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Abstract

In this paper we present stochastic high order basis fumcgaitable for the volumetric discretization of interceanstructures.
The proposed basis functions are wideband, and can easiigtégrated within a stochastic magneto-quasistatic (MQSa
fullwave Mixed Potential Integral Equation (MPIE) solveendering the stochastic formulation computationally cédfit. In
addition, our high order basis functions facilitate thecoddtion of a correction term, improving the accuracy of impedance
ensemble average.

I. INTRODUCTION

Stochastic electromagnetic simulation has become an lpgeédternative to Monte Carlo simulations, in order toegtively
account for on-chip process variations and off-chip s@famughness effects [1], [2]. In a companion paper submitietthis
conference [3] we have developed a volumetric magnetoisfatis (MQS) formulation accounting for surface roughses
effects. In such approach, since we are mainly interestetldraverage current distribution, and since the surfacghmoess
can me modeled by an ergodic process, we are able to digcpstimplicated interconnects into relatively long wire segts.
However, a very large number of thin cross sectional voluimétaments may be required to accurately describe theeatirr
within each segment and accurately account for roughnésst&fsince the correlation length of the surface roughoas be
very small relative to the cross section. High order basietions have been proposed and developed in [4], [5] as aneeiffi
way to reduce the number of cross sectional basis functioreierministic solvers. In this paper we make use of a simila
wideband basis function generation technique, and extefuitther to account for stochastic variations.

Il. BACKGROUND
A. Formulation and Surface Mode

In this paper, we are primarily interested in the equatiowegoing the relation between the current densitynside the
volume of the wires, and the scalar potential
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whereG(r,r") = u/(4x|r — 1’ |) is the free space Green’s functionand+’ are observation and source points, respectively;
p is the resistivity of the conductor, and is the frequency. The volume of the conductdfds bounded by rough surfaces,
i.e. the domain of integration is described by a stochastiugsian process of the form:
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where h; and h; are the surface heights at locations= (x;,y;,z) andr; = (z;,y;,7;), respectivelyc and L are the
standard deviation and the correlation length of the rougfase, respectively.

A standard procedure for solving (1) involves discretizthg current density/ using some basis functions and a Galerkin
technique, to obtain the resistance and partial inductamagicesR and L [6]. The current conservation constraint in (1)
can be imposed using a mesh analysis matrix M and mostly z&o Kector A®,,,, to obtain as in [6] a linear system
M (R + jwL)MTI,, = A®,,, that can be solved for the mesh currehis




B. Wideband Proximity Templates Basis Functions

High order basis functions discretizing (1) can be consgdicising numerical simulation to generate “typical” cresstion
current distributions as in [4]. According to such procegume first subdivides complicated interconnects into s&gments.
For each type of segment cross-section, one calculates rivaihe the cross-sectional current distributions reisgltfrom
different locations of a nearby wire carrying the returnreat. The collections of all such current distributions resgents
a basis function subspace that can span and capture skinrariinjty effects. Such calculations can be carried out very
efficiently since they involve solving (1) on a geometry imihg only two wires, that can therefore be discretized gisor
instance simple thin filaments (piecewise constant basistions). Finally, for wideband basis functions that camegate
well-conditioned systems we can, as in [5], generate csesfion current distributions at a large number of freqyepaints
and proximity configurations, assemble them as columns oétixn use singular value decomposition to obtain the fpizc
orthogonal vectors, and optimize them to guarantee a pdlysan-zero current sum.

IIl. STOCHASTIC HIGH ORDER BASIS FUNCTIONS

In this paper we use the wideband proximity templates basistions generation procedure described in [4], [5], and
summarized in 1I-B. However, in our case, the cross sectian@a of the conductor is defined by rough surfaces, and is
therefore not deterministic. When generating numerictdy high order basis function as in II-B, our discretizatgirategy
relies on pre-defining the number of thin filaments per csexgion, such that the largest cross-sectional filameatisigmaller
than a preset threshold for any possible surface realizatithin 3o from the mean smooth surface. We further use non-uniform
filament sizes to capture skin and proximity effects nearcineductor boundaries more efficiently. To store each nurakyi
generated cross-sectional current density we use a véablength K, equal to the number of thin filaments discretizing the
wire cross-section during the generation process. The bider basis functions, representing the current density given

wire segment, is therefore
o~ 1[H]
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where A;, is the random cross-sectional area of & thin filamentV},. Vectorv, = 1 if » € V;, otherwisev;, = 0.
The ensemble average (denoted by the overline) for the elisnoé the matriced. and R generated by our stochastic high
order basis functions are given by:
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The integration limits are defined by the boundaries of theesponding wire segments.

