that
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in eq. (2.7), there is no normalization fag. In particular, it can be zero and the degree
of a(z) can be strictly less tham. The following lemma defines an one-to-one correspon-
dence between the se@g, andQZ} , and hence suggesting that both sets can be used to

abc

completely characterize the set of all reduced models in optimization problem (2.4).

Lemma 2.2.3. Definety : Qg — Qfy. as follows:
e Given(d,p,") € QGpr, (a,B, 6) =Tm(d,B,T) € Qf}. is defined as follows: denote

-1 -1 q
D:= (1+ mz (qk)z) , then(é, b, C‘) are defined as the coefficients of the trigono-
k=0

metric polynomials

e Given (a,B, 6) c QM (4,p7) =1tm? (a,B, 6) € QI is defined as follows: let
me {0,1,...,m} be the degree dd(z) in eq. (2.7), and leig,k = 1,..., M be the
(maybe repeated) roots of the ordinary polynonai®(z) such that z| < 1. Theng

is defined as the coefficients of the polynomial

>

q(2) :=2""[ (z—2). (2.9)
k=1

e -1
DenoteD := (1+ zl(qk)2> , thenp, T are uniquely defined by

k=0

D (p(2)a(z ) +a@r(z 1)) = b(2) + ic(2). (2.10)

Then

1. The mapgn, is one-to-one with the inverse as L.

2. The map, satisfies the following frequency response matching property:

o _ PE®)  r(e1®)  b(e) + je(el®)
H(e®) = q(@9) + qe o) a(el®) ,0<w< 2 (2.11)
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Proof of Lemma 2.2.3. The proof of the lemma is divided into three steps:
Step 1shows that the definitions of the mapg and t~ 1 “make sense”. That is,

given (4, p,r) € QF,, the operation of applying, is valid, and it should be true that

apr
<§,B, é) = Tm(d, B,7) € Q... Conversely, giver(a,B, C‘) € QM , the operation ofm~?
is valid, and it should be true thég, p,7) = T 1 (é,B, 6) € qupr.

The first statement can be verified simply by applying the definition in eq. (2.8).
For the second statement, suppaéﬁeB, ff) € Q71 .is given. First show that the opera-
tion in eq. (2.9) is always valid, ang(z) thus obtained satisfies the condition in eq. (2.6).

Let m be the degree dd(z), and definéi(z) as
a2):=7"a(2) = 8n (Z"+1) + a1 (Z" 14 2) .+ 2
The following properties of the roots éfz) can be concluded:

¢ Being an ordinary polynomial of degr@en, &4(z) has2mroots.

e Sinceds # 0, the origin (i.e. 0 € C) cannot be a root di(z). Thereforezp € Cis a

root of &(z) if and only ifa(zy) = 0.

e Sinced(z) has real coefficients ara{z) = a(z 1), the following two cases are true:
if zo e C\Ris aroot ofd(z), then so arey/, % and%, wherer is complex conjugate

for zo € C. On the other hand, i € R is a root ofa(z), then so iszlo.
e Sincea(z) > 0,V |z = 1, there is no unit circle roots @{(z).

The four properties above imply that there are exadilgtable roots anah anti-stable
roots ofé(z) as the “unit circle mirror images” of the former (e.@+ 2j and0.2+ 0.4j).
Moreover, all roots with nonzero imaginary parts come in complex conjugate pairs. This
concludes that théh roots described in eq. (2.9) can always be found, giagldefined in

eq. (2.9) has real coefficients polynomial of degrgeand all roots ofj(z) are stable (i.e.,

d(2) #0,¥|2 > 1).
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To conclude the proof aftep 1 it remains to be shown that whe{rﬁ, [}) 6) e QN is
given andg has been found by eq. (2.9),F) € R?™! can be found as the coefficients
of p(z) andr(z) using eq. (2.10). First recognize that eq. (2.10) defines a linear function

Mg : RZ™ — R2™HL sych that
Mg (B.T) = (B, 6) . (2.12)
Then it is sufficient to prove thaflg is invertible. That is,
Ker(Mg) = 0. (2.13)
To show eq. (2.13), considép*,r*), corresponding t@*(z) andr* (z*l) such that
P'(2a(z ) =-a@r(zY).

The fact that (z*l) in the LHS hagn anti-stable roots and(z) in the RHS has no anti-
stable roots implies that (z‘l) should bem anti-stable roots. However, since the degree
of r* is strictly less thamm, r* should be zero ang* should also be zero. This concludes

that(p*,r*) = 0 € R*™, showing thaMy is invertible and concludingtep 1

Step 2shows that the map,, is one-to-one. For this purpose, it suffices to show the
following: for every (4, ,F) € Qg if (a, 6,?’) = Tm * (tm (G, B,7)), then (ﬁ, 6,?) =
(d.p,7). Firstshow thafj=d. Letme {0,1,...,m} be the number of nonzero rootqfz),
thenq(z) = zm_mkﬁ (z—z). Applying 1 to (G, p,T) results in aa(z) with a knownform.

m m-1 -1

Thatis,a(z) =D [ (z—z) (z ' —z), with D = (1+ > (dk)z) . Then the ordinary
k=1 k=0

polynomialz™a(z) in eq. (2.9) has exactlgh stable roots (i.e., with magnitude less than

one), and they are the roots pfz) (i.e., z for k= 1,2,...,M). Therefore, corresponding

to g, the polynomialq(z) =z H (z—z), is exactly the same agz), implying that
k

d=gd. It remains to show tha@, f’) — (P,F). This is true because, for agy the mapVg
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defined in eq. (2.12) is invertible. Then,
g -1
(BP) = (Mg) "Mq(B.1) = (B.1),

hence(a, B, ?) = (g, p,T). This concludestep 2

Finally, step 3shows that the frequency matching condition in eq. (2.11) holds. Given
(4, B,7) € Qgpr, then simply by checking the definition in eq. (2.8), it can be verified that
(a, B, 6) = Tm(d, B, F) satisfies eq. (2.11).

Given, (é, b, 6) € Q7 ., because of the matching (up to the constant multiplicative fac-
tor D) of the numerator of eq. (2.11) by the definition in eq. (2.10), it suffices to show
that g, as part ofty, 2 (a,B, 6), satisfies the denominator matching of eq. (2.11) (i.e.,
a(z) = Dq(2)q(z 1)). To show this, notice that fay(z) defined in eq. (2.9z"q(2)q (z71)
is an ordinary polynomial with exactly the same (stable and anti-stable) roBta@) be-
cause of the “unit circle mirror image” property of the roots8#(z) shown instep 1 That
means that the coefficients bZ"q(2)q (z71) andz™a(z) can at worst be off by a constant
multiplicative factorC. The coefficient of the monomial” of Za(z) is one by the defini-
tion in eq. (2.7). On the other hand, expressijig) asq(z) = 2"+ Gm_1z2""1+ ... + do,

it can be seen that the coefficient of the monordfain DZ"g(z)q (z 1) is also one, when

m-1 -1

D= (1+ S (qk)z) . Hence, the multiplicative factd is one, and thereforg(z), to-
k=0

gether witha(z) satisfies the matching @{z) = Dq(z)q(z %) in eq. (2.11). This concludes

step 3and the proof of the lemma. [ |

Remark2.2.4 Lemma 2.2.3 states that both s&§ , in eq. (2.6) and27} . in eq. (2.7) can
completely characterize the relaxed model reduction problem in program (2.4). In addition,
the stability constraingj(z) # 0,Vze C: |z| > 1in (2.6), which makes the feasible set of
(2.3) non-convex, can be replaced by the easier to handle (to be shown) positivity constraint
a(z) > 0,vze C: |z| =1, and this paves way to the discovery of efficient algorithms for

solving the relaxation problem. |

Remark2.2.5 Since the evaluation afin the positivity constraint in eq. (2.7) is restricted
to the unit circle only, for the model reduction problem in program (2.4), the evaluation

of z can also be restricted to the unit circle because it is where the frequency response is
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evaluated. Therefore, denotiag= e/ = cogw) + jsin(w), program (2.4) is equivalent

to
minimize vy
abey
subject to |H(el?)&(w) — b(w) — j&(w)| < ya(w), 0 < w < 2m, (2.14)
d(w) >0, 0<w<?2m
degd) < m,degb) < m,deg&) <m,
with

(W) =1+ & coqw)+ ...+ amcogmw),
(w) = bo + brcogw) + . ... 4 brcog Mw) (2.15)

€1Sin(w) + . .. + Emsin(mw).

Tt Qe

C(w)
Because of the trigonometric terms, polynomials in eq. (2.15) (and in eq. (2.7)), are called

trigonometric polynomials of degre®. The following lemma justifies the change of vari-

ables introduced by Lemma 2.2.3 in terms of possible computational efficiency gdih.

Lemma 2.2.6. Program (2.14) is quasi-convex (i.e., minimization of a quasi-convex func-

tion over a convex set). |

Proof of Lemma 2.2.6. First note thai(w) > 0,V w € [0,2m) defines the intersection of
infinitely many halfspaces (each defined by a particuwlar|0, 217)) and therefore the feasi-
ble set is convex. Secondly, consider a sub-level set of the objective function (foxaay
y). Since

z| = |ren|a>1<Re(ez), Vze C,

condition
IH (el®)&(w) — b(w) — j&(w)| < ya(w), Yw € [0,2m)

is equivalent to
Re(G(H(ej“’)é(w) —b(w) — jé(w))) <vi(w), Vwe[0,2m),|6]=1,  (2.16)

which is the intersection of halfspaces parameterizel @Bgdw. Therefore, the sub-level
sets of the objective function of program (2.14) is convex and the quasi-convexity of the

program is established. |
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Remark2.2.7. Quasi-convex program (2.14) happens to be polynomially solvable. A de-
scription of how to solve the relaxation, as well as how this fits in the general picture of
the proposed model reduction algorithm, will be discussed in the next section. Finally, it
should be emphasized that not all quasi-convex programs are efficiently solvable. This is

the case for the parameterized model reduction problem to be discussed in Sectidll 2.5.

2.3 Model Reduction Setup

This section deals with the solution procedure of the proposed model reduction framework.

A summary of the procedure is given as follows.

Algorithm 1: MOR
Input: H(2)
Output: H(2)

i. Solve program (2.14) using a cutting plane algorithm (details in Subsection 2.3.1) to

obtain the relaxation solutiofd, b, &).
ii. Compute the denominatg(z) using spectral factorization eq. (2.9).

iii. Solve a convex optimization problem to obtain the numeratay. See Subsection

2.3.3.

iv. Synthesize a state space realization of the reduced nib@el= p(z)/q(z). See [59]

for details.

Stepi. will be explained in Subsections 2.3.1 and 2.3.2. Siepwill be explained in
Subsection 2.3.3.

2.3.1 Cutting plane methods

Program (2.14) is a quasi-convex program with infinitely many constraints, and in general

it can be solved by the cutting plane methods. This subsection will provide a general
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description of the cutting plane methods, and their application to solving program (2.14)

will be discussed in the subsequent parts of this chapter (Subsection 2.3.2 and Section 2.4).
Note that the cutting plane method is a standard optimization solution technique for

guasi-convex problems, and it is given here for completeness. The cutting plane method

solves the following problem: find a point in a target Xete.g., the sub-optimal level set

of a minimization problem), or verify thaX is empty. The basic algorithm description is

as follows.
a. Initialize the algorithm by finding an initial bounding &t such thatX C 7.
b. Ateach stefk, maintain a localization seff, such thatX C .

c. Compute a query pointx € . This is the current trial of the vector of the decision

variables. Check ik € X.

d. If xx € X, then terminate the algorithm and retugn Otherwise, return a “cut” (e.g.,
a hyperplane) such that all pointsXhmust be in one side of the hyperplane (i.e., a

halfspace). Denote the corresponding halfsptce
e. Update the localization set tA ; such thatB N H C P 1,

f. If Volume(%.1) < €, for some smalt (which, for instance, is determined by the desired
sub-optimality level), then assettis empty, and terminate the algorithm. Otherwise,

go back to step.

The choice of the localization s&% and the query pointg distinguishes one method
from another. Reasonable choice of localization set/query point can be 1) a covering el-
lipsoid/center of the ellipsoid or 2) covering polytope/analytic center of the polytope. The
former choice results in the ellipsoid algorithm (see [64] or [65] for detailed reference),
while the latter choice results in the analytic center cutting plane method (ACCPM) (see
[66] for reference). The finding of the initial bounding s&t: X C ¢, is problem depen-
dent, and it will be discussed in the next subsection, in the context of program (2.14).

Stepa. and step. are the only steps in the cutting plane algorithm that are determined

by the optimization problem to be solved. They will be discussed, in the context of program
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(2.14), in Subsection 2.3.2 and Section 2.4, respectively. The subroutine implemented in
stepd. is typically referred to as an oracle. While the cutting plane algorithm is guaranteed
to terminate in the number of iterations which scales polynomially to the problem size, the
computation requirement of the oracle can range from light (e.g., the non-parameterized
MOR case) to heavy (e.g., the parameterized MOR case).

Finally, it is noted that quasi-convex program (2.14) can also be solved as a semi-
definite program (SDP) by interior point methods [67]. However, the discussion of this

implementation will not be discussed in this thesis.

2.3.2 Solving the relaxation via the cutting plane method

In the context of solving the quasi-convex program (2.14) in Subsection 2.2.2, the de-
scription of the cutting plane method introduced in Subsection 2.3.1 can be more specific:
the decision variablesin Subsection 2.3.1 are the coefficients of the trigonometric poly-
nomials&(w), b(w) and&w). The target seX in Subsection 2.3.1 would be the set of
trigonometric polynomial coefficients such that (2.14) is feasible (in particular, the stabil-
ity constraint(w) > 0 is satisfied) and the objective valyean achieve its minimum (in
practicey is allowed to be within a few percents above the minimum).

A simple strategy to obtain an initial bounding set (i®.jn Subsection 2.3.1) is merely
to assume it to be a “large enough” sphere. This is reasonable for most cases even though
there is no real guarantee that it will work. However, for program (2.14), it is actually
possible to find an initial bounding set which guarantees to contain the target set. The

result is summarized in the following two statements.

Lemma 2.3.1.Leté, k= 1,2,...,m be the coefficients of the trigonometric polynomial
a(w) in program (2.14), then the stability constraiaéitw) > 0, Vw € [0, 2m) implies that
lax| <2,Vk=1,2,....m. [ |

Proof of Lemma 2.3.1. The stability constraint

a(w) =1+ & codw)+...+8ncogdmw) >0, VYwe [0,2m) (2.17)
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implies that
21
/ &(w) (14 cogkw))dw >0, Vk=1,2,....m, (2.18)
0

which (by the orthogonality of cosine) implies that
&>-2, vk=212....m (2.19)
Similarly, eq. (2.17) also implies that
2n
/ &(w) (1 - cogkn))dw>0, Yk=1,2,...,m (2.20)
0

which in turns implies
& <2, vk=12....m (2.21)

Eqg. (2.19) and (2.21) combined yields the desired result. [ |

Lemma 2.3.2. Let &, by and & be the trigonometric polynomial coefficients defined as
in eq. (2.15) in program (2.14). Léd(z) be any stable transfer function, arydbe any

nonnegative number. Under the stability constrdifw) > 0, Vw e [0, 2m), if it is true that

~

H b(w) + j&(w)

aw e

<y. (2.22)

[ee]

Then
L || <2(2m+1) (|H@)|+Y), Yk=0,1,....m

2. 18l <2(2m+1) (JH@)|,+Y), Yk=1,2,....m

[
Proof of Lemma 2.3.2. First prove the first statement. Eq. (2.22) implies that
6((’0) jw
_ < .
3w Re[H(e“)]| <y, Vwe [0,2m) (2.23)

because for any complex numbee C, |Re[X]| < |x|. Eq. (2.23), together with the trian-
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gular inequality, implies
b(w)| — |[Re[H(€®)]]|&(w)| < y|&(w)|, Ywe [0,2m).
This in turns implies, afH (el®)| < |H(2)||.,, Yw € [0,2m), that
b(w)| < [&W)|(IH@)ll. +Y), Ywe [0,21).
Applying Lemma 2.3.1, it can be concluded from above that
b(w)| < (2m+1) (IH@)|,+Y), Ywe[0,2m). (2.24)
From eq. (2.24) it can be seen that

‘f(z)"f)(oo) (1+ cos(kw)) dw‘ <onm+ 1) (H@)|.+y), k=0.1,....m

~ (2.25)
‘foznb(co) (1 cos(kw)) dw’ <on@em+ 1) (H@),+y), k=0,1,...,m

Similar to the proof of Lemma 2.3.1, by applying the orthogonality of cosine, it can be

concluded that

|Bo| < (2Mm+ 1) (H@) ]l +Y)
B <22m+1) (H@)[lw+Y) -2, Yk=12,...,m,

which yields the desired result for the first statement in the Lemma.

The proof of the second statement is analogous to that of the first statement. Only the

main steps are highlighted here. It can be concluded that
[€(w)| < [&(W)[ (IH(D)]|o +Y), Vwe [0,2m).

Then using an approach analogous to eq. (2.25) with the “multiplidrs”sin(kw)), the

conclusion of the second statement can be made. [ |

Remark2.3.3 Lemma 2.3.1 can directly be applied to obtain a hypercube for bounding the
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coefficients ofdx. To compute the bounds for the coefficiebgsand &, Lemma 2.3.2 can

be applied withy = ||H(2)||,,, corresponding to the objective value of a trial in which the

leo»

coefficientsBk and¢y are set to zero. [ |

2.3.3 Constructing the reduced model

Once the quasi-convex relaxation problem (2.14) has been solved, by for instance, the
cutting plane method described in Subsections 2.3.1 and 2.3.2, the reduced model can be
constructed: the denominatqfz) and the numeratop(z) of the reduced model could be
found by applying eq. (2.9) and eq. (2.10) in Lemma 2.2.3. However, the following more
practical procedure yields a reduced model whose approximation quality is no worse than
the one obtained with (2.10): onggz) is found, calculatep(z) as the optimal solution to

the following program

minimize y
subject to |H (el®) — gg:ﬁg <y,Vwe [0,2m), (2.26)
degp) <m.

Note that program (2.26) is convex and can be solved by the same cutting plane method
described in Subsections 2.3.1 and 2.3.2. Also note that since the degree of the numerator
p can bem, the transfer function is not strictly proper, and the optimal constant Berm

(2.5) is automatically chosen when program (2.26) is solved.

2.3.4 Obtaining models of increasing orders

In the proposed model reduction framework, the information from an ardexodel re-
duction can be reused to find the reduced models of arderk (with k > 0) relatively
cheaply. The update procedure for orde# 1 reduced model is described here (the pro-
cedure for higher order reduced models is the same). Supfpsk’,, &) is the optimal

trigonometric polynomials for orden reduction, and assume the corresponding error is
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i then .
bm(0) +0- cog(Mm+ 1)) + j (Ep(w) +0-sin((m+ 1)w))
& (w)+0-cog(Mm+1)w)

is automatically a valid (stable, passive, etc) candidate for the amndet reduction prob-

lem. Therefore it can be used as the initial center of the localization set (e.g., covering
ellipsoid) for them+ 1 order problem. The localization set for thet 1 order problem can

also be inherited from that of the orderproblem by appending the previous localization
set in the following way. Lexy, be the vector of decision variables of the ordeproblem,

x5, be coefficients of the optimal trigonometric polynomiéés,, B*m,é*;n) of orderm and

Py, be the symmetric positive semi-definite matrix that defines the ellipsoid of the iwrder
localization set, then

(Xm —Xm) Pm(Xm —Xm) < 1

Now let xg““,x[)“*l, x™1 be the coefficients of thea+ 1 degree terms in thea+ 1 degree
trigonometric polynomials of then+ 1 order reduction problem. If there exists sove- 0

St XIFY < M, X < M, XL < M then
(Xm =) P (% — i) DG H2 4 T2 4 X2 < 1432

can be used as the initial ellipsoid (i.e. localization set) for ¢ 1 model reduction
problem. The ordem optimal objective valug;, can be used as the initial objective value
when them+ 1 order procedure starts. Using these initial iterates fornthe 1 order
problem, relatively few cuts will be required to obtain the- 1 order optimal trigonometric

polynomials.

2.4 Constructing Oracles

The oracles, which defines the optimization problem in the cutting plane method described

in Subsection 2.3.1, will be discussed in this section in detail.
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2.4.1 Stability: Positivity constraint

From Lemma 2.2.3 it can be seen that the positivity constéij > 0 in program (2.14)

is equivalent to the stability constraint in program (2.4) requig(g to be a Schur polyno-

mial. Therefore, the positivity constraint must be strictly imposed fowathnging from0

to 21, and therefore the common engineering practice of enforcing such constraint on only
a finite set of points in that interval will not suffice. In order to address this issue consider

the positivity constraint (for convenience, assumégg# 0)
d(w) =1+ajcoqw) +...+amcogymw) > 0, Yw € [0,2m). (2.27)
It is sufficient (becaus&(w) is an even function o) to check whether

min &(w) > 0.
we[0,1]

Sinceé(w) is continuous ovejo, 17, the minimum is attained, and it can only be at the roots

of
da(w)
dw

= —&;sin(w) — ... — mamsin(mw) = 0, (2.28)

as the boundary points are included with

If there existswy among the roots of (2.28) sd(wp) < 0, then&(wp) > 0 defines a cut,

otherwise the positivity constraint is met.

