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ABSTRACT
In this paper an optimization based model order reduction (MOR)
framework is proposed. The method involves setting up a quasi-
convex program that explicitly minimizes a relaxation of the opti-
mal H∞ norm MOR problem. The method generates guaranteed
stable and passive reduced models and it is very flexible in impos-
ing additional constraints. The proposed optimization approach is
also extended to parameterized model reduction problem (PMOR).
The proposed method is compared to existing moment matching
and optimization based MOR methods in several examples. A
PMOR model for a large RF inductor is also constructed.

Categories and Subject Descriptors: J.6 [COMPUTER-AIDED
ENGINEERING]: Computer-aided design (CAD).

General Terms: Algorithm, Theory, Design.

Keywords: parameterized model order reduction, quasi-convex
optimization, ellipsoid algorithm, RF inductor.

1. INTRODUCTION
Developing Parameterized Model Order Reduction (PMOR) al-

gorithms would allow digital, mixed signal and RF analog design-
ers to promptly instantiate field solver accurate small models for
their parasitic dominated components (interconnect, RF inductors,
MEM resonators etc.). The few existing PMOR techniques are
based either on statistical performance analysis [15, 9, 20] or on
moment matching [19, 23, 7, 13]. Some non-parameterized model
order reduction or identification techniques based on an optimiza-
tion approach are present in literature. [14] and [3] identify systems
from sampled data by essentially solving the Yule-Walker equation
from a linear least squares problem. However, these methods might
not be satisfactory since the objective of their minimization is not
the norm of the error system, but rather the same quantity multi-
plied by the denominator of the reduced model. [8] and [4] directly
formulate the model reduction problem as a rational fit minimizing
the H2 norm of the error system and therefore they solve a non-
linear least squares problem, which is not convex. To address the
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problem, these papers propose solving linear least squares itera-
tively, but it is not clear whether the procedure will converge and
whether they can handle additional constraints such as positive re-
alness. In order to reduce positive real systems, [5] proposes using
the KYP Lemma and they show that the reduction problem can be
cast into a semidefinite program, if the poles of the reduced mod-
els are given a priori. [6] uses a different positive realness check
from [1] which amounts to a set of scalar inequalities evaluated
at some frequency points. [6] then suggests an iterative scheme
that minimizes the H2 norm of the error system for the frequency
points given in the previous iteration. However, this scheme does
not necessarily generate optimal reduced models, since in order to
do that, both the system model and the frequency points should be
considered as decision variables. In short, the available methods
lack one or more of the following desirable properties: rational fit,
convexity, optimality or flexibility to impose constraints.

In principle, the method proposed in this paper is a rational ap-
proximation, but with the following distinctions. Instead of solving
the model reduction directly, the proposed methodology solves a
relaxation of it. Additionally, the objective function to be mini-
mized is not H2 norm but H∞ norm. As it turns out, the resultant
optimization problem, as described in Section 3, is equivalent to
a quasi-convex program i.e. optimization of a quasi-convex func-
tion (all sub-level sets are convex sets) over a convex set. This
property implies the following: 1) there exists a unique optimal so-
lution to the problem; 2) there exist polynomial time algorithms
for solving it. Also, since the proposed method involves only a
single optimization problem, it is near optimal with respect to the
objective function used (H∞ norm of error). In addition to the men-
tioned benefits, it will be demonstrated in the paper that some com-
monly encountered constraints can be added to the proposed opti-
mization setup without significantly increasing the complexity of
the problem. Among these constraints are stability, positive real-
ness, bounded realness, quality factor error minimization. Also,
the optimization setup can be modified to generate an optimal pa-
rameterized reduced model that is guaranteed stable for the range
of parameters of interest.

The rest of the paper is organized as follows: Section 2 pro-
vides some background. Section 3 describes the proposed relax-
ation framework and explains why it is quasi-convex after repa-
rameterization. A procedure for constructing the reduced model
is also described. Section 4 demonstrates how to modify the opti-
mization setup to incorporate various desirable constraints. Section
5 focuses on the extension of the optimization setup to the case of
parameterized model order reduction. In Section 6 summary of the
proposed algorithms are given. In Section 7 some applications ex-
amples are shown to evaluate the practical value of the proposed
method in terms of accuracy and complexity.