IV. CORRECTION TERM FOR THE APPROXIMATION OF THE IMPEDANCE ENSEBLE AVERAGE

In [3] we have presented a method to compute the first ordeoappation of the average current distribution. In thistsst
we demonstrate that using our stochastic high order basidifun, we can efficiently calculate a correction term aatgiup
to third order for such approximation. Using Neumann exfang/] the mesh current can be written as:
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whereA = Z,, — Z,,, andZ,,, = M (R + jwL) MT. The first order approximation used in [3] for the average is
1

Ip =E[L,) =Z,, ~'b. Since the average of the second order term is zero, whengtldi correction terra,, N/
we can improve the approximation accuracy up to third ordibe enhanced approximation of the average mesh current is

therefore given byf,, = Zm 0+ Zm 'E [Az_lA} Zm " 'b. We calculate the correction term using a similar proceadsre

in [1], where the Kronecker product is used to writec (AZ_mflA) = (AT ® A) Z,,. The matrixAT ® A is of dimension

N2 x N2, whereN is the number of basis functions. Every element of this masridetermined by four wire segments and
therefore the ensemble average of any such element is adnraftfour random variables:
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where the integration limits are defined by the boundariethefcorresponding four segments. The integral in (8) is 16-
dimensional, and cannot be further reduced as it is not latiosal invariant. The size of the matrix required to sttine
elements of the matridA” @ A grows with complexityD(NN*), which, even for small size problems is practically untaite
when using piecewise constant basis functions (e.g. N =)1@0 the contrary if we employ high order basis functions the
same problems can be modeled with the same accuracy as shdha liesult section by a system 20 times smaller (N=50),
leading to time and memory requirements several orders ghitede smaller. Finally, to further accelerate the caltah we
propose an approximation of the integral in (8) by subdivideach wire segment along its length. The interaction bextwe
subsegments are calculated assuming the probability tyefasiction is space independent. The correlation distdreteveen
subsegments is approximated using the center to centandest This assumption is valid provided the segmentatiomgathe
length is not too coarse.

N1 N2 N3 N4

ZZZZ 01,09,03,00 ~ 01,02,03,80 01,00,05,0
/// P4(H47Xcla 2,43, 47Y'cla 2,83, 47Z(:17 2,£3, 4) .
Hy '

01=1485=103=104=1

//// //// //// G(r1,72)G(r3,74)B1(r1)Ba2(r2)Bs(r3)Ba(ra) dZsdYadXsdHs, (11)

N1 N2 N3 N4

SY Y /// Pu(Ha, X(ttota yhiutatats ghutatstiygpy
Hy

R

E[A® Al

01=1465=103=104=1

][] [ ¢ormpiopaeaazeaviixs [[ [ [[ cwsrpopiyizeanax., a2

Xo Yo Zo Xo Yo Zp

where/; is the index of the subsegments of wire segmigraind X {1-¢2-¢s.44 Y f1.02:83.84  and Z41-¢2:¢3,44 contain the centers
of the corresponding subsegments. Note that the probabiinsity functionP, is extracted out of the spatial integrals due
to our space independency assumption. The inner integrdlk2) are translational invariant, and can be further reduicom
dimension 6 to 3 using the technique presented in [3]. Caresatty the total integral dimension is reduced frdg to 7,
which can then be implemented in reasonable time.