In order to find the roots of (2.28), the identity= €/® = cogw) + jsin(w) can be
applied to (2.28):
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Note thatz"d4(z) is an ordinary polynomial of degré@nandel® 0,V w e R. Therefore,
anyay is a root of (2.28) if and only if it is a root a¥&(e/) and the root finding task can be

performed by finding (unit circle) roots of an ordinary polynon#dda(z) of degree2m.

2.4.2 Passivity for impedance systems: Positive real constraint

For some applications it is desirable that the reduced model transfer function has positive
real part. In order to impose this constraint, it suffices to note that the real part of the
relaxed transfer function in program (2.14pisv) /a(w). Therefore, the only modification

to (2.14) is to add the constraint

b(w) >0, Vwe [0,2m)

and the treatment of this oracle is similar to that of the positivity constraint discussed in

Subsection 2.4.1 becaud@w) andB(oo) are the same type of trigopnometric polynomials.

However, it should be noted that program (2.26) should be modified accordingly to
guarantee the positive realness of the final reduced model. That is, the following constraint
should be added.

p(el®)q(e71®) + p(e71®)q(el®) > 0, Vw € [0,2m). (2.29)

It is important to realize that the left side of constraint (2.29) is a trigonometric polynomial

(with respect tav) whose coefficients are linear functions of the decision variahles

2.4.3 Passivity for S-parameter systems: Bounded real constraint

For S-parameter models, the notion of dissipative system is given by the bounded real
condition (i.e.H(z)| < 1,Vze C,|z| = 1). To model this property, program (2.14) can be

modified by adding the constraint

~

d(w) > |b(w)+ jE(w)|, Ywe [0,2m). (2.30)
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To construct the oracle, first check the positivity of the trigopnometric polynomial
8(w)? —b(w)?>—&w)?> >0, VYwe [0,2m).

If this condition is met, then bounded realness is satisfied at the current query point, oth-
erwise there exists soma € [0, 2r7) at which the bounded real constraint in eq. (2.30) is

violated. Then the constraint

~
~

a(wo) > | b(ox) + j E(wo)|
defines a desired cut. It is noted that program (2.26) should be modified analogously to

preserve the passivity of the final reduced model.

2.4.4 Multi-port positive real passivity

For a multi-port transfer matrikl (z) € C™" with real coefficients, positive real passivity
means

H(e®) +H(Ee®) >0, Vwe [0,2m), (2.31)

with 7 denoting complex conjugate transpose of a matrix and the inequality in eq. (2.31)
means that the matrix sum in the LHS has real and positive eigenvalues. Define the follow-

ing notations.

Let
Xk+1] = AxK]+Bulk]

ylki = CXxK| + DulK]

(2.32)

be a state-space realizationtbfz) and define th@ x 2 block matrix

s— |0 € ]:— [z“ 212]. (2.33)

C D+D 221 222
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The following generalized eigenvalue problem will be considered later.

~Z11+Z1255, %01 A+ 3155,0B

| 0
(2.34)

0 I
—A+ 82521221 —BZz_le’

=0

The following lemma describes the oracle construction procedure.

Lemma 2.4.1.Assume&,» > 0. If generalized eigenvalue problem (2.34) does not have any
eigenvalue on the unit circle, then (2.31) is satisfied. Otherwise, there exists|0, 2m)
such thael® is an eigenvalue of (2.34), arti(el®®) + H (el0)’ % 0. In this case ifip € C"

is an eigenvector associated with a non-positive eigenvalt @) -+ H(el®)’, then
Vo' (H(€0%) + H (el®®) )vp > 0 (2.35)

defines a (real coefficient) linear cut with respect to the coefficients of the numerator of
H. [

Proof of Lemma 2.4.1. Note that (2.31) is the same as
UH(E®)u+UH(E®) u>0, YueC", u#0,we [0,2m), (2.36)

and it is equivalent to (witlx as defined in (2.33))

/

X X
3 > 0, (2.37)
u u
subject to “system constraints”
zx= Ax+Bu (2.38)

andHu =Cx+Dufor ze C. According to KYP lemma [68], frequency dependent inequal-

ity (2.37) subject to “system constraint” (2.38) holds if and only if the system of equations
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(with unknownsx, u andy)

ZX = Ax+Bu
Y = AY-Zpx—Iiu (2.39)
By = 221X+ 220U,

does not have any nonzero solution fat = 1. SinceXy; is assumed to be invertible,
solving foru from the last equation of (2.39), it can be seen that the conditions in eq. (2.39)
is equivalent to the condition that the generalized eigenvalue problem in eq. (2.34) does not
have any eigenvalue on the unit circle. Therefore, if this condition is true, then condition
(2.31) is met. Otherwise, l&“0 be an eigenvalue of problem (2.34) and it needs to be
shown that

H (/%) + H(el%)’ % 0. (2.40)

Indeed.el*0 being an eigenvalue of (2.34) implies that (2.39) is satisfied /fthand the

corresponding, u andy, then quadratic form from (2.37) becomes

X Z1X+ X Zou+ U 21X+ U'Z0ou
= X (Z11X+ Z12u) + U (Z21X+ Z20U)
= X (Ag—e %) L uBy
= (Ax+Bu—el®) g
=0

and (2.40) is resulted. In the derivation, the second and the fourth equalities are due to

(2.39). The fact that (2.35) defines a linear cut should be obvious. [ |
Remark2.4.2 It should be noted that the assumptd > 0 is in fact necessary for posi-
tive real passivity condition eq. (2.31) to hold. This is because
. . . — H —_ /
H(e) +H(e®) =C (eI ~A) "B+ (C(eI —A) "B) +D+D/,  (2.41)

whereA,B,C,D are the state space matrices defined in eq. (2.32). Integrating eq. (2.41)
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with respect taw results in

/ozn (c (1 - A) "B+ (C(e _A)‘ls)'+ D+D’> dw=21(D+D') = 215,
(2.42)
as the first two terms in the integrand integrate to zero. Therefore, if eq. (2.41) is to be
positive definite for all values ab, then it integral (2.42) should also be positive definite,

meaning thak,, > 0 is necessary for eq. (2.31) to hold. |

2.4.5 Objective oracle

In the case where the transfer functidrof the original system is fully specified explicitly
(in terms of system matrices, numerator/denominator, or pole/zero/gain), and th&fgxact
norm is to be minimized, one can use the following oracle: given the current ité@abes)

and the desired level of optimality an unstable transfer function
H(el®) .= =~ "2~

can be realized. Then the difference systdm H can be formed to check if it§, norm
(same definition ag#, norm defined in eq. (2.1) and eq. (2.2), but not limited to stable
systems) is less than If the correspondind.., nhorm is not smaller thap then a violating

frequencywyg can be identified and the cut

[b(wo) + j€(wo) — &(0d0)H (wo)| < ya(wo)
can be enforced.

In the case where the transfer functibinof the original system is specified as sam-
ple data(wi,H(w)), i=1,2...N, the L, norm check of the differencel —H can be
simplified to checkindN inequalities.

Finally, if the original transfer functioi is again given explicitly (e.g., system ma-
trices), but theL, norm oracle mentioned above is deemed too expensive to compute,

the frequency response Hf can be sampled, and the proposed algorithm still applies (al-

49



though theH,, norm error is no longer guaranteed). Uniform sampling of the discrete-time
frequency axis over the range of interest is generally a good choice for the proposed algo-

rithm.

2.5 Extension to PMOR

This section discusses how the setup in (2.14) can be extended to solve the problem of the

parameterized model order reduction.

2.5.1 Optimal #, norm parameterized model order reduction prob-

lem and relaxation

The parameterized model order reduction problem is defined as follows: given a stable
transfer functionH(z p), wherep is the vector of design parameters contained in a set
P c R", and a positive integen (as the order of the reduced model), construct a stable

parameterized rational transfer function with real coefficient functions

P(z,p) . Pm(P)Z"+ Ppm-1(P)Z™ 1+ ...+ po(p)

= . POk R™ i R, VK
a(z,p) "+ Om-1(P)Z" 1+ ...+ qo(p) Pl e ~

F'(Z7 p) =

such thaH (z,p) is the optimal solution of

minimize max||H(z —MH

(2.43)
subjectto defn) =m, degp) <m,

qd(zp) #0, VzeC,|z|>1,Vpe P (stability).

Parallel to the development in the non-parameterized case in Section 2.2, quasi-convex

program (2.14) is extended by introducing the followpayameterized univariate trigono-

50



metric polynomialsvith real coefficients

a(z,p) =ao(p) +au(p)(z+z H+... +am(p)(@"+z M),
b(z,p) = bo(p) +b1(p)(z+z Y +... + bm(p)(Z"+2z™), (2.44)
c(zp) =3 (ci(p)(z—z H+...+em(p)(Z" -2 ™).

Then the parameterized version of program (2.14) becomes
minimize vy
a bty
SUbjeCt to |H (ejwv p)é((x), p) - B(OO, p) - 16(00, p)‘ < ya(‘*)v p)a Vwe [07 2T[) ) vp € fP,
d(w,p) >0, Ywe [0,2m),Vpe P

degd) <m, degb)<m, deg¢& <m
(2.45)

Here the decision variables ayeand the coefficients &, b, & as functions of the design
parameter vectgp. By the same argument as in the proof of Lemma 2.2.6 in Subsection
2.2.2, program (2.45) can be shown to be quasi-convex. However, as it turns out, program
(2.45) is difficult to solve. The subsequent part of this section will focus on approximately
solving program (2.45) using the cutting method. The emphasis will be given to the con-

struction of the parameterized stability oracle, as it is the main roadblock to the solution.

2.5.2 PMOR stability oracle — challenge and solution idea
2.5.2 A: PMOR stability check problem

In practice, in program (2.45) the frequency response matching constraint (i.e., the first
set of the constraints) is enforced only at some finite number of frequencies and parame-
ter values, and hence it can be handled by the same procedure for the non-parameterized
case described in Subsection 2.4.5. The stability constraint (i.e., the second set of con-
straints in (2.45)), however, has to be enforced for all values of frequencies as well as
design parameters. In the context of a solution procedure via the cutting plane method,

constraint enforcement amounts to the following check in program (2.45): given functions
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ao(p),a1(p),.--,am(p), check if it is true that

d(w,p) >0, VwVpe P, (2.46)
2.5.2 B: Polynomially parameterized univariate trigonometric polynomial

In general, it is very difficult to solve the problem in eq. (2.4634fp),a1(p),--.,am(p)
are arbitrary functions gb. Therefore, the first step to solve the stability check challenge
in eq. (2.46) is proposed in this thesis that these functions are restricted to be polynomials.

Define (as the degree &{w,p))

np+1 ) !
mEZf , Mi=|mg my --- mnp]

with mg taking the place ofmin program (2.45). Then

Definition 2.5.1. A polynomially parameterized univariate trigonometric polynomial of

degreem, associated witlfi(w, p) in eq. (2.46), is defined &: [0,2) x P — R :

» mp M mr'lp 5 il inp .
A(0P) = 3 3 o 3 Foininy (PEPrE ) COS(i00)
I0=0I1=0 |np =0 (247)
m .
= Y &p'tcos(iow)
i=0
with
. 1. o 1
I € Zi"+ , 1= [Io T - Inp] )
and
P :=py...pny,
and
gGecR, VO<i<m,
with inequalities understood entry-wise. [ |
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Accordingly, the stability constraint in eq. (2.46) becomes
m .
a(w,p) = z gp'tcos(ipw) >0, Vo, Vp. (2.48)
i=0

Unfortunately, even though constraint eq. (2.48) is linear (hence convex) with respect to
the decision variables (i.e., coefficied$, there is no known efficient algorithms to check
whether it is satisfied or not. It will be clear that this difficulty is resulted from the fact that
the set of positive multivariate trigonometric polynomials cannot be characterized in the
same computationally tractable manner as in the univariate case. In addition, looking back
at the non-parameterized stability oracle procedure described in Subsection 2.4.1 would
provide some insight into why the parameterized case is more difficult. It was shown in
Subsection 2.4.1 that the positivity check can be done by finding the roots of some uni-
variate polynomial. However, for the parameterized case, the checking of constraint eq.
(2.48) would analogously be finding the (infinitely many) roots ehaltivariate polyno-

mial. There is no efficient algorithm for such a problem.

2.5.2 C: Conversion to multivariate trigonometric polynomials

The next step to solve the challenge in eq. (2.48) is to transform the polynomially pa-
rameterized univariate trigonometric polynomé(w,p) in eq. (2.48) to amultivariate

trigonometric polynomial. This transformation will be detailed in Subsection 2.5.3.

2.5.2 D: Sum-of-squares relaxation solution idea — overview

The benefit of transforming (w, p) in eq. (2.48) to a (to be defined) multivariate trigono-
metric polynomial is that it allows the use of sum-of-squares (SOS) relaxation. The main
idea is that instead of checking the positivity of a multivariate trigonometric polynomial, it
would be much more computationally tractable to check the SOS condition (to be defined
in Subsection 2.5.4). In addition, it will also be shown that the relationship between the
set of SOS and the set of positivity trigonometric polynomials are closely related, hence
justifying the use of SOS. However, it should be forewarned that the SOS approach is not

without its own limitations, which will further be explained in Subsection 2.5.4. Finally,

53



the parameterized stability oracle, based on the SOS relaxation idea, will be described in

Subsection 2.5.5.

2.5.3 From polynomially parameterized univariate trigopnometric poly-

nomial to multivariate trigonometric polynomial

In a sensed(w, p) in eq. (2.48) is a “mixed” polynomial — if is fixed, theré is a trigono-

metric polynomial ofw. On the other hand, b is fixed, theré is an ordinary polynomial

of p. There are SOS tools working with ordinary polynomials or trigonometric polynomi-
als, but there is none for both. The solution strategy adopted by this thesis is to convert eq.
(2.48) into a multivariate trigonometric polynomial positivity constraint. This adoption is
for numerical robustness and convenience. A parallel procedure of working with ordinary
polynomials is entirely possible. The development for the rest of this subsection will be
divided into two parts. First, the multivariate trigonometric polynomial will formally be

defined. Then the conversion bearing the title of this subsection will be detailed.

2.5.3 A: Multivariate trigonometric polynomials

We first recall thah, € N is the number of design parameters, and the default dimension

of many vector spaces to be discussed wilhpe- 1.

Definition 2.5.2. A halfspace}N[ c Z™+1 is a set such thati{ N <—9~{> = {0}, HU
<—}~[> = Z"+1 and# + H c # (i.e., closed under addition).

To explicitly denote the dimension of a halfspaéépan be written a§~41 c 79 for any
d € N with the default value ofl asn, + 1. It can be verified that the following procedure

defines a halfspa(i;(j c 79. Itis defined thak < ﬂv{j if one of the following is true
1. kq_1 >0,
2. kg_1=0 and(ko, ceny kd,2) S 5‘@71,

with }V[l :={0,1,2,...}. The symbol# will be reserved for the halfspace thus constructed
in Z"*1 Thatis,

H = Hp 1. (2.49)
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Notation. For anym &< anﬂ, B, C Z™t1is defined as

Bm={keZ® ! -m<k<m}. (2.50)
Here the inequalities are understood entry-wise (ikg. < m;,Vi=0,...,np). [ |
Notation. Denote
T
z:= [zo z - an] c Cv L (2.51)
and
! 1
ki=llo ke ky| € 2% (2.52)

Then the “multivariate power” is defined as

K= igozlkl~--znpknp. (2.53)

Definition 2.5.3. A multivariate trigopnometric polynomial of degreec anrl is defined

as a functiora(z) : C™*1 — C such that
a(z) ::Zak<z"+z"‘>7 ke #NBmn, a € R, VK, (2.54)

wherez¥, # and B, are defined in eq. (2.53), eq. (2.49) and (2.50), respectively. W

Define then, + 1 dimensional unit sphere as
T:={zeC™"|z0|=|zr| =... = |z, | = 1}. (2.55)

Then it can be seen that
a(z)e R, VzeT
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because for ak,

1 . . T
5 (2 +27%) =cos(Kw) with w:=—j[log(zo) log(zs) - log(zn,)] €R™™,
(2.56)

which gives rise to the name “trigonometric polynomial’.

Definition 2.5.4. A trigonometric polynomial is said to be positive if it is positive on the
unit sphere.
a(z)>0, VvzeT, (2.57)

and a trigonometric polynomial is said to be nonnegative if it is nonnegative on the unit
sphere.
a(z)>0, VvzeT, (2.58)

whereT is defined in eq. (2.55). [ |

2.5.3 B: The conversion

The first step towards the conversion is to re-define the indetermiatp$in &(w,p) in
eq. (2.47). This is achieved with an additional assumption, which will remain throughout

the chapter.

Assumption. It is assumed thafP is a bounded set. That is, there exist R™ and

p € R" such that

LP:{pe R"

Bigpigﬁi,Vi:l,Z,...,np}. (2.59)

Denotez as in eq. (2.51) as a new set of indeterminates that will be used in eq. (2.47),
and recall the definition of the unit sphéfen eq. (2.55). Then following lemma defines an
one-to-one correspondence between the[8e2st) x ¢ andT (corresponding to variables

(w,p) andz).
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Lemma 2.5.5. The functionf : T — [0,2m) x P, f (z) = (w,p) is one-to-one, when it is

defined as ) i o
fo(Zo) w
fi1(z
()= 1(. 1) _ | P
_fnp (Z”p)_ _p”p_
with
fo(z0) = —jlog(zo)
fiz) = PRy (%) (zi+z;1), Yi=12....n (2.60)
= P5% 4 (P52) cos(-jlog(2)).

Proof of Lemma 2.5.5. First, by inspection]0,2m) x ? = f (T), which shows thaff is
surjective. Then, sincldg(-) andcos(-) are injective on their respective domains (i.,

and|0,2m)), f is injective. Thereforef is one-to-one. |

The fact thatf is one-to-one means that the positivity check in eq. (2.48) is the same as
the check of
a(f(z))>0, vzeT. (2.61)

The real benefit of introducing in eq. (2.60), though, is tha(f (z)) is a multivariate

trigonometric polynomial, as stated by the following lemma.

Lemma 2.5.6.Letm € anH and &(w,p) be a polynomially parameterized univariate
trigonometric polynomial of degrem, defined as in eq. (2.47). Lét(z) = (w,p) be the
change of indeterminates defined as in Lemma 2.5.5. Dafine=&(f (z)), thenitis a
multivariate trigonometric polynomial (with respect 1p of degreem. That is,a(z) has
the form in eq. (2.54) [ |

Proof of Lemma 2.5.6. Step 1s to show that the set of (degree unspecified) trigonometric
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polynomials is closed under addition, scalar multiplication and multiplication. Let

b(z) == Yb(Z+z7¥), ke H, bceR,Vk
k

c(z) == yci(Z+z7"), i€eH, GeR,Vi
|

be two (degree unspecified) trigonometric polynomials. Ttie#h c)(z) := b(z) +c(2)

and(ab) (z) := ab(z) are trigonometric polynomials by inspection. Furthermore, since

b(z)c(z) = ZZbkci (zk+z*k) (zi +z*i> .
|
The fact that
(zk+z"‘) (zi +z‘i) =Kty (k) K ok ke H

is a trigonometric polynomial shows that the prodb¢t) c(z) is a trigonometric polyno-
mial. Hencestep 1is shown.Step 1, in particular, implies that a polynomial of trigono-

metric polynomials is still a trigonometric polynomial.

Step 20f the proofis to recognize thatz) = &(f (z)) as in the statement of the Lemma
is indeed a polynomial of trigopnometric polynomials with respea tapplying eq. (2.60)

toa(w,p) in eq. (2.47) yields

a(f(z) = %% éitE! (EthrEt + (ﬁt ;Et) (thrztl))it (zi)"Jrzaio). (2.62)

It is then to recognize that

Zt:Z{)t,

with & having only a single non-zero value of 1 in th&entry. Therefore, factors in eq.
(2.62) such as

Pt +P Pt—P _
7 ( 4 t) (z+z7)

and
io —ig
Zy + Z,
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are trigonometric polynomials @ and consequently bstep 1, eq. (2.62) is a polynomial

of trigonometric polynomial o with the form
_ k |, ,—k
a(z)_Zak<z +z ), ke H, aeR,Vk (2.63)

Finally, step 3of the proof is to verify that the degree of eq. (2.63) is indeedThis

can be shown simply by checking the monomials in eq. (2.62). [ |

Remark2.5.7 Lemma 2.5.5 asserts that the parameterized stability check can be per-
formed, equivalently, by the positivity check in eq. (2.48) and eq. (2.61). Both are equally
hard, but Lemma 2.5.6 states that the latter is a positivity check of a multivariate trigono-
metric polynomial, which can be checked in a restricted sense by using the SOS relaxation

idea to be described in Subsection 2.5.4. [ |

Remark2.5.8 In the conversion to eq. (2.54) given in Lemma 2.5.6, the coefficenése

not independent. This can be seen as follows: by the trigonometric identity
cos(nx) = T, (cos(x)), Vxe [0,2m)

whereT, (-) is the Chebyshev polynomial of degreeit can be seen that eq. (2.62) is
actually an ordinary polynomial of the termes(—jlog(z)), whereas mixed terms such

ascos(—jlog(z))sin(—jlog(z)) are allowed in eq. (2.54). For example,

zizx+7z 1zt = 2(cos(—jlog(z)) cos(—jlog(z)) — sin(—jlog(z)) sin(—jlog(z))) -

The “over-parameterizations” @f(z) in eq. (2.54) when dealing with(w, p) in eq. (2.47)

can also be seen by looking at the lengths of the respective vector of coefficients. Denote

Notation.

acR¥ a:= |5/, 0<k<m, ya|::|‘L(mi+1) (2.64)
i=



: L Mo
aeR‘a‘,a:: al k e }[ﬂBm, ’a|:§<|_L(2m|—|—1)—|—l) (265)

Hereéy anday are coefficients of the trigonometric polynomials in eq. (2.47) and eq. (2.54),

respectively. [ |

Then itis generally true thag| > |&|. The observation of the coefficient redundancy in
the general multivariate trigopnometric polynomial representation might lead to a speedup
in the implementation of the parameterized stability check. Unfortunately, improvement in

this direction has not been pursued in this thesis. |

The final result in this subsection concerns about the relationship between the vectors
of coefficients in eq. (2.64) and eq. (2.65). It can easily be arguedhtisahe image of

under somdinear function.