2. BACKGROUND
Given a continuous-time (CT) system with transfer matrix H(s),
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a standard technique in the linear system community for reducing
it is to first apply a Tustin transform [11] s = λ(z− 1)/(z + 1), to
construct an equivalent discrete-time (DT) system, then to reduce
the DT system, and finally to convert back to CT. The frequency
responses of the CT and DT systems are frequency axis scaled ver-
sions of each other and no aliasing occurs because of the Tustin
transform. In addition, the effect of frequency warping cancels with
the two C/D and D/C conversions. Therefore, the overall reduction
quality depends only on the approximation quality of the DT re-
duction.

One of the desirable model reduction problems is the H∞ norm
optimization: given a stable transfer function H(z) (of order possi-
bly infinite) and a finite order m, construct a stable rational transfer

function Ĥ(z) = p(z)
q(z) such that order of Ĥ(z) ≤ m and the error

||H(z)− Ĥ(z)||∞ is minimized.

minimize
p,q

||H(z)− p(z)
q(z) ||∞

subject to deg(q) = m, deg(p) ≤ m,
q(z) is a Schur polynomial.

(1)

Unfortunately program (1) is not convex and it is not known whether
it is N P complete or not. In other words, existence of an efficient
algorithm for solving program (1) is still an open question.

3. RELAXATION SCHEME SETUP

3.1 Relaxation of H∞ norm optimization
Motivated by the Hankel optimal model reduction, a relaxation

to the optimal H∞ norm model reduction is proposed as follows.

minimize
p,q,r

||H(z)− p(z)
q(z) −

r(1/z)
q(1/z) ||∞

subject to deg(q) = m, deg(p) ≤ m, deg(r) < m
q(z) is a Schur polynomial.

(2)

In program (2), an anti-stable rational part r(1/z)
q(1/z) is added to the

setup of (1) and because of these extra decision variables, program
(2) is a relaxation of (1). Solving program (2), a (suboptimal) re-

duced model can simply be obtained as Ĥ(z) = p(z)
q(z) . It can be

shown that program (2) is quasi-convex after the re-parameterization
to be discussed in the next subsection.

3.2 Re-parameterization of relaxation scheme
It is not convenient to directly work with program (2), as the set

Ωm
qpr := {(q, p,r) ∈ Rm ×Rm+1 ×Rm :

q(z) = zm +qm−1zm−1 + . . .+q0
p(z) = pmzm + pm−1zm−1 + . . .+ p0
r(z) = rm−1zm−1 + rm−2zm−2 + . . .+ r0
q(z) �= 0, ∀z ∈ C : |z| ≥ 1}

(3)

is not convex if m > 2. However, the following lemma states that a
more convenient (i.e. quasi-convex), yet equivalent program exists.

LEMMA 3.1. Let m ∈ N. Let Ωm
qpr be defined in (3). Let Ωm

abc
be the set of all (a,b,c) ∈ Rm ×Rm+1 ×Rm :

a(z) = (zm + z−m)+am−1(zm−1 + z−m+1)+ . . .+a0
b(z) = bm(zm + z−m)+bm−1(zm−1 + z−m+1)+ . . .+b0
c(z) = 1

j

(
cm(zm − z−m)+ . . .+c1(z− z−1)

)
satisfying
a(z) > 0 ∀z ∈ C : |z| = 1

(4)

Then there exists a one-to-one map τm : Ωm
qpr �→ Ωm

abc :

H(e jω) =
p(e jω)
q(e jω)

+
r(e− jω)
q(e− jω)

=
b(e jω)+ jc(e jω)

a(e jω)
,∀ω ∈ [0,π].

(5)
Given (q, p,r) ∈ Ωm

qpr, τm(q, p,r) ∈ Ωm
abc is defined by

a(z) = q(z)q(1/z)
b(z) = 1

2 [p(z)q(1/z)+q(z)r(1/z)+ p(1/z)q(z)+q(1/z)r(z)]
c(z) = 1

2 j [p(z)q(1/z)+q(z)r(1/z)− p(1/z)q(z)−q(1/z)r(z)].