V. RESULTS
A. Moderate size example

To test the validity of our approach we used a relatively matdeexample consisting of a square single turn inductor of
outer diameteR0mm, and cross sectional dimensions @fmm x 0.2mm. As a reference we used a fine cross-sectional
discretization ofl6 x 8 stochastic piecewise constant basis functions (SPCBHRghwriesults in thin filaments of size smaller
than a skin depth for the band of operation frorhAM H = to 40M H z. We then generated enough stochastic high order basis
functions (SHOBF) so that the final error from the refererscless thar2% over the entire band of operation as demonstrated
in Fig. 1. In Table | a detailed time analysis is presentedampare the performance of the SHOBF with that of the SPCBF.
Despite the fact that the number of unique SHOBF integrals isless than the SPCBF integrals (K is defined in (4)), the
matrix fill time did not reduce significantly. This is becausee single SHOBF integral is exactlf? more expensive than
one SPCBEF integral (5). The reduction in the matrix solutiare is howevelO(R?), whereR is the reduction in the number
of basis functions, as a consequence of using gaussiamalion to solve the linear system. In this analysis the matctor
product is not accelerated and no preconditioner is availaberefore iterative methods were not suitable at tetilt is
observed that when used in the stochastic case, SHOBF pravgpeed up even larger than in the deterministic case. We
realize that the averaging operation smoothes the roughmgmct on the current and that the SHOBF make use of thisteffe
This behavior cannot be utilized when using SPCBF and we aeesty fine cross-sectional discretization.

TABLE |
DETAILED TIME ANALYSIS OF THE BASIS FUNCTION GENERATION AND ®MPLETE COMPUTATION

Criterion High order basis functiong| Piecewise constant basis functiofis Reduction ratio (R)
Basis functions per cross-sectign 6 8 x 16 > 21.3
Basis function generation time 2 minutes - -
Matrix fill time 2 hours 2 hours 1
Time for one solve 2 seconds 1 hour 1800

B. Adding the correction term

In Fig. 2 we demonstrate the effect of the correction term lom @ccuracy of our stochastic solver. The example is a
single turn inductor of side length 20mm. The inductor iscitized in 32 segment. The cross sectional current per esgigm
is approximated using 6 SHOBF, resulting in a total3@f x 6 high order basis functions. The total time to calculate the
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Fig. 1. Left: Magnitude of input impedance for SPCBF versit#OBF. Right: Error in magnitude of impedance is less than 2%he entire band of
operation

2F | A stochastic/correction

. . y ; :
-»- Stochastic/no correction Iy -»- Stochastic/no correction
P 355F " .. —Monte Carlo 4
— Monte Carlo A 4 Tl 4 Stochastic/correction
N

151

=imag(Z, )l

real(z, )

Inductance

0.5

10’ 10’
Frequency(Hz) Frequency (Hz)

Fig. 2. Left: Effect of the correction term on the real partaverage impedance . Right: Effect of the correction termhenaverage inductance

correction term is slightly less than 18hours. The memoguirements to store the unique elements of the mafix ® A] is

1024 x 1024. If SPFBF were used for the discretization, 1024 basis fanstwould be needed to preserve the same accuracy,
and the corresponding total storage requirement would bergmactical matrix1M x 1M. Finally, Fig. 2 clearly shows

a significant reduction in the error between the first ordgsraximation and the corrected one employing SHOBF, when
compared to the reference Monte Carlo simulation.

C. Large size example

The next example is a large inductor structure that is prallyi impossible to solve in reasonable time and memorygusin
SPCBF. This is a three turn inductor with an upper rough serfdVe use 8 SHOBF per cross section to describe the current,
resulting in a total number of unknown32 x 3 x 8 = 768. The matrix fill time is very large (about one day). The size
of the matrix, if SPCBF were used, would h&288 x 12288, which would be impossible to store and factorize using any
standard personal computer. On the other hand the solveftimibe SHOBF is less than one hour, which clearly proves the
effectiveness of SHOBF in handling even previously untarblet problems.

VI. CONCLUSION

In this paper we have extended the high order basis functmstochastic solvers. This extension is particularly seagy
since the number of cross sectional filaments grows enorfmangresence of rough surfaces. We have also utilized the
high order basis functions to calculate a correction teroessary for the accurate calculation of the ensemble azevbithe
impedance. The efficiency of the high order basis functicss lbeen established on practical examples, and several arde
magnitude reduction in both time and memory complexity Hagen shown.
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