Lemma 2.5.9.Leta in eq. (2.65) be the vector of coefficientsadf) as in eq. (2.54). Let
ain eq. (2.64) be the vector of coefficientéigo, p) as in eq. (2.47). laandé are related

by Lemma 2.5.6, then there existse R/2*I8l such that

~

a=Ma

Proof of Lemma 2.5.9. By expanding the terms in eq. (2.62), it can be seen that eq. (2.62)
has exactly the same monomials as in eq. (2.54) @e.k € # NBp). In addition, the
coefficients of the monomials in eq. (2.62) and eq. (2.54) are linear functicasuad a,
respectively. Therefore, equating the monomial coefficients term by term concludes the

proof. [ |

Remark2.5.10Q It should be noted, however, that showing the existence of the nidtrix
is very different from actually obtaining a formula M. The latter task is much more
cumbersome. In general, this is a task in which a parser based on a computer algebraic

system can help significantly (e.g., the SOSTOOL [69] for the ordinary polynomial case).

60



Nevertheless, a formula will be obtained for a special case in wiych 2 in Subsection

2.5.6. |

To summarize, this subsection concludes with the equivalence of two positivity checks

for the parameterized stability check problem. That is,

a(w,p) >0, vV (w,p) € [0,2m) x P (2.66a)
< a(z) >0, Vze T, (2.66b)

with &(w, p) defined in eq. (2.47) and(z) defined in eq. (2.54), and they are connected
by Lemma 2.5.6. The second check is a positivity check of a multivariate trigopnometric

polynomial, which will be subject of Subsection 2.5.4.

2.5.4 Multivariate trigonometric sum-of-squares relaxation

It should be emphasized that the material in this subsection is standard, and only the most
relevant topics are discussed here. See [70] for an excellent description of the full list of
topics.

In Subsections 2.5.2 and 2.5.3 it was established that the parameterized stability check
is the positivity check of a multivariate trigonometric polynomial (see eq. (2.66b)). This
computation, in a limited sense, can be performed by the use of SOS idea to be described.

This subsection first defines SOS, and then it will proceed to describe two properties of
SOS - one with its computationally tractable characterization (i.e., Gram matrix represen-
tation), and the other with its relationship to positive trigopnometric polynomials. Finally,

the combination of these two properties will lead to the idea of SOS relaxation.

2.5.4 A: Definition of sum-of-squares

Definition 2.5.11. A multivariate positive orthant polynomial of degneec Zi”“ is de-
fined as
h(z) = thz_k, 0<k<m, hgeR,Vk. (2.67)

Here the inequalities are understood entry-wise. Thadis, ki < m;, Vi. [ |
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Definition 2.5.12. A trigonometric polynomia (z) is called a sum-of-squares (SOS) if
\Y
a(2)= Y h(2h(z1), (2.68)

whereh (z) are positive orthant polynomials defined in eq. (2.67), ansla positive inte-

ger. [

Note that the degrees of the positive orthant polynomials can actually be higher than

the degree of the trigonometric polynomial. See [70, 71] for an example.

2.5.4 B: Gram matrix representation of sum-of-squares

First, it is reminded thany is the number of design parameters. Therefore, the (trigono-
metric) polynomials involved will b&y, + 1 variate (trigonometric) polynomials. Now, the

notion of Gram matrix trigonometric polynomial characterization will be defined.

Definition 2.5.13. A vector of (i, + 1 variate) monomial® of degreem is defined as

0(2) :=6n, (zn,) ®...®60(20), VzeC™ (2.69)
with
T mi+1
6i(zi) = [1 z - zimi] e CM* i=0,1,...,np.
Also, denote .
P
M:=[1(mj+1) (2.70)
[y
as the length of vectd. [ |

Definition 2.5.14. A symmetric matriQ € RM*M is called a Gram matrix associated with

trigonometric polynomiaé (z) of degreem defined in eq. (2.54) if
T
a(z)=6 (2‘1) Q8(z), VzezZ™, (2.71)

where® andM are defined in eq. (2.69) and in eq. (2.70), respectively. |
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In addition to the definition in eq. (2.54), the Gram matrix provides alternative way to
characterize a trigonometric polynomial. Given a trigopnometric polynoai@l as in eq.

(2.54), one (of the many) Gram matrix associated with it can be

all] a2 - afal
a2l 0 -~ 0

o=| T . ] (2.72)
afla] 0 - 0 |

wherea € R is defined in eq. (2.65) and]i] denotes its™ entry, assuming that the
ordering of the entries od in Q in eq. (2.72) are consistent with that of the monomials
in Bin eq. (2.69). On the other hand, given a Gram matrix, the trigonometric polynomial

coefficients can be obtained by the following theorem from [70].

Theorem 2.5.15.Letay be the coefficients of a trigonometric polynonaék) in eq. (2.54),
and letQ be a Gram matrix associated witl(z) satisfying eq. (2.71). Then it holds that:

a =Tr(TkQ), (2.73)

where
Tk :Tknp ®...® Tk, (2.74)

with Ty, € RM*M peing Toeplitz matrices withon the-+k; diagonal, for alli=0,1, ..., n,.
[ |

For example, foM = 4,

T =

o O O O
o O O O

o O o
O o Pk o,

The main benefits of using the Gram matrix representation of trigonometric polyno-
mials is that it provides a computationally tractable way to characterize the SOS. This is

summarized by the following theorem from [70].
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Theorem 2.5.16.A trigonometric polynomiah(z) is a sum-of-squares, with the degree of
hy in eq. (2.68) less than or equal to € Z™*1, if and only if there exists positive semi-
definite Gram matrixQ € RM*M with M := Fi (mj + 1) (defined in eq. (2.71)) associated
with the trigonometric polynomial(z). = [

Remark2.5.17 Theorem 2.5.16 allows the linear matrix inequality (LMI) [56] characteri-

zation of SOS in terms of a positive semi-definite Gram matrix. In the event of optimization
with SOS decision variables, the LMI characterization allows the optimization problem to
be formulated as a SDP, which can be solved in polynomial time by interior point algo-
rithms [67]. This is the main advantage of the Gram matrix characterization of SOS, as

well as one of the two reasons of why the SOS relaxation (to be described) is utililied.

2.5.4 C: Sum-of-squares and positive trigonometric polynomials

The other benefit of working with SOS is its intimate relationship with positive and non-
negative trigonometric polynomials (see eq. (2.57) and eq. (2.58) for definitions), which
are the objects of concerned for parameterized stability checking. Evaluated on the unit

sphere, a SOS (as its name suggests) becomes

a(z)= S |h(@2)>>0, zeT. (2.75)

M <

1

As itis indicated by eq. (2.75), if a trigonometric polynomial is a SOS, then immediately it
is nonnegative. However, it is not known whether the converse is true or not. Nevertheless,

a “partial converse” turns out to be true, as stated by the following theorem from [72].

Theorem 2.5.18.If a trigonometric polynomial is positive, then it is also a sum-of-squares.
[ |

Remark2.5.19 Intuitively, Theorem 2.5.18, together with the preceding discussion, sug-
gests that, for angn Zi"“, the set of SOS of degrem is “sandwiched” between the set
of positive trigonometric polynomials and its closure (i.e., the set of nonnegative trigono-

metric polynomials). This relationship can be summarized in the following schematic.

{positive} C {SOS C {nonnegativé. (2.76)
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Set inclusion relationship in eq. (2.76) ensures that the set of SOS and the set of positive

trigonometric polynomials cannot be too different. |

2.5.4 D: Sum-of-squares relaxation

To recap, Subsection 2.5.3 establishes that the parameterized stability constraint checking
problem can be formulated into two equivalent positivity checking problems in eq. (2.66a)
and (2.66b). Both checks are equally hard, but the latter is a positivity check of a multivari-
ate trigonometric polynomial. Then the set inclusion relationship in eq. (2.76) suggests that
eg. (2.76) can be replaced by a check of SOS which, according to Theorem 2.5.16, can be
formulated as a SDP which admits efficient solution algorithms such as interior point meth-
ods. This chain of ideas is referred to as the SOS relaxation in this chapter. The following

is the schematics of the SOS relaxation.

(hard) a(w,p) >0, vV (w,p) € [0,2m) x P (2.77a)
(hard) < a(z)>0, Vze T (2.77b)
(easy) — a(z) € {SOS, (2.77¢c)

whered(w,p) (from eq. (2.47)) is a polynomially parameterized univariate trigonometric
polynomial, anda(z) (from eq. (2.54)) is a multivariate trigonometric polynomial.

More details should be pointed out regarding the SOS relaxation idea.

Remark2.5.2Q The right arrow in eq. (2.77c) conforms with the set inclusion relationship
in eq. (2.76), and also explains the name “relaxation”. However, it should be noted that the
right arrow does not come trivially — it is the consequence of Theorem 2.5.18, a result that

is not so obvious, and not so trivial to show. [ |

Remark2.5.21 It is obvious that not all SOS are positive trigonometric polynomials (e.g.,
the zero polynomial). To make sure that positivity is really enforced, the check in eq.
(2.77c) can be modified to be(z) — € is SOS, for some sma#l > 0. The real problem

of SOS relaxation, however, lies in the fact that the statement in Theorem 2.5.16atoes
completely characterize the set of SOS for any degI@Z:pH. This is explained in the

subsequent remarks. [ |
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Remark2.5.22 The positive semi-definite Gram mati@x e RM*M in Theorem 2.5.16 is
insufficient to fully characterize the set of all SOS’s of degnedecause the latter set
also contains SOS with positive orthant polynomials of degree highermthahherefore

the set{SOS in eq. (2.77c) (i.e., SOS relaxation) should accordingly be understood as
the set of degremn SOS’s which is representable by a positive semi-definite Gram matrix
Q e RM*M_The limitation of the representability of the Gram matrix characterization leads
to a restriction in SOS relaxation. In particular, the right arrow implication in eq. (2.77c) is
no longer true — there can be positive trigonometric polynomials of degredich does

not belong to th§ SOS in eq. (2.77c). [

Remark2.5.23 To allow a less restrictive Gram matrix characterization of the set of SOS’s
of degreem, Theorem 2.5.16 can be applied to the casenfar er_pﬂ such thatn > m.

In order to exclude the choices that lead to a trigonometric polynomial of degree higher
thanm, additional constraints are needed. That is, for the Gram m@exRN*N with

n
N:= |‘p| (nj + 1), constraints such as
i=0
Tr(TkQ) =0, Vk<£m

should be enforced. [ |

Remark2.5.24 There is a price for using > m in Remark 2.5.23 because the the complex-

ity of a SDP involved will beO (N4), which grows rather quickly witiN. In practice, this
means that the set of SOS’s of degreecannot be completely characterized using Gram
matrix representation becausgand henceN) cannot be too large. Therefore, the SOS
relaxation is not really a relaxation. Nevertheless, experimental results seem to suggest

that the limitation is not crippling. [ |

Remark2.5.25 There is no analogy to Theorem 2.5.18 in the multivariate ordinary poly-
nomial case, with the closest results pertaining only to the SO&tiohal functions (see,
Chapter 3 of [70]). The restriction in ordinary polynomial SOS adds to the list of justifi-
cations for the choice of working with trigonometric SOS instead of ordinary SOS. Never-
theless, there is a rather large body of literature regarding ordinary SOS, see, for example,

[73, 74, 75]. m
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2.5.5 PMOR stability oracle —a SDP based algorithm

In this subsection, a SDP based parameterized stability oracle will be presented. As it
was explained in Subsection 2.5.4, rather than checking positivity constraints such as eq.
(2.77a) or eq. (2.77b) which truly corresponds to the parameterized stability constraint, it
is the SOS constraint in eq. (2.77c) that is being checked in this subsection. In addition,
Remark 2.5.22 in Subsection 2.5.4 concludes that th¢ 388§ in eq. (2.77c) should be
restrictive — letm € Zi"“ be the degree of the trigopnometric polynomial considered, then
the set{SOS} in eq. (2.77c) refers to the set of SOS’s of degmesvith positive orthant
polynomial degreen (see eq. (2.68) for definition). It issubsebf the set of all SOS’s of

degrean. Now the SOS oracle will be presented.

Algorithm 2: PMOR SOS ORACLE

Input: query point — a vector of coefficienisc R/@ (see eq. (2.64)). This vector defines
the polynomiali(w,p) of degreem in eq. (2.47).

Output: declaration of SOS constraint met, or a tut) : o’x > 3, for all vector of
coefficientsx € RI@ corresponding to SOS’s with positive orthant polynomial degree less

than or equal tan.

i. With the coefficient for &(w, p) of degreem in eq. (2.47), obtain trigonometric poly-

nomiala(z) in eq. (2.54) using Lemma 2.5.6 in Subsection 2.5.3.

ii. Solve the semidefinite program with decision varialylesR andQ € RM*M,

minigize y

Y,

subjectto 8(z1)'QB(2) =a(z)+y, Vze Ctl (2.78)
Q=Q >0,

where the vector of monomiasis of degreeam is defined in eq. (2.69M is defined

in eq. (2.70), and’ is defined in eq. (2.55).
iii. if program (2.78) is feasible and optimél< 0,
return SOS constraint is met
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else

return Cut(a,B) € RI@ x R constructed using from the dual solution to (2.78).

The following lemma certifies the correctness of the oracle and gives a constructive

proof of the existence dfo, ).

Lemma 2.5.26.Leta c R/ (defined in eq. (2.64)) as the coefficient vectod @b, p) be
given. If program (2.78) is feasible and the optimal valtie< O, then&(w,p) > O,
Yw e [0,2m), p € P. Otherwise, a cuta,B) € RI& x R can be returned. The cut has
the following property:a’x > B for all x € RI@ such that the optimal objective value of

program (2.78) is negative. |

Proof of Lemma 2.5.26. First consider the case when program (2.78) is feasible. Since
0 (z_l)TQ 0(z) > —, Vze€ T and|a(z)| < «, an optimal solution exists. Let it bg. If
y* <0, then&(w,p) =a(z) =6 (z*l)TQ 0(z)—y* >8 (z*l)TQG(Z) >0, Vze T. Next
consider the case when program (2.78) is feasibleybut 0. Express the polynomial
equality® (z_l)TQe (z) = a(z) as equalities with the corresponding coefficients using eq.
(2.73), program (2.78) can be rewritten as
mlr;lglze y
subjectto T(Q) =ap+YV,
Tr(TkQ) =a, Vke (HNBm)\{0}
Q=0Q=>0,

(2.79)

whereTy, # andB, are defined in eq. (2.74), eq. (2.49) and eq. (2.50). Now consider the
Lagrangian of (2.79)

L) = minimizely + Mo(TH(Q) -y - a)

+ZAK(Tr(TkQ) —ay)}

= ry(igrLig)Lzoe{y(l — o) + Tr(Q(Z ATk)) — Z)\kak}y
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with the summation over the sf N By, and Ty being the identity matrix. It is true that

—SAa if Ag=1,3ATk >0
L(A) = k 3

—00 otherwise

At the optimum, the optimal primal/dual pay*(A*) has the following property

—ZAﬁak =y" (2.80)

Recall, in Subsection 2.5.3, the definition @fin eq. (2.65) and the linear relationship
a=Mafor some matrixM. Under the condition that > 0, eq. (2.80) implies that*’a < 0.

Therefore, all coefficient vectoss(of &(w,p)) that makey* < 0 should satisfy
A'Mx > 0, (2.81)

and thereforéM’A*, 0) is the desired cut.
Finally, consider the case when (2.78) is infeasible. By argument of the statements of

alternatives, infeasibility of (2.78) implies the existence of feasible dual solutgn
A=1, Z?\ka >0, and Z)\kak <o0.

Therefore y Axax > O will lead to the same type of cut as in (2.81). [ |
k

Remark2.5.27 Once again it is reiterated that the SOS constraint is a restrictive version
of the positivity constraint which is desirable to check, as the former check is the only

tractable problem to solve. [ |

Remark2.5.28 While the specific construction of the SOS constraint oracle in Lemma
2.5.26 requires the dependenceéiain the design parameter to be polynomial, there is no
restriction in the dependence bindé, and they can be chosen to best fit the problem at

hand. [ |

Remark2.5.29 Itis program (2.79) used in the proof of Lemma 2.5.26, instead of program

(2.78), that is actually formulated and solved because the former is readily formulated as
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the SDP “standard” form, which can be solved by solvers such as SeDuMi [76]. The details
of how to construct program (2.79) will be illustrated in the following subsection through

the special case in which two design parameters are allowed. [ |

2.5.6 PMOR positivity oracle with two design parameters

General SOS programming problems can be formulated using available parsers such as

SOSTOOLS [69]. However, this tool requires the use of computer algebraic system (e.g.,

MATLAB Symbolic Toolbox), which is slow in the context of cutting plane oracle ap-

plication, as oracles must be called thousands of times to solve a single instance of the

optimization problem. Therefore, dedicated codes for formulating (2.79) are preferred.
Consider the case in which only two design parameters are allowed. Denote the param-

eters ad andW (i.e., wire separation and wire width for RF inductor design). indie

the reduced ordeiy andN be the highest degrees BfandW. Then in this subsection,

the polynomially parameterized univariate trigonometric polynoiiab, p) in eq. (2.47)

will be denoted as

M N
a(w,D,W) = kzogog D'w/ cos(kw), (2.82)

m
where indices and | are associated with design param@&@eandW and index is with the
frequency variablev. The triplet(R, I, f) takes the role of the multi-indaxn the definition
of eq. (2.47).

Similar to the treatment in Subsection 2.5.3, the paramete® sell be assumed to be

bounded. That is, there exiBte [D,D] andW e [W, W] such that

D = Do+Di(z+z?)

(2.83)
W = Wo+Wi(aw+zY),

where
Do = 0.5(D+D)

Wo = O0.5(W-+W)
D; = 0.25D-D)
W, = 0.25W —W)
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andzp € C,|zp| =1, ay € C,|ay| = 1. Also, a new variable will be defined such that

— —v/—1log(2). (2.84)

With the redefinition of the indeterminates (i.e.zo andzy), the multivariate trigono-

metric polynomiak(z), as in eq. (2.54), will be denoted as

m M

a(z) = k :z_mi:;w z aijkZb Ay 2, (2.85)

j=—N

with the hidden assumptions that the coefficiemfig do conform to the rule of a trigono-
metric polynomial. For exampl&jjx = a_j_j_k. Also, it is pointed out here that in this
subsection the symbdl is treated as an index, and the unit imaginary number will be

denoted explicitly as/—1.

As stated in Lemma 2.5.9 in Subsection 2.5.3, the coefficients of multivariate trigono-
metric polynomial in eq. (2.85) are linearly related to the coefficients of the polynomial
parameterized univariate trigonometric polynomial in eq. (2.82). Here, an explicit formula
for the relation will be given: substituting eq. (2.83) and eq. (2.84) &, W,D) in eq.
(2.82) leads to

(m (v o))

Equating the coefficients of the monomials yields

p—li| .
g L J p pp-i-2pil+2s lil+2s )\

9=lj| li| +2s S (2.87)

"2 il [ HIH20) )

z w W, Ap q, k|5

( 2o ( i+ 2 ) 0 1 ‘ p.a, K]
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where

Pl . p!
q) (-0l

Note that in eq. (2.87) the indiceésj andk only appear in absolute value. This is explained
by the constraint that(z) is a trigonometric polynomial (in fact, an ordinary polynomial of
cos(—+/—1log(z)), cos(—+/—1log(zw)), andcos(—+/—1log(zp)) only). Furthermore,
eq. (2.87) indicates that there can be at nfost 1) (M + 1) (N 4 1) unique coefficients in
a(z) —this is the exactly the same number of coefficient&(iw, p).

With the multivariate trigonometric polynomial coefficiergg clearly defined in eq.
(2.87), the optimization problem in (2.79) can be set up and solved using a standard SDP

solver such as SeDuM.i.

2.6 Additional modifications based on designers’ need

It will be shown here that the proposed Algorithm 1 (MOR) given in Section 2.3 and Al-
gorithm 2 (PMOR) given in Section 2.5 are quite flexible, and they can serve as a basic
framework which can easily be modified to account for several additional desirable con-
straints devised for instance from a designer’s knowledge about the specific system to be

modelled.