Given (a,b,c) ∈ Ωm
abc, (q, p,r) = τ−1(a,b,c) ∈ Ωm

qpr is defined
by

q(z) = Π
zm

k a(zk)=0,|zk|<1
(z− zk), (6)

and p,r are found as the unique solution to

p(z)q(1/z)+q(z)r(1/z) = b(z)+ jc(z) (7)

The implication of the lemma is that the non-convex stability
constraint q(z) �= 0, ∀z ∈ C : |z| ≥ 1 in (3) can be replaced by the
convex (to be shown) positivity constraint a(z) > 0, ∀z∈ C : |z|= 1
and this paves way to the discovery of efficient algorithms for solv-
ing the relaxation problem. With the re-parameterization given by
the previous lemma, positivity of a(z) and applying Euler’s for-
mula, program (2) can equivalently be formulated as

minimize
ã,b̃,c̃,γ

γ

subject to |H(e jω)ã(ω)− b̃(ω)− jc̃(ω)| < γã(ω), ∀ω ∈ [0,π],
ã(ω) > 0, ∀ω ∈ [0,π],
deg(ã) = m,deg(b̃) ≤ m,deg(c̃) ≤ m,

(8)

with ã(ω)= 1+ ã1cos(ω)+. . .+ ãmcos(mω), b̃(ω) = b̃0 + b̃1cos(ω)+
. . .+ b̃mcos(mω) and c̃(ω) = c̃1sin(ω)+ . . .+ c̃msin(mω). It can
be verified that program (8) is quasi-convex for the following rea-
sons: 1) ã(ω),∀ω ∈ [0,π] defines an intersection of infinite many
halfspaces, and 2) the γ level set of the objective function is

Re

(
θ
(
H(e jω)a(e jω)−b(e jω)− jc(e jω)

))
< γa(e jω), (9)

∀ω∈ [0,π], |θ| ≤ 1, which is another intersection of halfspaces, pa-
rameterized by ω and θ. Therefore, program (8) is a quasi-convex
program, and it is typically solved by the localization/cutting plane
strategy such as the ellipsoid algorithm [2].

3.3 Constructing the reduced model
The denominator q(z) and the numerator p(z) of the reduced

model can be found by applying eq. (6) and eq. (7) in Lemma 3.1,
but this tends not to be numerically robust. Therefore, the follow-
ing construction procedure is proposed instead. Once q(z) is found,
p(z) is calculated as the optimal solution to the following program

minimize
p,γ

γ

subject to |H(e jω)− p(e jω)
q(e jω) | < γ, ∀ω ∈ [0,π],

deg(p) ≤ m.

(10)

Note that program (10) is convex and can be solved by the local-
ization methods.

4. CONSTRUCTING ORACLES
In applying the method of ellipsoids, the most important infor-

mation that a user needs to supply is the functions that defines the
target set (the set of all feasible points that attain the minimum of
the objective function). These user supplied functions are typically
referred to as oracles. Difficult-to-construct oracles will be dis-
cussed in this section.
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4.1 Stability: Positivity constraint
From Lemma 3.1 it is shown that positivity constraint ã(ω) > 0

in program (8) is equivalent to stability constraint of q(z) being a
Schur polynomial in program (2). Therefore, the positivity con-
straint must be imposed strictly ∀ω ∈ [0,π] and therefore the com-
mon engineering practice of enforcing such constraint on only a
finite set of points in that interval will not suffice. In order to ad-
dress this issue consider the positivity constraint

ã(ω) = 1+a1cos(ω)+ . . .+amcos(mω) > 0, ∀ω ∈ [0,π]. (11)

If ∃ω0 ∈ [0,π] : ã(ω0) = 0, then ã(ω0) > 0 defines a positivity cut,
otherwise constraint (11) must be met because 1) ∃ω1 ∈ [0,π] :
ã(ω1) > 0 as implied by the fact that

∫ π
0 ã(ω)dω > 0 and 2) the

continuous function ã(ω) cannot be both positive and negative in
between 0 and π without hitting 0. It can be verified that finding
such ω0 can be achieved by a simple root finding procedure of an
ordinary polynomial of degree 2m.