2.6.1 Explicit approximation of quality factor

When the transfer functioH is for instance the impedance of an RF inductor, the accurate
representation of the quality factor

__Im(H(el®))
Q(w) = Re(H(619))’

w e [0,2m)

is of critical importance for the designers in order to evaluate the system performance. In
this case, the basic problem in (2.14) can be modified to guarantee a very good quality

factor accuracy.
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minimize vy
abcy
subject to |H(e1®)&(w) — b(w) — j&(w)| < ya(w),
JW\Y) ~ ~
RareB(w) — ()| < pyB(w), (2.88)
8(w) >0,b(w) >0, VYwe [0,2m),
degd) = m,degb) < m,deg&) <m.

p in the second set of constraint is a tuning parameter of the relative accuracy between
match on frequency response and on quality factor. The oracles for program (2.88) are
similar to those for program (2.14). The positive real part constraint and the reduced model
should be constructed using

minimize vy

)

subject to ‘H (el®) — (

elw)
‘lm(H(e"‘”)) p(el®)g(e 1)~
el

p(e”19)q(el?)
Re(H(el®))  p(el®)g(e @)+ p(e 19)q(el®) < pY (2.89)
p(el®)g(e~1?) + p(e~1®)q(el®) > 0, Yw € [0,2m).

degp) <m,

Again, this program is quasi-convex, and the oracle procedure with constraint (2.29) can

be applied here as well.

2.6.2 Weighted frequency response setup

In some applications the desired approximation accuracy is different in different frequency

ranges. For those applications the objective function of program (2.14) can be replaced by

W2 (H@-H (@),

whereW(z) are weights that can be chosen to be larger for the “more important” frequency

range.
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2.6.3 Maitching of frequency samples

Program (2.14) can be modified so that the reduced transfer function matches exactly the
original transfer function at some particular frequencigd®etweerD andrt In order to do

this, equality constraints such as
H (/) &(wy) —b(wy) — jE(ea) =0, vk

can be imposed. Similarly, the program (2.26) can be modified to make sure the final
reduced model matches the full model at those frequencies. Besides the intended use of
exact sample matching, this modification has the practical meaning of reducing the num-
ber of optimization decision variables in programs (2.14) and (2.26), hence reducing the

runtime significantly.

2.6.4 System with obvious dominant poles

Algorithm 3 implements a PMOR procedure, and it is specialized in the case where the
full model has a pair of “dominant poles”. It is given because it can take advantage of
the problem specific insight common, for instance, in RF inductor design. Note that the
reduced modeH (z p) is stable because, as described in Algorithm23(p)| < 1, and
H(zp) is stablevp e P.

Algorithm 3: PMOR: RF INDUCTOR DESIGN
Input: H(zp)
Output: H(zp)

i. Construct reduced modeHTi;,(z) for eachp € P1 C P, where? is a finite (training) set
ii. Identify the dominant poleg; of modelsHp(2)

iii. For each modefi,(2), construct proper “non-dominant” systenh‘lé(z) s.t.

» KpZ
" e
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whereK, € R.

iv. Construct global interpolation mod&l(p) andz*(p). Special attention should be paid
to the modek* (p) to make sure thag*(p)| < 1,Vp € P

v. Solve program (2.45) to find a parameterized mdﬂié(lz, p) with non-dominant sys-

temsHg(2) as inputs.
vi. Construct reduced model of the original system using eq. (2.90). That is,

: ROZ
H(z,p) = — — H-(zp).
Pz eneze)

Note that in order to make sure the final moémz,p) is passive, pole and zero infor-
mation of the “dominant” system can be taken into account to form the numerator of the

overall system when parameterized "non-dominant” systeitz, p) is being computed.

2.7 Computational complexity

There are two sources that contribute to the complexity. The first part is the computation of
the frequency samples, which, when using accelerated solvers [77, 78, @®hlag(n))
for each frequency point, with being the order of the full model. The examples in Sec-
tion 4.8 usually required from 20 to 200 frequency samples. The second part is the cost
of running the optimization algorithm. The complexity analysis here is based on the spe-
cific method of ellipsoid algorithm (which is implemented as a test code).alidn, are
the order of the reduced model and the number of decision variables in the optimization
respectively, them, = O(q). Based on the fact that the volume of the bounding ellipsoid
is reduced by at least a factor bf- .-, it can be concluded that it tak€(ng) = O(¢?)
iterations to terminate the algorithm. At each iteration of the ellipsoid algorithm, the cost is
O(g?) (matrix vector product performed when updating the bounding ellipsoid). Therefore,
the cost of the second part@q*). The overall complexity of the algorithm is summarized
as

O(nlog(n)ns) + O(q*),
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with ng being the number of frequency samples computed. Similarly, for the parameterized
caseny = O(q[]dpk) Whereqpy is the degree of the polynomial with each parameteas

in (2.47) and the complexity is

O(nlog(n)ns) +O(a ] dpk)*). (2.91)

Based on our experience in running the examples in Section 4.8, the bottleneck for non-
parameterized model reduction is represented by the computation of the frequency response
samples, i.e. the first term in (2.91), unless the samples are available as measured data.
For parameterized applications, on the contrary, the bottleneck is solving the relaxation as
there are many more decision variables. Therefore, the second term of (2.91) becomes the

dominating factor.

2.8 Applications and Examples

In this section several application examples are shown to illustrate how the proposed opti-
mization based model reduction algorithm works and performs in practice. All the exam-
ples in this section were implemented in MATLAB and run on a Pentium IV laptop with
1GHz clock, 1GB of RAM and running Windows XP. A basic, stability constrained version

of the proposed algorithm can be found at

http://www.rle.mit.edu/cpg/research_codes.htm

2.8.1 MOR: Comparison with PRIMA

In this subsection the proposed algorithm is compared with the commonly used model re-
duction method of moment matching. The first two examples are non-parameterized com-
parison. The last example isparameterizeanodelling problem for a 2 turn RF inductor
as described in [18].

RF inductor example. The first example is a comparison between multi-point mo-

ment matching (PRIMA) [8] and the proposed algorithm for reducing a 7 turn spiral RF
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inductor model generated by an electro-magneto-quasi-static (EMQS) mixed potential in-
tegral equation (MPIE) solver [79]. The original model has order 1576. PRIMA is set to
match 2 moments at DC, 6 moments at each of the following frequencies: 4GHz, 8GHz
12GHz. The resulting model has order 20. On the other hand, two models are con-
structed using the proposed method. One has order 14 using 20 frequency samples (same
computational cost as PRIMA), and the other has order 20 using 40 frequency samples
(same order as PRIMA). When using the proposed method, both stability and positive-real
passivity oracles are checked in this example. The following error metric is computed:
max(wﬂ), f € [0,14GHz. Comparison results are shown in Table 2.1, with QCO

(Bl
being the shorthand for the proposed quasi-convex optimization method.

Table 2.1: Reduction of RF inductor from field solver data using QCO and PRIMA

QCO QCO PRIMA
order 14 20 20
cost (# of solves 20 40 20
error (%) : H 6.9x103[71x10*|18x10°3

RLC line example. This is a cooked-up example in which the full model is not quite
reducible. The example is presented here in order to examine how PRIMA and the pro-
posed method perform in a poorly defined setup. In this example we reduce an RLC line
segmented into 10 sections (full model order 20) with an open circuit termination. The
transfer function is the admittance. The model is obtained as follows: inductor currents
and capacitor voltages are the state variables. KCL is imposed at each capacitor node, and
the branch equation is used between adjacent nodes. The reduced models of both methods
have order 10, and PRIMA is set to match 4 momentkOatrad/s, 4 moments & x 10*
rad/s, and 2 moments &0° rad/s respectively. Figures 2-2 and 2-3 compare the magni-
tudes of the admittance of the full model, and the reduced models by PRIMA, and by the
proposed method, respectively. The difficulties encountered when modelling this example
with PRIMA are discussed in [80]. As expected, in this example PRIMA performs better
locally, but the proposed method does better for the whole frequency range of interest.

PMOR of 2 turn RF inductor. In this example, the two turn RF inductor in [18] is

analyzed. In [18], an 12th order parameterized reduced model was constructed using a
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Figure 2-2: Magnitude of admittance of an RLC line. Solid line: full model. Solid with
Stars: PRIMA 10th order ROM.

magnitude

Figure 2-3: Magnitude of admittance of an RLC line. Solid line: full model. Solid with
Stars: QCO 10th order ROM.

moment matching method. On the other hand, we have constructed an 8th order PROM
using the proposed method. Figures 2-4 show the comparison results in [18] for the case of

wire width D = 1lumand wire separatiow = 1,...,5um with the additional result of the

proposed method superimposed.
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Figure 2-4: Inductance of RF inductor for different wire separations. Dash: full model.
Dash-dot: moment matching 12th order. Solid: QCO 8th order.

2.8.2 MOR: Comparison with a rational fit algorithm

In the third example we compare the proposed method with an existing optimization based
rational fit [55, 14, 57] by constructing a reduced model from measured frequency re-
sponse of a fabricated spiral RF inductor [81]. In this example, the order of the reduced
model is 10, and the positive real part constraint is imposed. Frequency weights (preferring
samples of up to 3GHz) are used, and the quality factor is explicitly minimized. In partic-
ular, program (2.88) is solved with tuning paramegiet 10, Runtime for the proposed
method was 60 seconds. On the other hand, rational fit [55], vector fitting [14] and pas-
sivity enforcement [57] were used in combination to construct another passive model for
comparison. The runtime for running the mentioned algorithms was 30 seconds.

Fig 2-5.a and 2-5.b show the real part of the impedance, and the quality factor of the
model produced by the proposed approach comparing to measured data and to a model of

the same order generated using the optimization based approaches in combination.

2.8.3 MOR: Comparison to measured S-parameters from an industry

provided example

In the fourth example we identify a reduced model from measured multi-port S-parameter

data. 390 frequency response samples have been measured on a commercial graphic card.
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(a) real part of impedance (b) quality factor

Figure 2-5: Identification of RF inductor. Dash line: measurement. Solid line: QCO
10th order reduced model. Dash-dot line: 10th order reduced model using methods from
[14,55,57].

The internal architecture and implementation details are not available. Although the origi-
nal data is multi-input-multi-output, data from only one portis used to construct the reduced
model. Figure 2-6 shows the comparison result for the corresponding ports. The reduced

model is order 20. The model was identified in 30 seconds.

0.95
0.9
0.857
0.8
1
5 6

2 3 4
frequency (Hz) x10°

magnitude

Figure 2-6: Magnitude of one of the port S-parameters for an industry provided example.
Solid line: reduced model (order 20). Dash line: measured data (almost overlapping).
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2.8.4 MOR: Frequency dependent matrices example

In the fifth example we apply the proposed method to reduce a model of an RF inductor
generated by a full wave MPIE solver accounting for the substrate effect using layered
Green'’s functions [82, 79]. Since the system matrices are frequency dependent, the order
of the full model is infinite. The order of the reduced model is 6 and the positive real part
constraint is imposed. Computation time was 2 seconds. Figure 2-7 shows the result of the

quality factor.

8 T
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7+ g O testpoints |
, -
, . Qco
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, \
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0] 0.5 1 1.5 2 2.5 3
frequency (Hz) x 10°

Figure 2-7: Quality factor of an RF inductor with substrate captured by layered Green’s
function. Full model is infinite order and QCO reduced model order is 6.

2.8.5 MOR: Two coupled RF inductors

A 10" order passive reduced model of two coupled 4 turn RF inductors (identical, side by
side) was constructed. It took about 120 seconds to build the reduced model. Figure 2-8

shows the result for the magnitude and phase of S12.

2.8.6 PMOR of fullwave RF inductor with substrate

In this example a®™ order passive parameterized reduced model is constructed for an RF
inductor with substrate. The full model has more than 2000 states (quasi-static). The design

parameters are wire widthW{) and wire separatiorl)). The parameter space is a square
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Figure 2-8: S12 of the coupled inductors. Circle: Full model. Solid line: QCO reduced
model.

from (1,1) to (5,5) microns. In constructing the reduced model(\#3D) pairs forming
a grid of (1:5) x (1:5) were used as training data. The reduced model is tested with

simulation results from field solver on(#1.5: 1 : 45) x (1.5: 1 : 45)) grid, and Figure

2-9 shows the result. Construction of reduced model took overnight.

frequency (Hz)

Figure 2-9: Quality factor of parameterized RF inductor with substrate. Cross: Full model
from field solver. Solid line: QCO reduced model.

2.8.7 PMOR of a large power distribution grid

In this example a passive parameterized reduced model of a power distribution grid is built

using the techniques in Subsection 2.6.3, and those similar to Algorithm 3. The design
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parameters are die sifz< [7,9]mm, and wire widthW € [2,20]um. 25 full models dis-
tributed uniformly in the design space are used as training points for the reduced model of
order 32. To test the parameterized reduced model, comparison of full model and reduced
model is done at parametddse {8.25,8.75}mm andW < {4,8,12,14,18}um. Figures

2-10 and 2-11 show the result@t= 8.25mm andD = 8.75 mm, respectively.

3500 -

real part

Figure 2-10: Real part of power distribution gridiat= 8.25 mm andW = 4,8,12, 14,18
um. Dash: Full model. Solid: QCO reduced model.

real part

Figure 2-11: Real part of power distribution grid@t= 8.75 mm andwW = 4,8,12, 14,18
um. Dash: Full model. Solid: QCO reduced model.

2.9 Conclusion

In this chapter a relaxation framework for the optimt) norm MOR problem is proposed.

The framework has been demonstrated to perform approximately as well as PRIMA when
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reducing large systems, and better than PRIMA for examples that require a more global
accuracy in frequency response. Unlike PRIMA, the proposed method has a guaranteed
error bound, and it can reduce models with frequency dependent system matrices, hence
it can capture for instance substrate and fullwave effects. Unlike other optimization based
methods, the proposed method has been shown to be very flexible in preserving stability
and passivity. Finally, the proposed optimization setup has also been extended to solve
parameterized MOR problems. Several examples have been presented validating both the
MOR and PMOR approaches against field solvers and measured data on large RF inductors,

IC power distribution grids and industrial provided package examples.
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Chapter 3

Bounding L2 Gain System Error
Generated by Approximations of the

Nonlinear Vector Field

A growing number of results can be found in the literature addressing the problem of non-
linear model order reduction. For example, [31, 32, 33, 34, 35, 36] employ Volterra series
and moment matching techniques to solve the “weakly nonlinear” model order reduction
problem. Another class of methods based on piecewise approximations address strongly
nonlinear problems [24, 25, 26, 27, 28, 29, 30]. Both of the weakly and strongly nonlinear
methods involve the following two steps: a state projection to a lower dimensional sub-
space and the approximation of the reduced nonlinear vector field to facilitate simulation.
However, to the best of our knowledge, there has not been any published result in the field
of electronic design automation regarding the approximation quality of the approximation
step above. The work in this chapter presents an effort in this direction for a practical

dynamical system settings for applications in integrated circuit design as follows.

X(t) = AX(t)+d(x(t))+Bu(t)
yt) = Cx(t)

whereA € R9¥9, B ¢ R%! C e R¥9, @ : RY+— RYis a generateducedvector field. For

(3.1)

example®(-) =V'®d¢(V-) for some projection matri¥ € R"*9 (e.g., see [83]). Typically,
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g is a small positive integer (e.gy,= 10). On the other handp; : R" — R" is the full
order nonlinear vector field with > q. When the reduced nonlinear vector figidis

approximated byb, system (3.1) becomes

(3.2)

To reiterate, tworeducedsystems have been defined — the original system in eq. (3.1)
and the approximated system in eq. (3.2). The two systems are of the same order. The
objective of this chapter is to relate the error between nonlinear functicersd ® to the

error between systems (3.1) and (3.2) described in Figure 3-1.

difference system

———® orignal

—® approx

Figure 3-1: The difference system setup. The original system in eq. (3.1) and the ap-
proximated system in eq. (3.2) are driven by the same inpand the difference between

the corresponding outputs is taken to be the difference system output denetéthad 2

gain (to be defined in Subsection 3.2.2) frarto e for the difference system is a reasonable
metric for the approximation quality between the systems in eq. (3.1) and eq. (3.2).

The rest of the chapter is organized as follows: Section 3.1 presents a motivating appli-
cation example explaining why the error bounding problem should be considered. Section
3.2 summarizes background materials such as the small gain theorem which forms the ba-
sis of the development of this chapter. In Section 3.3 the system error will formally be
introduced as the L2 gain of a difference system, which will be analyzed by the robustness
analysis technique (i.e., the small gain theorem). Section 3.4 presents the main theoreti-
cal contribution: under some assumptions, the L2 gain of the difference system is upper

~

bounded by the L2 gain ab(-) — ®(-) with a positive multiplicative constant. Based again
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on the small gain theorem, a numerical procedure is presented in Section 3.5 to compute a
more convenient upper bound of the L2 gain of the difference system using the L2 gain in-

formation of®(-) — ®(-). Finally, in Section 3.6, the numerical procedure from Section 3.5

is applied to some nonlinear system model reduction problem to validate the statements.

3.1 A motivating application

This subsection presents a specific (but more restrictive) application to illustrate why an
approximation such as (3.2) is useful, and why it would be interesting to provide a bound

for the induced system error. Consider the more specific setup

(1) = AX(t) V'@ (VX(t))+Bu(t)
y(t) = Cx()

whereA € R99 VV ¢ R™9 Be R Ce R4, ¢ : R"— R":

(3.3)

O = gr(v) or(v2) o) | -

where®s : R — R is any nonlinear function. Note that system (3.3) has repeated nonlin-
earities, and it can model for instance any circuit with repeated nonlinear elements, such as
the diode transmission line to be discussed in Section 3.6. Furthermore, the method in this
example can be modified by appending the nonlinear funcbipwith different nonlinear-
ities, at the expense of a more complicated derivation and computation. However, it should
be emphasized that the mentioned restriction in system (3.3) pertains only to this example,
and not to the main result of this chapter.

System (3.3) can be considered as the result of applying for instance a congruence trans-
formation on a model of order using a projection matri¥, wheren andq (with n > q)
are the orders of the full and reduced models respectively. A common complaint about
the applicability of system (3.3) is that when using the model in simulation, the nonlinear
function@s must be evaluatedtimes for every reduced vector field evaluation. Therefore

finding an approximation functiog: R — RY, such thatg(w) ~ V'®;(Vw), Yw € RY,
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with an evaluation cost much cheaper tt@{m), would be of great interest for most non-
linear model order reduction techniques. A few results can be found about this topic. For
example, [84] investigated the possibility of using Kernel methods for such a construction,
while [85, 86] proposed methods based on polynomial (Taylor series) approximation of
VD¢ (V-).

However, when considering the special case (3.3), it would be much more convenient
to find an approximation to the scalar nonlinear functign instead of the entire vector

field. For example, ifp; is approximated by a scalar polynomial of degdee

. d
P2~ (D=3 P, (3.4)
K=0
and accordingly i i
s (V1)
O (v) ~ B (v) 1= %@), (3.5)
i s (Vn) ]

then the corresponding vector field approximation gevector ofg-variate polynomials of
degredal
Vo (V) m VB (VX) = 5 e, (3.6)
B

wherep € Z%,B = (B1.Bz2,...,Bq) . ¥ Bj < d, ¢ € R% andx? is shorthand for x?". The
] j
approximated system becomes

X(t) = AX(t)—V'®s (VX(t))+Bu(t)
yt) = Cx(t)

(3.7)

The above polynomial approximation scheme has the following benefits:

1. Approximating a scalar nonlinear functign is much easier than approximating the

vector-valued nonlinear functio ®¢ (V).

2. It can be verified that the coefficient vectogscan be computed efficiently.
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3. The Jacobian of the approximated vector field is

A—V’diag(%,...,%) V. (3.8)

If Ais symmetric and Hurwitz, the Jacobian can be constrained to be Hurwitz simply
by constraining the univariate polynomi%}';i to be nonnegative, which is true if
and only if it is a sum of squares of polynomials, and this condition can in turn be

efficiently enforced using linear matrix inequalities (LMI) [73].

However, there are two issues that are worth considering:

e Estimating and controlling the cost of evaluating the polynomial approximated vector
field.

e Providing precise statements about the accuracy of the approximation quality in
terms of quantifiable system measures such as the L2 gain (to be defined in Sub-

section 3.2.2) of the difference system of (3.3) and (3.7).

The answer to the first question depends on the specific application. The computa-

~ +d
tion cost for evaluating nonlinear vector fiald®¢ (V) isO | q q . Since such

cost is independent af, and since typicallyn > max{q,d}, computation efficiency is
+d

greatly improved. However, as also pointed out in [8 ],q is admittedly still a
d

large number even for not excessively latggandd. Measures should be taken to control

computational complexity, but this will not be discussed here, as it is not the main focus.
Instead, this chapter presents results that address the second issue: providing statements

about the accuracy of the approximation. In particular, under the assumptions that system

(3.3) has finite incremental L2 gain (to be defined in Subsection 3.2.3) and stability, it will

be shown that the L2 gain from inputto the difference of output of systems (3.3) and

(3.7) is bounded by a linear function of the L2 gain of the difference of the scalar nonlinear

functions@s () — @¢ (-), if the latter difference is small enough. In addition, this chapter

presents a framework for numerically calculating an a priori (i.e., before simulation) error
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bound of the L2 gain of the difference system, again based on the L2 gain-pf ¢ (-).

Finally, it should be noted that the results of this chapter are valid for a more general

framework (3.1) than what is discussed in this motivating application subsection. Namely,

the system error is presented in terms of (3.1) and (3.2), and the vector field approximation

error is between general nonlineariti@snd®.

3.2 Technical Background

3.2.1 L2 gain of a memoryless nonlinearity

Letue R™ andy € RP be the input and output of a memoryless nonlineakityi.e.,

y=F(u)). Then the L2 gairyr of the memoryless nonlinearity is defined as

F(u
yF — SUpH ( )HZ (39)
uz£0 Jull

3.2.2 L2 gain of a dynamical system

Letu: R, — RM™andy: R, — RP denote the (finitely L2 integrable) input and output
signals of a dynamical system. The L2 ggiof a system is defined as

: ; T 2 2 2
vi=inf renf | (e uo 5 - o)) dr > (3.10)

for all valid input/output pairgu,y). For the rest of the chapter, unless noted otherwise, L2

gain related integrals inequalities are assumed to holdlfaalid input/output pairs.

Intuitively, finiteness of the L2 gain of a system means that the output energy is no
more than a constant times the input energy, and hence the L2 gain can serve as a notion for
stability. In addition, if the L2 gain is small, then the system can be considered “small”, in
the sense that it needs a very strong input to excite any non-negligible output. In particular,

it is desirable that the difference system in Figure 3-1 has very small L2 gain.
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3.2.3 Incremental L2 gain of a system

Let (u,y) be any input/output pair of a system. Then the incremental L2\gaia dynam-

ical system is defined as

:
yi=int roint | (e () ~w(@3) — (b0 -ya(0l3) Jar =0, @11)

for every(us,y1) and(up,y2) satisfying

]
. 2
Tlgfo/o Us(T) — Up(1)| 2T < o, (3.12)

Incremental L2 gain of a system can be used to quantify the sensitivity of the output to a
perturbation in the input. In particular, a system having a finite incremental L2 gain means

for each input there is a unique output corresponding to it.

3.2.4 Small gain theorem

The small gain theorem is a collection of statements bounding the L2 gain of the feedback
interconnection of a nominal mod@& and a disturbanca, using the L2 gains of the indi-
vidual constituents. See for example [87], for a more detailed account of these statements.

The statement relevant to the discussion of the thesis is the following.

Theorem 3.2.1.Consider the feedback connection in Figure 3-2.

A —
W y
G
—> —p
u e

Figure 3-2: Feedback interconnection of a nominal paaind disturbanca.

Letys be the L2 gain ofs (from [w;u] to [y;€]), andya be the L2 gain ol (fromy to
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w). If yaya < 1 then the L2 gain of the feedback connection (froto €) is less than or

equal toyg. |

See, for example [87], for a proof. The small gain theorem is the fundamental tool
upon which the main results of this chapter are based. The discussion of how to apply the

theorem in the context of this chapter will be presented in Section 3.3.

3.2.5 Nonlinear system L2 gain upper bounding using integral quadratic
constraints (IQC)

This subsection only presents the IQC analysis topics that are relevant to the development

of the thesis. See [88] for the rest of the topics.

Consider the system in (3.1). If there exists a nonnegative nuydn@al a nonnegative

and continuously differentiable functia : RY— R, and the following inequality holds
VIulZ—lIvll3 — (OW) x>0, V(x,u) € RIxR, satisfying system (3.1),  (3.13)
thenvT >0

.
| (PIulB=IyI5) dr =W (T) =W (x(0) > —= (3.14)

and thereforegy is an upper bound for the L2 gain of system (3.1) &ids a certificate
for proving the L2 gain upper bound. A class of nonnegative funcWdts) that is partic-
ularly convenient for analysis is the quadratic functibiix) = xX'Px for some symmetric
positive semidefinite matrif € R9*9 because the search for the matfixcan be carried

out efficiently as a SDP [56]. Using quadratic certificatéx) = X'Px, eq. (3.13) becomes
V2 ||ull5—[ICX||5—2XP (Ax—V'w+Bu) >0, V (x,u) € RxR andw=®(Vx). (3.15)

For a general nonlinear vector fietd, showing the existence & > 0 andy that satisfy

inequality (3.15) is difficult. However, the technique of IQC analysis [88] can be employed
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here: first introduce a quadratic functiordlk, w) that satisfies the following property

/
N X 211 212 X
w=®(Vx) implies o(x,w)= >0, (3.16)
W 232 222 W

then remove the constraimt = ®(Vx) in (3.15) and instead solve the following for a

guadratic certificate.
Y llull5 - ICX|5 — 2XP (Ax—V'w+Bu) —o(x,w) >0, V¥x,w,u (3.17)

Note that ify andP satisfy (3.17) then they automatically satisfy (3.15) by the definition of
o (3.16). But the converse is not necessarily true, therefore searchiggufaP through
(3.17) results in fewer options. However, (3.17) has the advantage that it can be written as

a LMI (with respect taP andr := V).

—C'C—PA-AP-3;; PV'—05%;, —PB
VP—05%}, —S 0o | =0 (3.18)
~BP 0 rl

More generally, if there exist more quadratic functior@soo, ... such that
w=®Vx) implies oj(x,w)>0, Vi,
then solving the following LMI feasibility problem (with decision variabes, t; > 0)
V2 [lull5— ICX|5 — 2XP (Ax—V'w+ Bu) — Y Toi(xw) >0, Yx,wu (3.19)
.

would result in a less conservative search than the feasibility problem with (3.17) because
if (r,P) satisfy (3.17) then they also satisfy (3.19) simply by pickimg= 0, j > 2, while
the converse is not necessarily true. Note also that the search with (3.19) is more restrictive

than that with (3.15) for the same reason mentioned in the case of a single

In summary, in order to find an upper bound of the L2 gain of a system of the form (3.1).
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The following procedure can be used: first collect characterizations of the nonlin@arity
in the form of IQCso1, 02, ..., then setup and solve the following SDP.
migkze 1
subjectto LMI (3.19)
r>0

P=P >0.

(3.20)

Note that the L2 gain upper bound provided by such a procedure can be strictly greater
than the true L2 gain because the class of certificates is restricted to quadratic (which is
generally not rich enough except for the LTI case). Furthermore, inequalities such as (3.19)
do not allow all the options (in terms ofandP) that satisfy (3.15). Nevertheless, this is a

practical method for nonlinear system L2 gain upper bounding because of its tractability.

3.3 Error Bounding with the Small Gain Theorem

This section first sets up the L2 gain error bounding problem as the L2 gain upper bounding
problem of the difference system. The difference system is formulated as a feedback con-
nection between a “nominal” plant that does not contain any approximation vector field,
and the “disturbance” part consisting of the error of the vector fields. The L2 gain upper
bounding problem is then analyzed by the small gain theorem, which is a standard part of
robustness analysis. However, the small gain theorem can be conservative in some cases,
especially when the L2 gain of the disturbance part is small. To allow a more general use of
the small gain theorem, the first contribution of the chapter is presented, namely a scaling
parameter is introduced in the feedback. Finally the ramification of the reformulations will

be discussed.
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3.3.1 System error bounding problem

Definition 3.3.1. The error between systems (3.1) and (3.2) is defined as the L2 gain (from

u to e) of the following difference system (see Figure 3-1 for its block diagram).

X1 = AXl—l—CD(Xl)—f—BU
Xo = Ax+®(x2)+Bu (3.21)

e = C(Xl—Xz).

Therefore, the error bounding problem of this chapter is to find upper bounds of the L2 gain

of system (3.21) using the L2 gain informatioriof- ®. [ |

3.3.2 Difference system formulated as a feedback interconnection

System (3.21) can equivalently be written as

X1 = Ax+d(x1)+Bu

X2 = Ax+®P(X2)+Bu+w

e = Clx—x) (3.22)
y = X

W= ®y)—®(y).

It can be seen that system (3.22) fits in the small gain theorem framework in Figure 3-2. In
particular, systen® in the figure corresponds to the part of system (3.22) with input/output
[w;u] and[y;€] and the disturbance in the figure beifA@y) = ®(y) — ®(y). The feed-

back structure of system (3.22) suggests the use of the small gain theorem in Subsection
3.2.4. However, the small gain theorem cannot be readily applied because the assumption
veYa < 1 might not be satisfied. More importantly, even if the assumpfioyy < 1is
satisfied, direct application of the small gain theorem can lead to a too conservative L2 gain
upper bound of system (3.22) — the small gain theorem provides the lyoanyd which

is independent o, while it would be desirable if lig) .oy = 0, since the L2 gain of the
difference of two identical systems should be zero. This latter difficulty can be resolved

through the use of a scaling parameter discussed in the next subsection.
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3.3.3 Small gain theorem applied to a scaled feedback

Consider Figure 3-3, which is equivalent to Figure 3-2.

WI_ ______________ _Iy

|
»a - > Ja
I > L »
u 1 :e
:Ga [

Figure 3-3: Feedback interconnection of a nominal paand disturbancaA with mutually
cancelling parameterga and%a Gg is the original plant parameterized by the scalar

For the rest of the chapter the scadas assumed to be nonnegative. Systégin the
figure has the form
X1 = Axqg+ CD(X;L) + Bu
X2 = Axp+®P(x2)+Bu+/aw
? 2+ %) va (3.23)
e = C(xg—Xx2)
y = Vax.
Application of the small gain theorem to the feedback system in Figure 3-2 results in the

following statement.

Theorem 3.3.2.Letyg, be the L2 gain of system (3.23), frdow] to [e;y]. If % <1,
then the L2 gain of the feedback interconnection (3.22), fudme, isy < yg,. [

Remark3.3.3 Since Theorem 3.3.2 holds for all valueafit would be natural to choose

the value ofa which minimizes the small gain theorem L2 gain bowag. In order to
manipulate the L2 gain bound, it would be necessary to studyyagandyg,ya/a change

with a. In Section 3.4 a statement (Lemma 3.4.1) will be shownygat O(y/a) if a<1,

then Theorem 3.3.2 can be applied to form another statement (Theorem 3.4.3) that gives

some theoretical insight into the solution of the error bounding problem in Definition 3.3.1.
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On the other hand, in section 3.5, the IQC analysis procedure described in 3.2.5 will be
applied to directly compute an upper bound yet numerically. Then the application of

Theorem 3.3.2 leads to a numerical procedure to solve the problem in Definition 388B.1.

3.4 A Theoretical Linear Error Bound in the Limit

In this section, to apply theorem 3.3.2 in Subsection 3.3.3 to solve the error bounding
problem in Definition 3.3.1, it will be shown as Lemma 3.4.1 in Subsection 3.4.1 that

under some assumption, the inequality
Jc>0:ys, <cya Va<l (3.24)

holds. With eq. (3.24), the following can be implied.

e If a> 1, then inequality (3.24) does not hold, hence in this case unfortunately Theo-

rem 3.3.2 does not apply.

e If a<1, theneq.(3.24) holds. From eq. (3.24) it can be seen that it would be desirable
to choosea as small as possible. However, from what can be guaranteed by eq. (3.24),
asa goes to zero, the terys,ya/a goes to infinity, hence violating the small gain
theorem assumptioys,ya/a < 1. Therefore, there is a tradeoff between choosing
a small to obtain the tightest possible L2 gain upper bound and choeslaggye
enough so that Theorem 3.3.2 still applies. The choice of the nontrivial minimum of

awill be given in Subsection 3.4.2 as part of Theorem 3.4.3.

e Whena =0, eq. (3.24) states that the L2 gain®f should be zero. This is indeed
the case becaudgy,—o is the difference of two identical systems. Therefore, if
ya = 0 (i.e., @ = @), then Theorem 3.3.2 can be applied witlthosen to be zero,

thus providing the expected zero L2 gain bound.

The rest of this section of this section is organized as follows. In Subsection 3.4.1
Lemma 3.4.1 will be shown, and then in Subsection 3.4.2 Theorem 3.4.3 will be shown as

a direct consequence of Lemma 3.4.1.
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3.4.1 A preliminary lemma

First consider the system with inpgtand outputz

X = AX+®P(X)+
)+ (3.25)
z = Cx
where the matrices and functions are as defined in (3.21), except for the arbitrary function

g. Define

as the incremental L2 gain of (3.25) frogro z,
V1 g (3.25) frogrt (3.26)

Y2 as L2 gain of (3.25) fronju; w] to x wheng = Bu+w,

Lemma 3.4.1.Lety; andy» be the quantities defined in (3.26). Dengtg as the L2 gain
of systenG, (3.23), from[u;w] to [e;y]. If y1 < 0 andys < o, then

Yo, < V2amax{yy,y2}, Vae [0,1]. (3.27)

Proof of Lemma 3.4.1. First let

=}

g

1-
O2:

Y

=B
Bl +w

)

be two inputs to system (3.25) amgdandz, be the corresponding outputg. < c implies
that for the system
X1 = Axg+ P(x1)+ Bl
X2 = Axp+P(x2)+Bl+W
€ = C(xg—x2)
the following integral inequality holds

inf

T>0

T 2 2
[ (Vi IBa—Bi— |3 &3) dr> <.
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which implies,va > 0,

T 1
. ~112 ~i2 x|12
ot [ (a2 (1a13+ 5113 - 1813 ) o> .

T>0
or
T
- 2 2 2
int [ (a (lul3+ wi3) —1ef3) dt > —e, (3.28)
whenu= 10, w= \i@w, ande = & That shows that the system

X1 = AX]_-l-qJ(Xl)-l-BU
Xo = AX2—}—CD(X2)—|—BU—|—\/5W

e = C(xg—Xx2)

has L2 gain fromu;w] to e less than or equal t¢/ay;. This means that syste@, (3.23)

has L2 gain fronju;w] to eis less than or equal tg/ay; .

Secondly, for system (3.25), lgt= Bl+W. Theny, < « implies in the following

system
X1 = Axqg+ (D(X]_) + B

~

Xo = AX2+CD(X2) +Bl+wW

y = X

the following inequality holds

)
int [ (B (a3 3) ~ [913) ot > —eo,

which implies,va € (0, 1],

int [ (a2 (1a3+ 2 wi2) —alg2) de> oo (3.29)
T>0.J0 2 2 a 2 2 ’ .

Note that the fact th% > 1for a<1was indeed used. Rewrite the signals in eq. (3.29) in

terms of the signals in eq. (3.23). Thatuss 0, w = %W andy = ,/ay. This results in the
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following inequality:

)
int [ (a8 (Il -+ wi3) — I¥113) dr > —. (3.30)

which means that the L2 gain of systésg in eq. (3.23) fromlu;w| to y has L2 gain less
than or equal tg/ays.

Eqg. (3.28) together with eq. (3.30) implies that, in terms of the quantities associated
with Gz in (3.23), the following integral

)
int | (2a(max{ya. o)) (I3 -+ lul3) — (Iyl3 + lef3) ) ar  (3.31)

is bounded from below for all input/output pair @f and this proves eq. (3.27a < (0,1].

For the case ol =0, y1 < 0 impliesyg,|a=0 = 0, S0 eq. (3.27) also holds in this casdll

Remark3.4.2 Lemma 3.4.1 suggests that

c
[ a .32
aILno ab < (3.32)

with B = 0.5. In fact, the value ofd = 0.5 is the largest possible exponent such that the
limit in eq. (3.32) is still finite. To see this, consider the LTI case wi@&{ean be given as

a transfer matrix

aG G
va vaGi1 G |
Go1 0

where the G,»" block is zero because the transfer matrix fronto e is zero. Then the

limit in eq. (3.32) holds, that is,

2058

VvaGi1 G
Go1 0

(o]

if and only if B < 0.5. Since eg. (3.32) must be satisfied by all systems including the LTI
ones, 0.5 is the upper bound for the valugdauch that eq. (3.32) still holds. [ |
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3.4.2 The linear error bound in the limit

Using Lemma 3.4.1, the main result is now presented.

Theorem 3.4.3.Lety; andy, be the quantities defined in (3.26). Alsoygtbe the L2 gain

of ®—din (3.22). Thatis, )
D(V) —P(v
Va = SUIO| (V) — D(v)]
Vs£0 V]

Denotey as the L2 gain fronu to ein system (3.21).

If y1 < o0, y2 < 00 andv/2max{y1,y2}ya < 1, then

y < 2(max{ys,y2})Va. (3.33)

Proof of Theorem 3.4.3.1f yao = 0, then by the finiteness of, y = 0 and hence (3.33)
holds because system (3.21) reduces to the difference of two identical systems. Now con-

sider the case whey > 0, the small gain theorem states that
Y<VYg,, Va: % <1l

Therefore,

y< min Yyg,. (3.34)

a —ngyA <1

Denotec := v2max{y1,y2}. Sincey; < o andy, < « by statement assumption, Lemma
3.4.1 states thata € (0,1],

Yo, < cv/a and hence

YeaYa _ CYa
a

<7

Sincecya < 1 by statement assumption, the &8k, 1] # 0. 3a € [cya, 1] :

(cya)?<a<1



and hence

1> CYn > YGaYa

Va a

Therefore,

y< min ye, < r>n|2ry120¢5=02vA-
a—a=<1 a=CYp

Remark3.4.4 Intuitively, Theorem 3.4.3 asserts thatyf, the L2 gain of the difference

® — @ (and alsap— @) is sufficiently smallthen the approximation quality in terms of the

L2 gain of the error system (3.21) is also small. In particular, it provides a guideline for
designing the approximation system (3.2). It states that searchinggfohat is close to

@in L2 gain sense, should be a reasonable choice, as opposed to other methods such as
Taylor Series, for which the accuracy has not been rigorously established. In addition, the
linear error bound (3.34) can be used to guide the design of the vector field approximation

in the following sense:
e Pick a desired system errer

e Choose any available vector field approximation technique (not discussed in this the-

Sis).

e Obtain an approximated reduced system; compute the vector field L2 gain error, and

the difference system L2 gain, denotectasinde; respectively.

e If €1 < € then the desired approximated reduced system has already been obtained.
Otherwise, obtain a better approximated system (e.g., by increasing polynomial or-
der) so that the new vector field L2 gain error is less t@?nthen under the assump-
tions of Theorem 3.4.3, the new reduced model will satisfy the desired system error

tolerance. [

Remarl3.4.5 However, it should also be noted that Theorem 3.4.3 can be conservative and
eq. (3.33) is not true foy, that is not small enough. Therefore, it would be interesting to
see if there exists a less restrictive statement or a numerical procedure to compute a tighter

bound. The result in the next section is an attempt to do so. |
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3.5 A Numerical Error Bound with IQC

Theorem 3.3.2 in Subsection 3.3.3 was applied in Section 3.4 via Lemma 3.4.1 and Theo-
rem 3.4.3, which provides some theoretical insight into the solution of the error bounding
problem in Definition 3.3.1. However, the practical use of Theorem 3.4.3 is limited because
the coefficients in eg. (3.33) can be too conservative.

In this section, on the other hand, a numerical procedure, based on the IQC analysis
described in Subsection 3.2.5, is proposed to apply Theorem 3.3.2 by directly computing
an upper bound of the L2 gain @&, in the theorem. The procedure is summarized as

follows.

3.5.1 The numerical procedure

The proposed numerical procedure is as follows.

e For adiscrete set dfag,ap, ...} (€.9.,ac:= 107%), use IQC analysis to fing, s, ...
as the L2 gain upper bounds for the parameterized sysBam&s,,, . . .

e For any approximation vector fiel#, evaluate the L2 gain op — ®. Denote it as

ya. Find the index such that

- - YkYa
I=argmingg . — <1
gk ak

e Vi is returned as the upper bound of the L2 gain of the difference system (3.21).

Since the order of systef@; (3.23) is2q andq is assumed to be small, solving the LMIs

to obtain L2 gain upper boundg for all ay is relatively cheap. Once the L2 gain upper
boundsy1,y», ... have been found, the numerical procedure requires a trivial amount of
time to analyze the system L2 gain error for@lsuch thay, is small enough. As a final

note, it should be pointed out that since the numerical procedure is based on the small gain
theorem, it is possible that wheg is large, the procedure fails to return any conclusive

result.
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Figure 3-4: A transmission line with diodes.

3.6 Numerical Experiment

In this section the numerical procedure described in Section 3.5 is applied to analyze the
L2 gain of the difference system due to approximation of the nonlinear vector field. The
specific application example is a transmission line with diodes described in [83] and shown

in Figure 3-4. Using nodal analysis, the model of the diode line has the form

Xi = Aixf —M'®(Mx¢)+Bsu
yi = CiXs,
with
A; € RNN M e RNXN By ¢ RNXL ¢ € RIXN,
®(v) =diag(@(v1),®(v2),...) and @(v) =€ k-1
with M being a sparse matrix relating branch voltages to node voltages. Suppose there
exists a projection matri¥ € RN*9 (e.g., dominant singular vectors of some matrix stacked

by columns of trajectories), then the reduced model is

X = AX—V/®(V,x)+Bu
' ( ' ) ' (3.35)
y — CI’X7

with A, =V'A{V,V, = MV, B, =V’'B andC; = CV. System (3.35) is of the form of (3.1),

hence the numerical procedure described in Section 3.5 can be apmgedndy% are
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plotted in Figure 3-5 for a range of valuesaf

Figure 3-5: Transmission line example. The upper line (circles) is the numerical upper
bound for the L2 gain of the difference system. The lower line (triangles) is the minimum
allowablea such tha“’A%,;G"’1 < 1, and hence the small gain theorem still applies. For instance,
if we want the system L2 gain error to be less thén?, thena should be at most x 107>,
corresponding to a maximum allowable vector field egpof about10-3.