4.2 Passivity: Positive real constraint
For some applications it is desirable that the reduced model has

positive real part. In order to impose this constraint, it suffices to
note that real part of the relaxation in program (8) is b̃(ω)/ã(ω).
Therefore, the only modification to (8) is to add the constraint
b̃(ω) > 0, ∀ω ∈ [0,π] and the treatment of this oracle is similar
to that of the positivity constraint discussed in Subsection 4.1.

However, it should be noted that program (10) should be mod-
ified accordingly to guarantee the positive realness of the final re-
duced model. That is,

p(e jω)q(e− jω)+ p(e− jω)q(e jω) > 0, ∀ω ∈ [0,π]. (12)

It is important to realize that constraint (12) is linear with respect
to the decision variable p(z) and the left side defines a trigonomet-
ric polynomial. As a result, when applying localization method to
solve this program, the same oracle as the positive real part con-
straint can be used.

4.3 Passivity: Bounded real constraint
For S-parameter models, the notion of dissipative system is given

by the bounded real condition (i.e. |H(z)|< 1, ∀z ∈ C, |z |= 1). To
model this property, program (8) can be modified by adding the
constraint ã(ω) > |b̃(ω) + j c̃(ω)|, ∀ω ∈ [0,π]. To construct the
oracle, first check the positivity of the trigonometric polynomial
ã(ω)2 − b̃(ω)2 − c̃(ω)2 > 0, ∀ω ∈ [0,π]. If this condition is met,
then bounded realness is satisfied at the current query point, other-
wise ω0 ∈ [0,π] is found and ã(ω0) > |b̃(ω0)+ j c̃(ω0)| defines a
cut. It is noted that program (10) should be modified similarly to
preserve the passivity of the final reduced model.

4.4 Explicit approximation of quality factor
We show here that the proposed method is quite flexible and ad-

ditional constraints can be added to the optimization in order to
address specific needs of circuit designers. For instance, when the
transfer function H is the impedance of an RF inductor, the quality

factor Q(ω) := Im(H(e jω))
Re(H(e jω)) , ω ∈ [0,π] is of critical importance for

the system performance. In this case, the basic framework in (8)
can be modified to guarantee a very good quality factor accuracy.

minimize
ã,b̃,c̃,γ

γ

subject to |H(e jω)ã(ω)− b̃(ω)− jc̃(ω)| < γã(ω),
| Im(H(e jω))

Re(H(e jω)) b̃(ω)− c̃(ω)| < ργb̃(ω),
ã(ω) > 0, b̃(ω) > 0, ∀ω ∈ [0,π],
deg(ã) = m,deg(b̃) ≤ m,deg(c̃) ≤ m.

(13)

ρ in the second set of constraint is a tuning parameter of relative
accuracy between match on frequency response and quality factor.

The oracles for program (13) are similar to those for program (8)
with the positive real part constraint and the reduced model should
be constructed using

minimize
p,γ

γ

subject to |H(e jω)− p(e jω)
q(e jω) | < γ, ∀ω ∈ [0,π],

| Im(H(e jω))
Re(H(e jω)) −

p(e jω)q(e− jω)−p(e− jω)q(e jω)
p(e jω)q(e− jω)+p(e− jω)q(e jω) | < ργ

p(e jω)q(e− jω)+ p(e− jω)q(e jω) > 0, ∀ω ∈ [0,π].
deg(p) ≤ m,

(14)
Again, this program is quasi-convex and the oracle procedure with
constraint (12) can be applied here as well.

5. EXTENSION TO PMOR
This section discusses how the framework in (8) can be extended

to solve the problem of PMOR (i.e. to construct a parameter de-
pendent model guaranteed stable for all parameters of interest). In
particular, the positivity (stability) oracle will be discussed.

The idea of enabling PMOR capability of program (1) is to allow
the coefficients of the trigonometric polynomials to be parameter
dependent. That is,

a(z, p) = a0(p)+a1(p)(z+ z−1)+ . . .+am(p)(zm + z−m),
b(z, p) = b0(p)+b1(p)(z+ z−1)+ . . .+bm(p)(zm + z−m),
c(z, p) = 1

j

(
c1(p)(z− z−1)+ . . .+cm(p)(zm − z−m)

)
,

where p ∈ P ⊂ Rnp denoting that the set of all vector of design
parameters p is P . The parameterized version of program (8) is

minimize
ã,b̃,c̃,γ

γ

subject to |H(e jω, p)ã(ω, p)− b̃(ω, p)− jc̃(ω, p)| < γã(ω, p),
∀ω ∈ [0,π], ∀ p ∈ P ,
ã(ω, p) > 0, ∀ω ∈ [0,π], p ∈ P
deg(ã) = m,deg(b̃) ≤ m,deg(c̃) ≤ m.