In this figure, the upper line (circles) yg, that is used as the upper bound for the L2
gain of difference system (3.21). On the other hand, the lower line (triangles) is the quantity
é used in determining the minimum for a specificya, such that% < 1 (hence the
small gain theorem applies).

As an example to illustrate how Figure 3-5 can be applied, let the desired system level
error bel% or less. By the small gain theoremyi, < 1%then the accuracy is achieved.
According to Figure 3-5, the maximum allowalador the small gain theorem to be appli-
cable is abou® x 10~° (the x coordinate where horizontgl= 102 intersects the upper

line). Fora=2x 107>, the corresponding value gﬁ— is about10~2, which means that

the vector field L2 gain erroya should be at most0—3.
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3.7 Conclusion

This chapter investigated the estimation of the L2 gain system error produced by the ap-
proximation of the nonlinear vector field within any nonlinear model order reduction algo-
rithm for systems in the form of (3.1). This problem was formulated as an L2 gain upper
bounding problem of a feedback interconnection of a “nominal” plant and a “disturbance”
(i.e., vector field error). The chapter proposed a framework for broadening the use of the
small gain theorem by introducing the mutually cancelling gaj/ﬁisand\/i51 in the feed-

back loop. While this modification failed exactly when the small gain theorem failed to
apply, it was nevertheless able to tighten the L2 gain upper bound (by the usg,aind

the bound was asymptotically tight. Based on the scaled feedback setup, we have shown
that the difference system L2 gajrwas upper bounded by a linear function of the vector
field difference L2 gainya, providedy, was sufficiently small. In an attempt to fight the
conservatism of the bound, this thesis also proposed a numerical procedure that combined
IQC/LMI techniques and small gain theorem. Although the numerical procedure still did
not apply for large errors in the vector field, it did produce a more readily computable bound

than the theoretical linear bound. Finally, a numerical example was given to demonstrate

the use of our numerical procedure.
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Chapter 4

A Convex Relaxation Approach to the
|dentification of the

Wiener-Hammerstein Model

4.1 Introduction

Efficient hierarchical system level design and optimization could be facilitated by the avail-
ability of automatic and accurate behavioral modeling tools for system blocks such as non-
linear circuits (e.g. operational amplifiers) or nonlinear devices (e.g. MEMS). In the current
state of the art, analog designers and system architects generate analytical or semi-empirical
behavioral models of their blocks using their intuition and expertise formed on thousands of
hours spent running slow circuit simulators such as SPICE, or even slower Partial Differen-
tial Equation (PDE) field solvers. Most of the efforts in the field of automatic and accurate
modeling of nonlinear system blocks involve development of techniques for efficiently and
accuratelyreducingavailable large nonlinear systems generated by circuit schematics and
parasitic extractors [85, 83, 89, 90, 86]. When only input/output physical measurements
are available for a given circuits or systems, system identification may be the only valu-
able option. Furthermore, even when internal circuit schematics are available, or when the

internal information of PDE solvers used to simulate MEMS is accessible, system identifi-
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cation may still represent a both efficient and powerful alternative method to model order
reduction. For instance, the authors of [39, 40] presented comprehensive surveys of the use

of system identification for power-amplifier related modeling.

The theory for linear time-invariant (LTI) system identification is relatively mature and
complete [91]. On the other hand, the practice of nonlinear system identification tends to be
case dependent [37, 38]. Volterra series [92] is a general approach, and it has been very pop-
ular among engineers working on behaviorial modeling (e.g., [93, 94]). In this chapter, only
a specific class of nonlinear system identification problem will be considered — the iden-
tification of the Wiener-Hammerstein system with feedback. Classical treatments of the
Wiener-Hammerstein system identification problem can be found, for example, in [91, 95].
Many more recent treatments of the problem can be found, for example, in [45, 46, 47].
In those references, however, the identification of the nonlinearity is parametric (i.e., the
nonlinearity is assumed to be of some form such as piecewise linear or polynomial func-
tions). Therefore, those previous results can be restrictive in application. Non-parametric
identification of block oriented models, on the other hand, are more flexible in terms of
modeling power. Reference [96] proposed an algorithm for the non-parametric identifi-
cation of the Wiener system under the assumption that the input is Gaussian noise. The
authors of [97], assuming that the LTI block is known, reduced the identification problem
of the Wiener system to a least squares problem. [98] proposed an unbiased identification

algorithm based on maximum likelihood estimation.

In a sense, the idea of the system identification scheme proposed in this chapter has
been explored under the banner of model validation [99, 100, 101, 102, 103, 104, 105]. In
this problem, a model with a given block diagram is to be invalidated by proving that it is
inconsistent with some input/output measurement obtained from experiment. The invali-
dation is typically performed through the finding of some infeasibility certificate of some
constraint set. Conversely, the finding of a feasibility certificate will prove the consistency
of a model with the given input/output measurement data. This forms the basis of the
block diagram oriented system identification schemes such as [106, 107, 108]. In partic-
ular, [108] proposed a very general approach for the identification of the Wiener system

assuming only the monotonicity of the nonlinearity. [108] set up a convex QP based on the
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idea of enforcing input/output functional relationship of the nonlinearity. The algorithm
proposed in this chapter can be considered as an extension of the idea in [108]. In fact, the
formulation of the optimization problem in this chapter also centers around some sector
bound property of the nonlinearity. However, because of the more complicated Wiener-
Hammerstein structure, the resultant optimization problem is more involved. In fact, it is
a non-convex QP. Nevertheless, with the proposed SDP relaxation, it will be demonstrated
that the non-convex QP formulated in this chapter is not necessarily hard to solve.

The rest of the chapter is organized as follows: in Section 4.2 some technical back-
ground and definitions will be given. The main ideas of the problem formulation and solu-
tion procedure, explained in Section 4.3 and Section 4.4 respectively, will be given through
a special setup in which there is no output measurement noise or feedback. Then in Section
4.5 the identification setup with output measurement noise is considered. Differences in
the analysis and algorithm due to the noise will be highlighted. After that, the full feedback
Wiener-Hammerstein system identification problem will be considered in Section 4.6. Fi-
nally, in Section 4.7 a brief account of the complexity of the proposed algorithm will be
given, and application examples will be presented in Section 4.8. Table 4.1 summarizes the

development of the proposed system identification algorithm.

Table 4.1: The organization of Chapter 4

no noise | with noise
no feedback | Sec4.3-4.4 Sec4.5
with feedback - Sec4.6

4.2 Technical Background and Definitions

4.2.1 System and model

In this chapter, aystemis a function which maps its input signal to its output signal. On
the other hand, the termodel can have two meanings:raodel can mean 1) a collection

of parameterized systems usually of some specific form, or 2) a specific instance of the
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collection defined in 1). For example, for the finite impulse response (FIR) transfer function
fitting problem, the unknown system can %i_é?—i whereas the model is of the forag +

a1z 1 +...4+anz " for arbitrarya, € R. On the other hand, an instance such a2z 1 +

...+ (n+1)z "is also called a model. In the subsequent discussions, the meaning of the
term “model” should be obvious from the context. The definitions of the terms system
and model will allow us in this chapter to distinguish the fixed (but unknown) input/output
relationship (i.e., the system) from the one that is to be determined by the identification

algorithm (i.e., the model).

4.2.2 Input/output system identification problem

Definition 4.2.1. The input/output system identification problem considered in this chapter
is as follows: given the input/output measurement pairs of an unknown dynamical sys-
tem, find a stable model such that the given input/output measurement pairs satisfy the

input/output relationship of the model. [ |

Remark4.2.2 Contrary to many other problems which seek to ensure the “generalization
capacity” of the solutions (e.g., variance minimization in statistical modeling), the solution
criterion of Definition 4.2.1 is based entirely on the matching of the given problem data. It

is assumed that the given problem data covers all the dynamics of interest. [ |

Remark4.2.3 System identification problems in the subsequent sections will be defined

according to Definition 4.2.1. |

4.2.3 Feedback Wiener-Hammerstein system

In this thesis, the unknown system in the input/output system identification problem de-
scribed in Subsection 4.2.2 is assumed to be from a specific class — either of the Wiener-
Hammerstein form, or the Wiener-Hammerstein with feedback in Figure 4-1.

The following notations in Figure 4-1 will be used throughout the chapter:

e The input of the unknown system is denotediaghis is part of the problem data.
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Figure 4-1: The Wiener-Hammerstein system with feedbaSk.denotes the unknown
system. K = 0 corresponds to the Wiener-Hammerstein system without feedback. The
output measurementis assumed to be corrupted by some noise

e The outputmeasurementf the unknown system is denotedyasThis is part of the

problem data.

¢ The true output of the unknown system is denotegladhis is not available to the

system identification process.

e The output measurement noise denotedhas The output measurement noise is

additive. That is,
y[t] =P [t} +n*]t], Wt (4.1)

The following assumptions are made in Figure 4-1.

1. The signals, y, y° andn* are one-sided and of finite length For example,

w ift=01... N—1,
uft] = :

0 otherwise

2. G*, H* andK* are assumed to be single-input-single-output (SISO) FIR systems. In

addition,H* andK* are assumed to be positive-real passive. That is,

Re{H* (el®)} >0, Vwe [0,2m)

. (4.2)
Re{K* (e/®)} >0, Vwe [0,2m)
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3. Nonlinearityg" is assumed to be scalar valued, memoryless, and is assumed to satisfy
certain sector bound criterion in incremental sense. That is, there exists a scalar

0 < B < o such that
(¢(0)-¢'(a)(¢'(b)-¢'(a) ~Bo+Ba) <O, YabeR  (43)

Practically speaking condition (4.3) means that the nonlinegfitg monotonically non-
decreasing and its derivative has an upper bound. This is summarized by the following

lemma.

Lemma 4.2.4.Let@" : R+— R andf3 > 0O, then condition (1) and (2) in the following are

equivalent.

1) (¢'()-9¢'(@) (¢ (b)— ¢ ()~ Bo+Ba) <O, VabeR
((p*(b) — qf*(a)) (b—a) >0, Vabe R (monotonicity)

(2)
@ (b) — (p*(a))2 <P2(b—a)?, VYabe R (derivative bound)

Proof of Lemma 4.2.4. Denote the sef = {(v1,V2) € RZ vy =V, or ¢* (v1) = @ (V) }.
Then the statement is trivially true (&, b) € ‘£. Therefore, it will be assumed for the rest
of the proof that(a,b) € (R?\ £) := Z°.

First we show the direction “(13> (2)”. Note that (1) implies

(¢"(b) — 9" (@) (b—a) = 5 (¢'(b) — ¢ (a))* > 0, V(ab)e £, (4.4)

I =

hence showing the first statement of (2). Then, dividing(¢¥b) — ¢*(a)) (b—a) and
multiplying with 3, eq. (4.4) becomes

B> W >0, V(ab)e Z° (4.5)

Squaring both sides of eq. (4.5) yields the second statement of (2).
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Now we show the direction “(2%- (1)”. Dividing the first statement of (2) bgb — a)2
yields

gﬁ%%?@zq v (a,b) € Z°. (4.6)

On the other hand, the second statement of (2) implies that
B 2
((p<b) (p<a)) < [32, v (a7 b) e EC‘ (47)
Eq. (4.6) allows the squared root of eq. (4.7) to hold, resulting in

WO =KB) 5 yap)e z- (4.8)
b—a

Since(¢g*(b) — ¢*(a)) (b—a) > 0 by the first statement of (2), multiplying both sides of eq.
(4.8) with (¢ (b) — @*(a)) (b—a) yields (1), thus concluding the proof. [

Remark4.2.5 The derivative bound in Lemma 4.2.4 does not result in much loss of gen-
erality because any physical system is supposed to have a finite gain. The monotonicity
assumption, however, is made due to stability concerns: together with the positive-real as-
sumption in eq. (4.2), the system in Figure 4-1 can be shown to be stable using the circle
criterion (see [109] Chapter 4). [ |

4.2.4 Non-parametric identification of nonlinearity

Typically, the identification of a scalar memoryless nonlinearity can be done in two ways:
parametric and non-parametrlearametric identification means that the to-be-determined
nonlinearity is assumed to be of some pre-defined form which carries some to-be-determined
parameters. A very popular class of the pre-defined forms is the linear combination of some
basis functions, with polynomials and piecewise polynomials being some popular choices.
A more extensive treatment of the topic of parametric identification can be found in the
field of machine learning. See, for example, [110, 111] for more detdds-parametric
identification, on the other hand, does not assume any form of the to-be-determined non-

linearity. Instead, the nonlinearity is specified through a lookup table of the samples of
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its input and output. Values of the nonlinearity not specified in the lookup table are typi-
cally obtained using some interpolation schemes such as splines [112]. The particular type
of interpolation scheme chosen in this thesis is linear interpolation. That iSlety),
k=1,2,...,N be the lookup table of the nonlinearigy Without loss of generality, assume

Vi < V2 < ... <VN. Then the nonlinearityis defined as

Wi if v=v, for somek,
Wi+ ST () if v£ v, forallkand3i:vi <v<vigg,
(p(V) _ ! Vit1—Vi : ! : (49)
W+ et (V=w) i v# v, forallkandv > w,
Wy + 2t (V— V) if v#£ v, forall kandv < vy.

In general, when the samples given in the lookup table are dense enough, the linear in-
terpolation scheme in eq. (4.9) is sufficient to provide an accurate characterization of the
nonlinearityg. An added benefit of the linear interpolation scheme is thastitisfies the
sector bound eq. (4.3) &t (specifying the lookup table), then it satisfies the sector bound

for all values of its input argument as well (see Lemma 4.3.1 in Subsection 4.3.1).

4.3 ldentification of Wiener-Hammerstein System — No Mea-

surement Noise

The first problem to be considered in this chapter is the identification of the Wiener-
Hammerstein system without the feedback or the output measurement noise. The identifi-
cation problem will be formulated as two equivalent optimization problems in Subsections
4.3.1 and 4.3.3 respectively. The solution technique for the optimization problems will be

described in Section 4.4.
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4.3.1 System identification problem formulation
4.3.1 A: Problem data

The problem data is the input signahnd the output measurement sigpalf the true (but
unknown) systen$" in Figure 4-1. For ease of exposition, a signal will also be denoted as

the vector of its non-zero values. For example,
!/
U= |u0] U1 ... uN-1]] .

The symbol(u,y) will denote a pair of corresponding input and output measurement. In
a realistic system identification setup, there are more than one pairyf However, for
simplicity, this chapter will only deal with the case with only one pair. Nevertheless, the

technique introduced in this chapter can be extended to the general case.

4.3.1 B: System identification model and decision variables

It is natural to choose a model with the same structure as the true but unknown system (i.e.,
the Wiener-Hammerstein structure in Figure 4-2). In the model in Figure 4-%& thed
H are FIR systems, anglis a scalar memoryless nonlinearity (i.e., a nonlinear function).

Obviously, the model is specified wh&) H andg are specified.

—» G —» o —» H —>

Figure 4-2: The Wiener-Hammerstein modeb-andH are FIR systems, anglis a scalar
memoryless nonlinearity. The last block is chosen téibé for computation reasons.

FIR systems5 andH are characterized by their impulse responses of leNg#mdNy,
respectively. That is,

!/

9= [90 g1 ... gNgfl] ;

h:= [ho hy ... hNh—l}/7 (410
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and the corresponding transfer functionszoandH are

G(2) =go+01Z 1 +... +gn_1Zz N1,
(2 =00+ ONg-1 (4.11)

H(z) =ho+mz t+.. 4+ hy g1z D,

The identification of the nonlinearity is non-parametric. That i is specified only
by some samples of its input/output pair. The valueg other than those given by the
samples can be obtained using an interpolation scheme (e.g., eq. (4.9) in Subsection 4.2.3).
In addition, the samples will be restricted to those computable by the FIR impulse response
g andh. Thereforeg andh are the decision variables sufficient to spegfgs well as the

full model in Figure 4-2.

4.3.1 C: Treatment of the passivity constraint

In order to be a candidate solution of the system identification problem according to Defi-

nition 4.2.1 in Subsection 4.2.2, the model in Figure 4-2 must be stable.

A sufficient condition for stability is that the FIR systé#nin Figure 4-2 is positive real

passive. That is,
Re{H (¢/°)} =ho+hicogw)+...+hy,—1c08((Nh — 1)w) >0, Ywe [0,2m). (4.12)

ThenH 1 will also be positive real passive, and then the “feedback loopd of and the
monotonic nonlinearity of a zero function will be stable by the circle criterion (see [109],

Chapter 3). Consequently, the entire model in Figure 4-2 will be stable.

Ideally the positive real constraint in eq. (4.12) should be enforced. However, constraint
eq. (4.12) turns out to be inconsistent with the solution technique proposed. Therefore,
in all subsequent sections the stability requirement will not be dealt with explicitly. In
Subsection 4.4.3 this issue will be revisited, and a post-processing algorithm will be given

to enforce the passivity dfl (and hence the stable of the final model).
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4.3.1 D: System identification problem formulation — a feasibility problem

The only requirement left for a model to become a solution to the system identification
problem according to Definition 4.2.1 is that the input/output measure(oeyly is satis-

fied by the model. The satisfiability problem is formulated as a feasibility problem in the
following sense. Consider the Wiener-Hammerstein model in Figure 4-3 in which the out-
put and the input are constrained to be the given tatg). Let’s investigate the possible

the choices of the decision variabigandh so that there exist signalse RN andw € RN

with the property thatu,v), (v,w), (y,w) are valid input/output pairs of the blocky @

andH respectively.

G o o H

Figure 4-3: A feasibility problem to determine the impulse responses of the FIR systems
G andH. Hereu andy are the given input and output measurements generated by the true
(but unknown) system. The signal@ndw are the outputs db andH, respectivelyv and

w are chosen so that they define a functpsatisfying sector bound constraint eq. (4.16).

The pairs(u,v) and(y,w) satisfy the following convolution relationship.

v=Ug,

(4.13)
w = Yh,
whereU € RN*Ng andY € RN*M gre defined as
[ [0 0 0o |
u[l] u[O]
0
U:= : (4.14)
u[o]
uN—-1] uN-2] U[N — Ng

- NXNg



[ y[0] 0 o |
y[1] y[O]
S
Y- . (4.15)
: : y[0]
YIN=1] yIN=2] ... yIN=Nul|

For the pair(v,w), in principle, the only constraint imposed is that there exists some
function @ such thatw; = @(v;i), Vi=0,1,...,N — 1. However, to maximally reduce the
redundancy of the possible choices (@fw), the addition constraint is enforced that

should satisfy the sector bound of the form of eq. (4.3). That is,

(p(b) —@(a)) (p(b) —p(a) —Bb+Pa) <0, Vabe R. (4.16)

Constraint eg. (4.16) imposed on the funct@rR — R is equivalent to a constraint on the

generating paifv,w) as
(Wi—Wj) (Wi—Wj—BVi—i—BVJ‘)SO, YN—-1>i>j)>0. (4.17)

The following lemma certifies the equivalence.
Lemma 4.3.1.Let(v,w) € RN x RN, then there exists a functiag: R — R such that
1. ow) =wk, Vk=0,1,...,.N—1.
2. Constraint eq. (4.16) is satisfied py
if and only if constraint eq. (4.17) is satisfied pyw). [ |

Proof of Lemma 4.3.1. The “only if” part is trivially shown by applying statement 1 to
constraint eq. (4.16), which is assumed true by statement 2.

For the “if” part, first notice that eq. (4.17) implies thag = wj if vi = v;. Therefore,
it can be assumed that the entriesvadre unique (i.e.y; # v;j if i # j). In addition, let

V be a sorted version of (i.e., Vi > V; if i > j) with the correspondingy, then eq. (4.9)
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can be applied to define a piecewise linear functposuch that statement 1 is satisfied.

Furthermore, eq. (4.17) implies that

(Wk-i-l - \TVk) (\7Vk+1 - \TVk - ka + ka-i—l) S 07 Vk= 07 17 AR N—2. (418)

Using a similar argument as in the proof of Lemma 4.2.4 in Subsection 4.2.3, eq. (4.18)

implies that
(p(vk—Fl) > (p(vk)7 Vk= 07 137N_2 (4198.)
(p(vk—O—l) - (p(\7k) < B (\7|(+1 - \~/|() ’ Vk= 07 1,...,N- 2. (419b)

That is,@is piecewise monotonic and has piecewise slope upper bound.

Now to prove statement 2, it suffices to prove the case whera (the case oh=Db
is trivially true, and the case df < a is the same as the caselof a). By Lemma 4.2.4,

constraint eq. (4.16) is equivalent to the following two constraints

@b) > ¢(a), Vb>a (4.20a)
ob)—p(@) <B(b—a), Vb>a. (4.20b)

First consider the case wharandb are in one “piece” of the piecewise linear function
@. There are three possibilitie§:there is ndk € {1,2,... ;N — 2} such thata < Vi < b, ii)
Un—2 <a< b, oriii) a< b<V;. According to eq. (4.9), there exists {0,1,...,N—2}

such that

(p(\7i+1>—(p(\7i) (b—a). (421)

o) = ofa) + P

Application of eq. (4.19a) and eq. (4.19b) to eq. (4.21) shows eq. (4.20a) and eq. (4.20b),

respectively.

Next consider the case whemandb are in different “pieces” of the piecewise linear

function@. Thatis, there existsc (1,2,...,N — 2) such thah < Vi < b. According to eq.
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(4.9), there exists> j € {0,1,...,N—2} such that

_ O(Vit1) — @Vi) < 0(Vi) — (V)
9(b) = p(a) + v.il—v. (b-w)+ =5 = (i -a) -
i (p(VkH Vi) (Vi1 — W) -
k=]+

Vier1 — Vg

Application of eq. (4.19a) and eq. (4.19b) to eq. (4.22) shows eq. (4.20a) and eq. (4.20b),

respectively. [ |

In summary, the Wiener-Hammerstein system identification problem in the noiseless

case can be defined as

Definition 4.3.2. [Wiener-Hammerstein system identification problem — noiseless case]
Given the input/output measuremeénty) € RN x RN of an unknown Wiener-Hammerstein
system and positive integelg and Ny, find decision vectorg € RNe andh € RM such

that there exist signalé ¢ RN andw € RN satisfying eq. (4.13, 4.17). u

Remark4.3.3 Itis assumed thatu,y) sufficiently represents the dynamics of the true (but
unknown) system. Therefore, a Wiener-Hammerstein model specified by the solution of
the problem in Definition 4.3.2 should reasonably describes the dynamics of the system of

interest. [ |

Remarkd.3.4 The signalgv,w) can be used as the input/output samples of the nonlinearity
@ in Figure 4-2. @ can be defined, for example, using the linear interpolation scheme
described in eq. (4.9) in Subsection 4.2.3. [ |

Remark4.3.5 Under the assumption th&ly and N, are large enough, the impulse re-
sponses of the true (but unknown) systgirandh* constitute a solution to the problem

in Definition 4.3.2. Therefore, the problem has at least one solution. The caseNyhen
andNy are not large enough can be handled. The discussion will be deferred to Subsection
45.2. [

Remark4.3.6 Typically there are infinitely many solutions of the problem in Definition

4.3.2, the corresponding normalization issue will be discussed in Subsection 4.3.1
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4.3.1 E: Comparison with the model validation techniques

The principles of the identification problem in Definition 4.3.2 and that of the problem of
model validation (e.g., [99]) are very similar. Both problems call for a certificate to the sat-
isfiability of the input/output relationships of the blocks in the respective model structures
concerned. Definition 4.3.2 seeks a feasibility certificate while model validation seeks an
infeasibility certificate. However, there are two major distinctions between the proposed
identification setup and the model validation setup. First, for the model validation problem,
proving theexistenceof the infeasibility certificate is sufficient. For example, in [99, 104]
the question of whether an infeasibility certificate exists is answered by a structured singu-
lar value bounding problem. The Wiener-Hammerstein identification problem in Definition
4.3.2, on the other hand, requires the computation of all signals presented in the model. This
computation can potentially be expensive. The second distinction of the proposed identi-
fication setup from the model validation setup is that the feasibility problem in Definition
4.3.2 will lead to anon-convexjuadratic program, while most of the previously considered
model validation setups lead to the formulation of convex problems. The convexity prop-
erties of the optimization problems also lead to a distinction in the solution approaches.
The published model validation results are mostly based on rigorous analysis, while the
approach adopted in this chapter will be more experimental — some observations will be

substantiated by numerical experiments only.

4.3.2 Non-uniqueness of solutions and normalization

The system identification problem in Definition 4.3.2 is feasible with decision vegtors
andh* (i.e., the impulse responses of the FIR systems in Figure 4-1). However, there are ac-
tually infinitely many solutions. Figure 4-4 depicts a way to generate those solutions. The
non-uniqueness of solutions requires the normalizatiomaridh. However, the normal-
ization issue is not trivial. In fact, uniqueness of solutions cannot be guaranteed in general
for the identification problem in this chapter. Two normalization schemes are allowed in
Figure 4-4:
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Figure 4-4: Non-uniqueness of the optimal solutions without normalization. GVeand

H*, G andH characterize the family of FIR systems with the same input/output relation-
ship. ¢, andc; are positive becausgs*,H*) and (G,H) are assumed/constrained to be
positive-real.

e Partial normalization: Only one ofg or h is normalized. For example, suppdse
is normalized, thems; is fixed. Then the identification engine can pigkto be any
positive number smaller tham, so thaty(-) = ¢" (c1-) /c, satisfies constraint (4.16).

Therefore, there will be an infinite number of solutions.

e Full normalization: Both g andh are normalized. Then the identification engine
must fix bothc; andc, to be some function (depending on the type of normalization
chosen) ofg* and h*, respectively. If* is the maximum value of the derivative
(where it is defined) 0", theng(-) = ¢*(c1-)/c2 has maximum derivative;3*/co
(again, where it is defined). It is clear that sector bound condition eq. (4.16) would
not allow the identification engine to choose the appropigifec; /c; is too large
(i.e., whency /c, > 3/B*). Here the problem is that there is no upper bounc ¢€.

For any given normalization scheme, there egisandh* such that;/c; > B/B*.
Therefore, normalizing both andh might be too restrictive in the sense that the

identification cannot return any solution when there should be one.

Two conclusions can be made in this subsection:
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e Partial normalization should be used because it does not cause any restriction. How-
ever, this implies non-uniqueness of the solutions. Therefore, for the rest of the

chapter, a particular choice of partial normalization will be assumed:
ho=1. (4.23)

While the choice of normalization in eq. (4.23) is somewhat arbitrary, it is not unjus-
2n _

tified becauséigp = | Re{H (e!®) } dw> 0.
0

e With partial normalization, the constafdtin sector bound (4.17) can always be as-
sumed to be one, otherwise it can be absorbed in the part of the decision vector which
is not normalized. Therefore, throughout this chapter, all sector bound constraints

have their values db equal to one.

4.3.3 Formulation of the system identification optimization problem

In this subsection the system identification problem defined in Definition 4.3.2 will be
simplified and put in a format that would facilitate the study of its solution strategy. Some

properties of the optimization problem will also be discussed in Subsection 4.3.4.

Definition 4.3.2 defines a system identification feasibility problem with three con-
straints given in eq. (4.13) and eq. (4.17). The discussion in Subsection 4.3.2 concludes
that a partial normalization di (i.e., eq. (4.23)) can be assumed. In addition, with the
partial normalizationf3 in eq. (4.17) can be assumed to be one. Substituting the variables

v andw using eq. (4.13), the constraint set eq. (4.13) and eq. (4.17) reduces to

(AYi;h)? — (AYijh) (AU;g) <O, YN-1>i>j>0, (4.24)
where
AUjj :=U; - U,
(4.25)
AYij =Yi-Yj,
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and

Y

UieRY™N, Uii=|U@L,1) UGL2) - UGNy |-
Yi € R*Nn, Yi::[Y(LD Y (i,2) - Y(LNm]

with U andY defined in eq. (4.14) and eq. (4.15), respectively.

Conforming to the standard notation in the field of optimization, define the vector of

X:i= [ g ] ) (4.26)
h

then corresponding to eq. (4.23), the partial normalization constraint set will be denoted as

x;{x[g

In addition, define the matrice; ¢ R(MNa+Nn)x(No+Nn) g5

decision variablex € RNotNn g5

e RNothh hol}. (4.27)

- [ (AYi)" (aYi) %(AYHY(AUU)]‘ (4.28)
—3 (AU;j)’ (aYi) 0

Then eq. (4.24) is the same as
XAjXx<0, VN—-1>i>j>0. (4.29)

Using the notatiod; defined in eq. (4.28), the system identification optimization problem
can be formulated as follows.
minimize r
XeX,reR
subject to XAjx <1, Vi> ] (4.30)

r >0,

where X is defined in eq. (4.27) and;; are defined in eq. (4.28). Program (4.30) and
the feasibility problem in Definition 4.3.2 are equivalent in the following sensis: an

optimal of program (4.30) if and only if the correspondi@gandﬁ (see eq. (4.26)) is a

124



feasible solution of the problem in Definition 4.3.2. The equivalence can be explained in

the following schematics (witk andg andh related by eq. (4.26)).

gandﬁ is a solution according to Definition 4.3.2
< gandh satisfies eq. (4.24

J a( ) (4.31)
< Xsatisfies eq. (4.29)

<= Xis an optimal solution of program (4.30)

In eq. (4.31) all but the last equivalence have been discussed. The last equivalence is true
only in the noiseless identification case — the normalized FIR system coeffigieaslh*
is an optimal solution of program (4.30) with an optimal objective value of zero, hence any

optimal solution of program (4.30) satisfies eq. (4.29).

The reason for formulating the system identification problem as an optimization prob-
lem in (4.30) will become clear in Section 4.5, in which an optimization problem of the

same form will be formulated.

4.3.4 Properties of the system identification optimization problem

The matriceg\; in (4.28) can be written as
A =pij (pij) —aj (aif)’

where

o = (avy)’ and g = 0 (4.32)
T -k oy T -k oy |

From (4.32), it can be seen tha}j; are rank two matrices with one positive eigenvalue
and one negative eigenvalue. Therefore, program (4.30) is a non-convex QP, wii¢h is
hard.

On the other hand, it can be seen that the absolute value of the positive eigenvalue is
(much) greater than that of the negative eigenvalue. This fact suggests that program (4.30)

might be an “easy’\'P hard problem. This hypothesis is indeed justified by the following
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numerical experiment. Define a proximity functign RNe+tM — R as

R(x):= max_ {0,XAjx}. (4.33)

N—1>i>j>0

Then letd € RNot™ be such that (i) is a zero mean unit variance Gaussian random
variable for alli, and letx* be the vector corresponding ¢ andh*. Then normalized

to d such thatx* +sd € X for all s€ R and||d|| = 1. Consider one dimensional function
R:R — R, such thatR(s) := R(x* 4sd). Plot this function for a range o (e.g.,s €
[—0.1,0.1)). Repeat the process with another randomly genemtied many times and
check the shape of the functid® (for differentd) arounds = 0. The outcome of the

numerical experiment is shown in Figure 4-5. Figure 4-5 suggests that program (4.30) is

\tilde{R}(s)

Figure 4-5: Plot oR(s) in 200 (normalized) randomly generated directions. NoteRtat
is not a convex function, but it is almost convex.

almost convex, substantiating the previous notion that program (4.30) should not be a too
difficult problem to solve.
Finally, the following properties of the proximity functidR defined in eq. (4.33) will

be assumed but not formally proved.

JK € Ry :Vxe X, 3k e argminR(X) : ||[x—X|| < KR(x), (4.34)
Xe X
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and

lim R(x) = co. (4.35)

(|00

4.4 Solving the Optimization Problem

Subsection 4.3.3 concludes with the formulation of program (4.30), which is repeated here

minimize r
XeEX,reR
subjectto XAjx<r, Vi>j (4.36)

r>0,

wherex c RNetMn (defined in (4.27)) is the normalization constraint set, Andre sign-
indefinite matrices defined in (4.28) and (4.32). Optimization problem (4.36) is a non-
convex QP, which is\? hard. The solution to this computation challenge will be the topic
for the rest of this section.

The solution procedure for solving optimization problem (4.36) can be divided into

three steps, which will be discussed in detail in the following three subsections.
1. A convex semidefinite programming (SDP) relaxation of (4.36) is set up and solved.

2. The optimal solution of the SDP relaxation will be used as an initial guess for a local

minimization algorithm, which brings the solution closer to the true optimum.

3. A partial optimization is performed to find the lookup table for the nonlineapity
Another (easily solvable) convex optimization will be solved to make sure that the

FIR systems of the final identified model will be positive real passive.

4.4.1 Semidefinite programming relaxation
SDP relaxation is a standard attempt to solve non-convex QP’s (e.g., [113]). To understand
the relaxation, it is noted that in optimization problem (4.36) the following is true

XAjx=Tr (AjxX) =Tr (AjX), X=X >0, rank(X) = 1. (4.37)
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A standard procedure to obtain a SDP relaxation is to drop the rank constraint in (4.37),
which leads to

minimize r
XeXsreR

subjectto Tr (AjX) <r, Vi> ] (4.38)
r>0
X=X">0,
whereX;s is the normalization constraint set fdrcorresponding to( for x. For example,
if it is a constraint in (4.36) that(i) = 1 for somei € N, then the corresponding constraint
for X in (4.38) isX(1,i) = X(i,1) = X(i,i) = 1. Once the relaxation (4.38) is solved, the
singular vector corresponding to the largest singular value of the matrix solution is returned
as the best suboptimal solution to (4.36). It is obvious that the lower the raxXiksyfthe

better the quality of the suboptimal solution will be.

For the noiseless setup in this section, the minimum valuei®tctually zero, attain-

able by, for examplex* ;= [(g*)’ (h*)’]/. Hence, the matrix solutioX* = x*x*’ is an
optimal solution to relaxation (4.38). This in turn allows (4.38) to be formulated as a mini-
mization problem with an objective function. The choice of a zero objective function leads
back to program (4.36), but a more reasonable choice is the trace of the matrix because it
has been shown that minimizing this objective function leads to low rank matrix solutions
(e.g., [114]). Consequently, the relaxation of (4.38) is reformulated as

mi)r(liegsize Tr (X)

Subjectto Tr(AjX) <0 (4.39)

X=X">0

The tightness of the relaxation depends upon the nonlinearity in Figure 4-2, but not too
much on the FIR systen@ andH. The above observation is made through the following
numerical experiment: 300 instances of program (4.39) were solved. The input/output data
were generated by driving 300 randomly generated Wiener-Hammerstein systems with the
block diagram in Figure 4-Z5 andH were randomly generated, but the nonlineapityere

fixed. For the first one hundred casesyas a hyperbolic tangent (i.ep(v) = tanh(v)). For
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the next one hundred caseswas a saturated linearity (i.ep(v) = sgn(v)max{|v|,1}).

For the last one hundred casesyas a cubic nonlinearity (i.eq(v) = V). Itis clear that the

cubic nonlinearity does not have a derivative bound, whereas the former two nonlinearities
have. After solving the 300 instances of program (4.39), the histograms of the percentage
ratios of the second largest and the largest singular values of the symmetric solution matrix

X are plotted in Figure 4-6, Figure 4-7 and Figure 4-8, respectively.

number of cases
N w oy (o)) (2] ~ [eo)
o o o o o o o

=
o

! A |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
02/01 x 100

0

Figure 4-6: Hyperbolic tangent test case Histogram of the percentage of the second
largest singular value to the maximum singular value of the optimal SDP relaxation solution
matrix X. The second largest singular values never exceed 1.6% of the maximum singular
values in the experiment. Data was collected from 100 randomly generated test cases.
Np = Ng = 4.

While the relaxation (4.39) provides a reasonably good approximation to the true opti-
mal solution of the original non-convex problem (4.36), the approximation should always
be refined by some inexpensive procedure such as a linearized local search described in the

next subsection.
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Figure 4-7: Saturated linearity test case Histogram of the percentage of the second
largest singular value to the maximum singular value of the optimal SDP relaxation solution
matrix X. X is practically a rank one matrix. Data was collected from 100 randomly
generated test casds; = Ng = 4.
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Figure 4-8: Cubic nonlinearity test case Histogram of the percentage of the second
largest singular value to the maximum singular value of the optimal SDP relaxation solu-
tion matrix X. For a lot of cases, the second largest singular values never exceed 5% of
the maximum singular values in the experiment, but there are some cases when the SDP
relaxation performs poorly. Data was collected from 100 randomly generated test cases.
Np = Ng = 4.
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4.4.2 Local search

A local search is the following optimization procedure:

Definition 4.4.1. Given an initial guesso € RNetM generate a sequendey, xo, . .., Xm}

using the formula

Xk—‘—].:xk_i_S(AXka kzovla"'7m_l

whereAx, € RNo+M s the search direction arsk € R is the step length defined to minimize
some objective function. The sequefirg terminates when certain criterion is met (e.g.,

|Axk|| < € for some pre-specified small numlzer 0). |

In this thesis, the search direction is chosen such thatitlearized (at the current
iteratexy) proximity function defined in eq. (4.33) in Subsection 4.3.4 is minimized. Given

the current iterat&, a search directioAx, should also be admissible. That is,
Axc € Xa (%) == {y € RN™™|x +sye X, Vse R}
Then it is natural to seekx, € Xa (xx) such that
r}la}x{o, (X + A%)" Ajj (X + Axc) } — min. (4.40)

Problem (4.40), however, is as difficult as (4.36). Nevertheless, if the(t&xp)’Aiijk is
ignored, then it leads to
imze
subjectto X Ajjx+ 24 A < T, Yi> |
r>0

DX € Xp (Xk) -

(4.41)

Optimization problem (4.41) is a linear program (LP) with respect to decision variables
andAxy. It can be solved relatively cheaply [65].

Once the search directidxxy has been found by solving program (4.41), the line search
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procedure can be applied to solve tianlinearproblem for the optimal step length.
S := argminmax{ 0, (X + SAXi)  Aij (X + SA%) } - (4.42)
s i>]

Note that program (4.42) is typically a non-convex problem, and therefore it is not supposed
to be solved to optimality. Nevertheless, program (4.42) is a one-dimensional optimization
problem and good algorithms exist to approximately solve it. For example, the algorithm
implemented in this thesis work was based on a quadratic function approximation scheme

described in [115].

4.4.3 Final optimizations

There are two reasons for performing some optimizations after the SDP relaxation (Sub-
section 4.4.1) and the local search (Subsection 4.4.2). The two reasons will lead to two
optimization taskspartial optimization andpassivity enforcement
The first reason is to solve some relatively inexpensive problems to further improve

the quality of the identification. Note that the constraint eq. (4.24) is convex with respect
to g andh individually — eq. (4.24) is a linear constraint with respecgiand a convex
quadratic constraint with respecthio Supposé) andh are the solutions of the local search.
Then the following optimization problem can be solved to improve the qualify of

minimize r

r.g:(gh)ex

subject to (AYijﬁ)z— (AYijh) (AU;g) <1, Vi> |,

r>0.

(4.43)

Program (4.43) is a LP with decision variableandg. It can be solved efficiently [65].
Conversely, the following optimization problem can be solved to improve the qualﬁy of
minimize r
r,h:(g,h)ex
subjectto (AY;;§)° — (AY;g) (AUijh) <1, Vi> |, (4.44)

r > 0.
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Program (4.44) is a convex QP with decision variableend h. It can also be solved
efficiently [116]. Other partial refinements in the spirit of programs (4.43) and (4.44) are

also possible. See [108] for an example.

The second reason for the final optimization is the positive real passivity enforcement

of the final model oh. Recall the definition of positive real passivity
Re{H (&/®)} = ho+hicogw) + ...+ hy,—108((Nh — 1) w) > 0. (4.45)

It can be verified (see [117], for example) that eq. (4.45) is true if and only if there exists
Q=Q € RM=1x(N=1) gych that

i
5h 00
1? 2 - >0, (4.46)
I hg 0 Q
where
- " Ne—1
h::[hNh—l hny—2 - hl] e R™,

and inequality (4.46) means that the left side is a positive definite matrix. Note that (4.46)

is a linear matrix inequality with variablé, hy andh (a truncated reversed versiontyf

Now supposé is the identified FIR system impulse response coefficients by the relax-
ation/local search procedure. Then the passive refineméntar be found by solving
minihmize |h—h][,

(4.47)
subject to (4.46).

Optimization problem (4.47) is a SDP with very few decision variables and constraints. It
can be solved efficiently [67]. In addition, it is noted that while program (4.47) is given
with h being the decision variables, exactly the same procedure can be applied to enforce

the passivity ofy as well.

Finally, note that while the tasks of partial optimization and passivity enforcement are
described separately, they can be combined to formulate a single optimization problem. For

example, constraint (4.46) can be incorporated into program (4.44) to form a convex SDP.

133



Similarly, an analogous version of (4.46) can also be incorporated into program (4.43).

4.4.4 System identification algorithm summary

The solution procedure to solve the Wiener-Hammerstein system identification problem

according to Definition 4.3.2 can be summarized into the following steps.

Algorithm: W-H (noiseless)
Input: Input/output measuremefu,y) € RN x RN, lengths of FIR systemy andNj

Output: FIR system coefficientéd, h) € RNo x RN, piecewise linear nonlinearity

H

. Given(u,y), use eq. (4.14) and eq. (4.15) to define Toeplitz matlitasdY .

2. Use eq. (4.28) and eq. (4.25) to define sign indefinite matAgder all time indices

N—1>i>]>0.

3. Set up and solve SDP (4.39) to obtain the solution matribenotexy as the domi-

nant singular vector oX.
4. With xg being the initial guess, solve the local search problem in Definition 4.4.1.

5. Refine the optimal solution of the local search by apply the positive real passivity
enforcement program (4.47) and/or the partial optimization of program (4.44), (4.43).

Denotex as the optimal solution after all the final optimizations.

6. Define(g,h) := %, and? := U§, W := Yh. Define the output nonlinearity specified
by (v, W) (sorting and extracting uniqueentries if necessary) using eq. (4.9). Return

the outputs@, h, ).