(15)
The only problem with applying the localization methods to pro-
gram (15) is that the positivity oracle is different if P is not a finite
set. In general, it would be very difficult to ensure the parameter-
ized positivity constraint if the parameter dependence of ã on p is
arbitrary. However, if the dependence is polynomial

ã(ω, p) = ∑
k

(∑
i

ci1,i2,...,inp
pi1

1 pi2
2 . . . p

inp
np )cos(kω), (16)

then it can be shown that a sufficient condition for positivity can
be found using the sum-of-squares (SOS) argument and the result-
ing oracle will involve solving a semidefinite program, which is
solvable in polynomial time. The underlying reason is as follows.

If P is bounded, then pk =
pk+p

k
2 +(

pk−p
k

2 )cos(ωk) and therefore
ã(ω, p) is a trigonometric polynomial (in more than one variable).
Therefore, ã(ω, p) > 0 iff it is a sum of squares (SOS) of trigono-
metric polynomials, as stated in the following theorem [16].

THEOREM 5.1. A trigonometric polynomial is positive if and
only if it is a finite sum of squares of trigonometric polynomials.

It can be shown that an SOS of trigonometric polynomials is equiv-
alent to a quadratic form θ′Qθ, where θ is a vector of appropriately
chosen monomials and Q = Q′ ≥ 0. Let p = p(ωp) as ωp(k) = ωk

in pk =
pk+p

k
2 +(

pk−p
k

2 )cos(ωk), ∀k, then the procedure described
in Algorithm 1 can be used as an stability oracle.

Denoting xa as the coefficient vector of ã, the following lemma
certifies the correctness of the oracle.

LEMMA 5.1. If the optimal value of program (17) y∗ < 0, then
ã(ω, p) > 0, ∀ω ∈ [0,π], p ∈ P . Otherwise, a cut (α,β) ∈ Rna ×R
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Algorithm 1: PMOR POSITIVITY ORACLE
Input: query point ã
Output: declaration of constraint met or a cut (α,β)
PMOR POS(ã)
(1) Given trigonometric polynomial ã(ω, p), pick an “appro-

priate” vector of monomials θ ∈ Ck

(2) Solve the SDP

minimize
y∈R,P

y

subject to θ′Pθ = ã(z,ωp)+y, ∀|z| = 1,∀ωp ∈ [0,π]
P = P′ ≥ 0.

(17)

(3) if optimal y∗ < 0
(4) return Positivity constraint is met
(5) else
(6) return Cut (α,β)

can be returned such that α′xa > β, for all xa such that optimal
objective value of program (17) is negative, thus constituting a (re-
strictive) positivity cut.

It must be noted that the cut returned by program (17) is restric-
tive in the sense that it eliminates all the options that do not result
in y∗ < 0, but some of which can still be positive trigonometric
polynomials. Nevertheless, it is generally true that this is not too
conservative if the vector of monomials is chosen properly.

While the specific construction of the positivity constraint oracle
in Lemma 5.1 requires the dependence of ã on the design parameter
to be polynomial, there is no restriction in the dependence of b̃ and
c̃ and they can be chosen to best fit the problem at hand. Finally it
is noted that program (17) can be solved using free SDP solver like
SeDuMi [21].

6. ALGORITHM SUMMARY
This section gives a summary of how the proposed optimization

framework could be used for MOR and PMOR. For both of these
algorithms, it is assumed, without loss of generality that the original
system is specified as a transfer function or as measurement data
evaluated by a field solver or available.

Algorithm 2: MOR
Input: H(z)
Output: Ĥ(z)
(1) Solve program (8) using ellipsoid algorithm to obtain the

relaxation (ã, b̃, c̃)
(2) Compute denominator q(z) using eq. (6)
(3) Solve program (10) to obtain numerator p(z)
(4) Synthesize a state space realization of the reduced model

H(z) = p(z)/q(z). See [11] for detail.