4.5 ldentification of Wiener-Hammerstein System — with
Measurement Noise

The development of this section will be parallel to the combination of Section 4.3 and

Section 4.4. Differences between the noiseless and the noisy cases will be highlighted.
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4.5.1 System identification problem formulation

The model to be identified is still of the Wiener-Hammerstein structure in Figure 4-2 with
decision variableg andh andg being specified by a lookup table. Because of the output
measurement noise, however, the system identification feasibility problem will be different

and it is shown in Figure 4-9.

u G Vv b W o y

Figure 4-9: A feasibility problem to determine the impulse responses of the FIR syGtems
andH. Hereu andy are the given input and output measurement generated by the true (but
unknown) system. The signalsandw are the outputs d& andH, respectively. The signal

n is the noise corrupting the output measurement. In the feasibility probem,andn

are extra variables chosen so that, together gahdh, they define a functiop satisfying
sector bound constraint eq. (4.16).

There is an extra signal € RN to be determined in the feasibility problem in Figure 4-9.

Define the Toeplitz matritd € RN*Nn :

n[O] 0 0
n(1j nl0]
0
N:= . (4.48)
: : n[O]
NN=1] nN—2] ... n[N—Nu] N,

The constraint set defined in Figure 4-9 can be given as follows.

v = Ug, (4.49a)
w=(Y —N)h, (4.49D)
(Wi —wj) (Wi —wj—Vi+Vvj) <0, YN—1>i>j>0. (4.49c¢)
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Then the Wiener-Hammerstein system identification problem with output measurement

noise can be defined as

Definition 4.5.1. [Wiener-Hammerstein system identification problem — noisy case]
Given the input/output measuremeéaty) € RN x RN of an unknown Wiener-Hammerstein
system and positive integelg andNy, find decision vectorg e RNe andh € RN such that

there exist signals € RN, w € RN andn € RN satisfying eq. (4.49a, 4.49b, 4.49¢c).

4.5.2 Formulation of the system identification optimization problem

Parallel to the development in Subsection 4.3.3, the feasibility problem in Definition 4.5.1
will be simplified. However, instead of formulating and solving an equivalent optimization
problem as it was in Subsection 4.3.3getaxationwill be formulated due to computation
considerations.

Substituting eq. (4.49a) and eq. (4.49b) into eq. (4.49c) yields
(AYijh)? = (AY;h) (AUjjg) < (ANjjh) (2AYijh—AU;jg) — (AN;jh)?, Vi |, (4.50)

where
ANjj := Nj — N; (4.51)

and

Nie RVM o Nii= | N(i,1) N(i,2) - N(i7Nh)]’

with N defined in eq. (4.48). Constraint (4.50) is difficult to handle because of the terms in
the right-hand side with the extra variableswofTherefore, it is proposed in this thesis that

the followingrelaxedconstraint should be imposed instead. That is,

(AYi;h)% = (AYijh) (AUig) <rij, YN—1>i>]>0, (4.52)

with variablesg, h andr RT(N—l)/Z

. Constraint eq. (4.52) is linear with respecti@nd
therefore it is no more difficult to handle than eq. (4.24) in Subsection 4.3.3. Based on the

“robustness principle” that eq. (4.50) should be satisfied by a noise vegtih the min-
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imum norm, the relaxed system identification optimization problem should be formulated
to minimize some kind of norm af as well. In this thesis, the norm is chosen to be the
infinity norm. Then, using the notationsdefined in eq. (4.26)X defined in eq. (4.27)
andAjj in eq. (4.28) in Subsection 4.3.3. The relaxed system identification optimization
problems can be given as

subject to XAjx<r, Vi> ] (4.53)

r>0.

Note that program (4.53) has exactly the same form as program (4.36), the noiseless case
in Subsection 4.3.3. However, in general, the minimum objective value of program (4.53)
will not be zero. Accordingly, the solution procedure described in Section 4.4 should be

modified. This will be explained in Subsection 4.5.3.

A question of great concern is how good the relaxed optimization problem (4.53) is.
This can be answered by a characterization of the distance between the optimal solutions to
program (4.53) with or without output measurement noise. The following statement gives

a theoretical guideline.

Lemma 4.5.2. Denoten* as the vector of output measurement noise.@_aa’ndﬁ be a so-
lution of program (4.53) when the matricég are defined with input/output measurement
(u,y) with noisen*. Letg* andh* be a solution of program (4.36) when the matriées
are defined with input/output measuremémty) without noisen*. Then if the proximity

function property in eq. (4.34) (whek; are defined with noise) is satisfied, then
(g, ﬁ) —(g*,h")||,=0O(|In*[l,), when| n*||,is small enough.  (4.54)

Proof of Lemma 4.5.2. First, note thag* andh* satisfies the sector bound (with system
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inputu and outputy — n*), which simplifies to

(AYijh*)z— (AYijh*) (AUijg*) < (ANi*jh*) (ZAYijh* —AUijg*) - (ANi*jh*)z, Yi> |,

(4.55)
where
ANj; = Ni =N
and
Nf e RPMh D Nfi= | N*(1,1) N*(i,2) --- N*(i,Ny) |
with _ _
n*[0] 0 0

N* =

_n*[N—l] n“IN—2] ... n*[N—Nh]_NxNh

Then, comparing the definition &in eq. (4.33), the relation in eq. (4.55) suggests that

R((g",h") = rin>a}x{0, (aYijh)? = (avih*) (AU ") }

(4.56)
= O(|In*[l,/[h*[l,), when|n*[|, is small,

where the fact thaANj;h* = O(|[n*||, [[h*||,) has been used becausis; is a linear func-

tion of n*.

On the other hand, by the statemé@;ﬁ) is a minimizer ofR. Therefore,

R((8.h)) <R((g".h")),

and hence
R((8,h)) = O(lIn* [l [Ih*]l,)- (4.57)
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Application of the triangular inequality to eq. (4.56) and eq. (4.57) yields

IR((8.h)) —R((g",h"))||, = O(In*[I2 In*[|,). (4.58)

Finally, applying proximity function property in eq. (4.34) to eq. (4.58) implies the exis-

tence of a constark such that

A

1(8.h) = (@ h") 2 = O(KIIn*[|5[Ih*[I2)
= O(lIn*ll2),

thus concluding the proof. |

Remark4.5.3 Eq. (4.54) in Lemma 4.5.2 states that the difference of the solutions in the
noisy and noiseless setups are linearly upper bounded by the norm of the noisenvector

This justifies the use of the relaxed system identification optimization problem (4.8B).

Remark4.5.4 The proximity function property defined in eq. (4.34) is central to the proof
of Lemma 4.5.2 — it relates the proximity in terms of objective function value to the prox-
imity in terms of the decision vector itself. Although a formal proof is not available at this

stage, this conjecture is supported by numerical evidence shown in Figure 4-5. R

Finally, it is noted that the minimization of the norm ofin program (4.53) has ad-
ditionally the following implication: suppose the lengtNg or N is not large enough to
sufficiently represent the impulse response of the corresponding FIR systems in the true
(but unknown) system, then the minimizationrafeeks to minimize the violation of feasi-
bility of the left-hand side of eq. (4.52).

45.3 Reformulation of SDP relaxation

The relaxation of the feasibility problem in Definition 4.5.1 leads to the optimization prob-

lem (4.53), which has exactly the same form as program (4.36) with only one exception
— the minimum of program (4.53) is not necessarily zero in the presence of output mea-
surement noise. Therefore, all of the solution steps described in Section 4.4 apply to the

noisy problem (4.53) with the exception that the feasibility problem (4.39) is infeasible,
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and hence it cannot be part of the solution procedure. The following SDP will be solved in

place of program (4.39).

minimize Tr(X) + Ar
XeXs,reR

Subject to Tr (A;jX) <r
X=X">0

(4.59)

r>0

In program (4.59) the constraint s&is defined in (4.39), and the matricds are defined
in eq. (4.28).A > Ois a tuning parameter. It turns out that= 100 works pretty well in
general. Note that the objective function in program (4.59) represents a tradeoff between

the desire to obtain a low-rank solution and the minimization of the norm of the noise.

4.5.4 Section summary

A feasibility problem is given in Definition 4.5.1 to characterize the solution of the Wiener-
Hammerstein system identification problem with output measurement noise. The feasibil-
ity problem turns out to be difficult to solve and therefore it is further relaxed to form an
optimization problem in (4.53). The quality of the relaxation is characterized by Lemma
4.5.2. The relaxation has the same form as program (4.36) in the noiseless case with only
one exception — the minimum objective value of the relaxation is above zero. Accordingly,
the algorithm for solving the relaxation is the same as that for the noiseless setup except

for step 3 below.

Algorithm: W-H (noisy)
Input: Input/output measuremefu,y) € RN x RN, lengths of FIR systemiy andN,

Output: FIR system coefficient@@, ﬁ) € RNo x RN, piecewise linear nonlinearity
1. Given(u,y), use eq. (4.14) and eq. (4.15) to define Toeplitz matlitesdY .

2. Use eq. (4.28) and eq. (4.25) to define sign indefinite matAgdsr all time indices
N—-1>i>j>0.

3. Set up and solve SDP (4.59) to obtain the solution matrikenotexy as the domi-

nant singular vector oX.
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4. With xg being the initial guess, solve the local search problem in Definition 4.4.1.

5. Refine the optimal solution of the local search by apply the positive real passivity
enforcement program (4.47) and/or the partial optimization of program (4.44), (4.43).

Denotex as the optimal solution after all the final optimizations.

6. Define(g,h) := %, and? := U, W := Yh. Define the output nonlinearity specified
by (V,W) (sorting and extracting unigueentries if necessary) using eg. (4.9). Return

the outputs(g, h, @).

4.6 ldentification of Wiener-Hammerstein System — with

Feedback and Noise

Figure 4-10 shows the feedback Wiener-Hammerstein model which is specified by the FIR

—» G | 0 H —»

Figure 4-10: The Wiener-Hammerstein model with feedback.

systems;, H, K and the nonlinearityp, which will again be identified in a non-parametric
fashion. The setup of the identification feasibility problem, given in Figure 4-11, is slightly
different from the model in Figure 4-10. In addition to the decision variapplesR™e and

h € RM seen in the previous sections, there are decision variables associated with the FIR
systenK, which is implicitly characterized by the impulse response of the produCtawid

H denoted a& «h € RN+Nn—1 and the impulse responseldfdenoted as € RN, Once

the vectork x h andh have been determined, a deconvolution can be applied to retrieve

the impulse response &f.
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Figure 4-11: A feasibility problem to determine the impulse responsé& éf andK

H. Hereu andy are the given input and output measurement generated by the true (but
unknown) system. The signalsandw are the input and output of the nonlinearty The
signaln is the noise corrupting the output measurement. In the feasibility promem,

andn are extra variables chosen so that, together githandk * h, they define a function

@ satisfying sector bound constraint eq. (4.16).

The feasibility problem setup in Figure 4-11 leads to the following set of constraints.

v=Ug—Y (kxh), (4.60a)
w=(Y —N)h, (4.60D)
(Wi —wj) (Wi —wj—Vi+Vvj) <0, YN—1>i>]j>0, (4.60c)

with U, Y andN defined in eq. (4.14), eq. (4.15) and eq. (4.48), respectively. Note that if

the following notations are defined

~

u::[u _y} and §:= {kgh], (4.61)

then the constraint set eq. (4.60a,4.60b,4.60c) can be written as

v =08, (4.62a)
w= (Y —N)h, (4.62b)
Wi —Wwj) (Wi —wj—Vi+Vvj) <0, VYN—-1>i>j=>0. (4.62¢)

As far as the proposed system identification algorithm is concerned, constraint set eq.

(4.62a,4.62b,4.62c) has the same form and properties as eq. (4.49a,4.49b,4.49c) in the no
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feedback case. Therefore, the analysis and algorithm in Section 4.5 can be applied to the
feedback Wiener-Hammerstein system identification simply by replacing constraint set eq.
(4.49a,4.49b,4.49c) with eq. (4.62a,4.62b,4.62c). Once the optimal values of the decision
vectorsg, h andk x h have been found, a deconvolution can be applied to obtain the value
of k (corresponding to the impulse responsekofn Figure 4-10). To summarize, the

algorithm for the feedback Wiener-Hammerstein identification case is as follows.

Algorithm: W-H feedback (noisy)

Input: Input/output measuremefu,y) € RN x RN, lengths of FIR systemiy, Ny and
Nk .

Output: FIR system coefficientéd, h,k) € RN x RM x RN, piecewise linear

nonlinearity@

1. Given(u,y), use eq. (4.14) and eq. (4.15) to define Toeplitz matfitasdY. Then
defineU according to eq. (4.61).

2. With U in place ofU, use eq. (4.28) and eq. (4.25) to define sign indefinite matrices

Ajj for all time indicesN—1>i > j > 0.

3. Set up and solve SDP (4.59) to obtain the solution matrienotexy as the domi-

nant singular vector oX.
4. With xg being the initial guess, solve the local search problem in Definition 4.4.1.

5. Refine the optimal solution of the local search by apply the positive real passivity
enforcement program (4.47) and/or the partial optimization of program (4.44), (4.43).

Denotex as the optimal solution after all the final optimizations.

6. Define (@, (K * h),ﬁ) =R, and?¥ := U§— Y(kxh), W := Yh. Define the output
nonlinearity specified by(V,W) (sorting and extracting uniqueentries if neces-

sary) using eq. (4.9). Obtain by deconvoluting k % h) with h. Return the outputs
(@.h,k,9).

143



4.7 Complexity Analysis

The complexity of the proposed system identification algorithm is dominated by the solving

of SDP (4.36) or (4.53). Denots, := Ny + Ni + N¢ with Ng, Ny andNg being the lengths

of the impulse responses of the FIR systéansl andK in Figure 4-10. Also, denotid. :=

N(N —1)/2 with N being the number of samples in the given problem datg). Then

with SeDuMi [76], the complexity of solving program (4.36) or (4.53®i(5N§N§'5 + N§~5)

[118]. Typically, the number of samplé&&is much larger than the total number of impulse
response samplég,. Therefore, the complexity can be given@$N7). As a result, there

is a tradeoff between using many input/output measurement samples to accurately represent
the system dynamics and using fewer samples to reduce the computation cost for solving

the system identification problem.

4.8 Application Examples

4.8.1 Identification of randomly generated Wiener-Hammerstein sys-

tem with feedback

The numerical example given in this subsection is the identification of the feedback setup.
In this test caseG*, H* andK* are randomly generated positive real passive FIR filters of
4th order. The nonlinearity ig* = sgn(x) {4|x|,0.1/x| 4+ (4—0.1)}. The noise is such that

n[t] is uniformly distributed and[t] € [—0.01,0.0] for all t.

For the identification, 86 samples @i[t],y[t]) were used to construct the matridds
andY. The identification model has the same structure as in Figure 4-10, and the orders of
the FIR filters are also four. Once the identification is completed, the original test system
and the identified model are driven by some test signals (different from the training signals),
and the corresponding outputs are recorded. Figure 4-12 shows the matching of the output
of one of the test scenarios. Figure 4-13 shows the matching of the identified nonlinearity.
The identification took about 5 seconds on a PC with a 3GHz CPU and 3GB of RAM.
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Figure 4-12: Matching of output signals by the original (unknown) system and the identi-
fied model.y[k] denotes the output by the original system (stai)k] denotes the output
by the identified model (line). The plots of two output signals almost overlap.
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Figure 4-13: Matching of the original nonlinearity (star) and the identified nonlinearity
(line).

4.8.2 ldentification of a transmission line with diodes

The next application example in this section is the transmission line with diodes [83] (also
described in Section 3.6). Figure 4-14 shows the circuit schematic. For simplicity, the

resistance of all resistors is set to 0.1, the capacitance of all capacitors is setto 1 and all the
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Figure 4-14: A transmission line with diodes.

diodes have the following input/output relationshig(v) = 106 (¢** —1). Excluding

the ground node, there alenodes in Figure 4-14 and in this subsectibns assumed to

be 30. The input of the transmission line system is the external current injected to node 1,
and the output of the system is the voltage at node 1. While the transmission line system
does not have the Wiener-Hammerstein structure, numerous investigations have suggested

that it can be well approximated by very low order models.

210 input/output measurement samples from 7 different input/output pairs were used
to construct a feedback Wiener-Hammerstein model based on Algorithm W-H feedback
(noisy) in Section 4.6. The lengths of the impulse respons&; bf andK in Figure 4-10
are 1, 1 and 10, respectively. The construction of the Wiener-Hammerstein model took
about 17 seconds on the PC with a 3GHz CPU and 3GB of RAM. After the model has
been identified, a different set of input test signals were used to drive the model and the
true transmission line system. Figure 4-15 shows the matching of the outputs of one of the
test cases. While the transmission line does not have the Wiener-Hammerstein structure,
the identified nonlinear does have a structure reminiscent of the exponential V-A charac-
teristic of the diode. Figure 4-16 shows timeerseof the identified nonlinearityp, which

resembles the sum of a exponential function and a linear function.
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Figure 4-15: Matching of the output time sequences of the original transmission line system
and the identified Wiener-Hammerstein model. Star: original system. Solid: identified
model.

25

20

15}

10

-10 . . . . . .
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

V)

Figure 4-16: The inverse function of the identified nonlineagitylt looks like the expo-
nential V-A characteristic with an added linear function.

4.8.3 ldentification of an open loop operational amplifier

The last application example in this section is the identification of an open loop operational
amplifier (OP-AMP) with a block diagram shown in Figure 4-17.

In the construction of the feedback Wiener-Hammerstein model, 300 input/output mea-
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Figure 4-17: Block diagram of an operational amplifier.

surement samples from 6 different input/output pairs were used. The lengths of the impulse
responses dB, H andK in Figure 4-10 are 1,1 and 2, respectively. The lengths of the im-
pulse responses were chosen so that the Wiener-Hammerstein model can characterize the

following first order system with a nonlinear pole.

koy [t] + kay [t — 1] = W(y[t]) + goult]. (4.63)

Eq. (4.63) fits in the feedback Wiener-Hammerstein structure depicted in Figure 4-18.

The construction of the model took about 26 seconds on the same 3GHz CPU ma-
chine used in the previous examples. Figure 4-19 shows the matching of the output of
the true system simulated using SPICE and the output of the identified feedback Wiener-
Hammerstein model simulated using MATLAB, when the test input signal is of relatively
low frequency. On the other hand, Figure 4-20 shows the output matching for a test input
signal of a relatively high frequency.

The identified nonlineapin the model in Figure 4-10 in Section 4.6 is shown in Figure
4-21.
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Figure 4-18: First order model for the OP-AMP. The pole of the model is a nonlinear
function of the outputy. The model fit in the feedback Wiener-Hammerstein structure
discussed in this section.
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Figure 4-19: Matching of the output time sequence for a low frequency input test signal.
Dash: SPICE simulated output time sequence. Dots: subset of samples of the SPICE
simulated output. Solid: identified model.

4.9 Conclusion

In this chapter, the identification problems of the Wiener-Hammerstein system with and
without feedback have been investigated. In the proposed algorithm, the identification of
the nonlinearity is non-parametric. The chapter formulates the system identification prob-
lem as a non-convex QP. Nevertheless, it is demonstrated that the classical SDP relaxation
is able to provide very good suboptimal solution to the formulated non-convex QP. Using
a local search, high quality solutions of identification problem can often be found. Finally,

a numerical example is given to show that the proposed relaxation framework provides an
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Figure 4-20: Matching of the output time sequence for a high frequency input test signal.
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Figure 4-21: Identified nonlinearitg in the feedback Wiener-Hammerstein model of Fig-
ure 4-10. Notice that there is a strong saturation for input values at the negative side,
explaining the saturation phenomena in Figure 4-19.

interesting new way to solve the identification problem of the Wiener-Hammerstein system

with feedback.

150



Chapter 5

Conclusions

The value of convex optimization in the field of model reduction has been demonstrated
through three examples in three different parts of the thesis. In the first part of the thesis,
guasi-convex optimization has been shown to provide a flexible framework to solve the LTI
system model reduction problems. The proposed framework can handle stability, passivity
constraints and it has been extended to solve the parameterized model reduction problem
as well. A parameterized reduced model of a large spiral RF inductor has been constructed
using the proposed algorithm. In the second part of the thesis, it has been shown that
the problem of upper bounding the system input/ouput error due to nonlinear vector field
approximation, a typical step in nonlinear model reduction algorithms, can be formulated
as an L2 gain upper bounding problem to which the small gain theorem can be applied.
Application of the small gain theorem led to a theoretical statement, as well as a numer-
ical procedure describing the error bound. The classical example of a transmission line
with diodes has been considered in the application of the proposed error bounding scheme.
Finally in the third part of the thesis the nonlinear Wiener-Hammerstein system identifi-
cation problem has been considered. While the Wiener-Hammerstein structure is simple,
it has the potential to model important nonlinear sub-circuits, and the specific structure
of Wiener-Hammerstein leads to special properties of the corresponding identification op-
timization problem, which has been demonstrated to be an easy non-convex QP. A SDP
relaxation is presented to provide a good solution strategy to solve the non-convex QP.

Wiener-Hammerstein reduced models of several practical circuits have been constructed
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using the proposed identification scheme.
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