The algorithm (MOR) given serves as the basic framework, but
it can be modified to account for several additional desirable con-
straints, as discussed in Section 4. For instance, the Algorithm 3
implements a PMOR procedure, and it is specialized in the case
where the full model has only one pair of “dominant poles”. It
is given because it can take advantage of the problem specific in-
sight common in RF inductor design. Note that the reduced model
Ĥ(z, p) is stable because |ẑ∗(p)| < 1 as constructed and Ĥ(z, p) is
guaranteed stable ∀ p ∈ P .

6.1 Complexity
The complexity of the method can roughly be divided into two

parts. The first part is the computation of the frequency samples,

Algorithm 3: PMOR: RF INDUCTOR DESIGN
Input: H(z, p)
Output: Ĥ(z, p)
(1) Construct reduced models H̃p(z) for each p ∈ P1 ⊂ P ,

where P1 is a finite set
(2) Identify the dominant poles z∗p of models H̃p(z)
(3) Construct proper “non-dominant” systems H1

p(z) :

H̃p(z) =
Kp

(z− z∗p)(z− z̄∗p)
(z2 +Apz+H1

p(z)), (18)

where Kp ∈ R and Ap ∈ R

(4) Construct global interpolation model K̂(p), Â(p) and
ẑ∗(p). Special attention should be paid to the model ẑ∗(p)
to make sure that |ẑ∗(p)| < 1,∀ p ∈ P

(5) Solve program (15) to find a parameterized model
Ĥ1(z, p) with non-dominant systems H1

p(z) as inputs.
(6) Construct reduced model of the original system using eq.

(18). That is,

Ĥ(z, p) =
K̂(p)

(z− ẑ∗(p))(z− ẑ∗(p))
(z2 + Â(p)z+ Ĥ1(z, p)).

which, when using accelerated solvers, is O(nlog(n)) for each fre-
quency point with n being the order of the full model. The second
part is the cost of the optimization algorithm, which is O(q6) with
q being the order of the reduced model, when using the method of
ellipsoids. Therefore, construction of relatively high order reduced
model (e.g. order > 100) is not feasible.

7. APPLICATIONS AND EXAMPLES
In this section several application examples are shown to illus-

trate how the proposed optimization based model reduction algo-
rithm works and performs in practice.

7.1 Comparison with PRIMA
RF inductor example. The first example is a comparison be-

tween multi-point moment matching (PRIMA) [17] and the pro-
posed algorithm for reducing a spiral RF inductor model generated
by an electromagnito quasi-static (EMQS) mixed potential integral
equation (MPIE) solver [12]. The original model has order 1576.
PRIMA is set to match 2 moments at DC, 6 moments at 4,8,12
GHz. The resulting model has order 20. On the other hand, two
models are constructed using the proposed method. One has or-
der 14 using 20 frequency samples (same computational cost as
PRIMA), and the other has order 20 using 40 frequency samples
(same order as PRIMA). Two kinds of error metrics are computed:

max( |H( f )−Ĥ( f )|
|H( f )| ), f ∈ [0,14GHz] and |max(Q( f ))−max(Q̂( f ))|

|max(Q( f ))| , where

Q( f ) is the quality factor defined in Subsection 4.4 . Comparison
results are shown in Table 1.

Table 1: Reduction of RF inductor using QCO and MM

QCO QCO MM
order 14 20 20
cost (# of solves) 20 40 20
error (%) : H 6.9×10−3 7.1×10−4 1.8×10−3

error (%) : Q peak 1.1×10−3 3.3×10−4 8.8×10−5

RLC line example. The next example is to reduce an RLC line
of 10 sections (full model order 20) with an open circuit termina-
tion. The transfer function is the admittance. The model is ob-
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tained as follows: inductor currents and capacitor voltages are the
state variables. The KCL is imposed at each capacitor node and
the branch equation is used between adjacent nodes. The reduced
models of both methods have order 10 and PRIMA is set to match
4 moments at 104 rad/s, 4 moments at 5×104 rad/s and 2 moments
at 105 rad/s. Figures 1 and 2 show the magnitudes of the admit-
tance of the full model and the reduced models by PRIMA and the
proposed method, respectively. The difficulties encountered when
modelling this example with PRIMA are discussed in [22].
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Figure 1: Magnitude of admittance of an RLC line. Solid: full
model. Solid with stars: PRIMA 10th order ROM.
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Figure 2: Magnitude of admittance of an RLC line. Solid: full
model. Solid with stars: QCO 10th order ROM.

7.2 Comparison with a rational fit algorithm
In the third example we compare the proposed method with an

existing optimization based rational fit [4] by constructing a re-
duced model from measured frequency response of a fabricated
spiral RF inductor [18]. In this example, the order of the reduced
model is 10 and the positive real part constraint is imposed, the
quality factor is explicitly minimized. That is, program (13) is
solved with tuning parameter ρ = 10−4. Figure 3.b shows the qual-
ity factor of the reduced model compared to the measured data.
Figure 3.a compares the proposed approach to a model of the same
order (10) generated using the optimization based approach in [4].

7.3 Comparison to measured S-parameters from
an industry provided example

In the fourth example we identify a reduced model from mea-
sured multi-port S-parameter data. Figure 4 shows the comparison
result for one of the ports. The reduced model is order 20. The
model was identified in 30 seconds on a matlab implemented ver-
sion of our algorithm running on a Pentium 4 with 1GHz clock.
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Figure 3: Identification of RF inductor. Dash line: measure-
ment. Solid line: proposed reduced model. Lower dash-dot
line only for (a): approach in [4]
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Figure 4: Magnitude of one of the port S-parameters for an
industry provided example. Solid line: reduced model (order
20). Dash line: measured data (almost overlapping).

7.4 Frequency dependent matrices example
In the fifth example we apply the proposed method to reduce a

model of an RF inductor generated by a full wave MPIE solver
accounting for the substrate effect using layered Green’s functions
[10]. Since the system matrices are frequency dependent, the order
of the full model is infinite. The order of the reduced model is 6
and the positive real part constraint is imposed. Figure 5 shows the
result of the quality factor.

7.5 PMOR example
In the sixth example we construct a parameterized reduced model

937



0 0.5 1 1.5 2 2.5 3

x 10
9

−2

−1

0

1

2

3

4

5

6

7

8

frequency (Hz)

qu
al

ity
 fa

ct
or

training data
test points
ROM

Figure 5: Quality factor of an RF inductor with substrate cap-
tured by layered Green’s function. Full model is infinite order
and ROM order is 6.

for a 7 turn spiral RF inductor (full model generated by an EMQS-
MPIE solver [12]) whose wire width W and wire separation D are
allowed to vary in the range of (W,D) ∈ [1µm,20µm]. Algorithm 3
described in Section 6 is applied. In order to construct the reduced
model, 270 systems in the design parameter space are chosen as
“training points”. The example then tests the result for different
sets of (W,D): one with W ≡ 16.5µm and the other with W ≡ 19µm.

Finally, Figure 7 shows the matching of the frequency of the
peak of the quality factor. It is interesting to note that the peak
is not monotonically increasing as D increases. This phenomenon,
which is accurately captured by the proposed algorithm, disappears
when the bridgewire is moved further away from the turn.
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Figure 6: Quality factor for W=16.5um,
D=1um,5um,18um,20um. Solid line: parameterized reduced
model. Dash line: full model.
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Figure 7: Frequency of the peak of the quality factor for
W=16.5um Solid line: parameterized reduced model. Dash
line: full model.

8. CONCLUSION
In this paper a relaxation framework to the optimal H∞ MOR

problem is proposed. The framework has been demonstrated to
perform approximately as well as PRIMA when reducing large sys-
tems and better than PRIMA for an RLC line example. Unlike
PRIMA, the proposed method can reduce models with frequency
dependent system matrices. Unlike other optimization based meth-
ods, the proposed method has been shown to be very flexible in
preserving stability and passivity. Finally, the proposed optimiza-
tion setup has also been extended to parameterized MOR prob-
lems. Several examples have been presented validating the MOR
approach on measured data and the PMOR approach on a large RF
inductor.
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