
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 3, MARCH 2008 1
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Abstract—In this paper, an optimization-based model order
reduction (MOR) framework is proposed. The method involves
setting up a quasi-convex program that solves a relaxation of the
optimal H∞ norm MOR problem. The method can generate guar-
anteed stable and passive reduced models and is very flexible in
imposing additional constraints such as exact matching of specific
frequency response samples. The proposed optimization-based
approach is also extended to solve the parameterized model-
reduction problem (PMOR). The proposed method is compared to
existing moment matching and optimization-based MOR methods
in several examples. PMOR models for large RF inductors over
substrate and power-distribution grid are also constructed.

Index Terms—Parameterized model order reduction (PMOR),
quasi-convex optimization, RF inductor.

I. INTRODUCTION

D EVELOPING parameterized model order reduction
(PMOR) algorithms would allow digital, mixed-signal,

and RF analog designers to promptly instantiate field solver
accurate small models for their parasitic dominated components
(interconnect, RF inductors, microelectromechanical reso-
nators, etc.). The existing PMOR techniques are based either
on statistical performance analysis [1]–[5] or on moment
matching [6]–[14]. Some non-PMOR or identification tech-
niques based on an optimization approach are present in liter-
ature. References [15] and [16] identify systems from sampled
data by essentially solving the Yule–Walker equation derived
from a linear least squares problem. However, these methods
might not be satisfactory, since the objective of their minimiza-
tion is not the norm of the difference between the original and
reduced transfer functions but rather the same quantity mul-
tiplied by the denominator of the reduced model. References
[17] and [18] directly formulate the model reduction problem
as a rational fit, minimizing the H2 norm error, and therefore,
they solve a nonlinear least squares problem, which is not
convex. To address the problem, those papers propose solving
linear least squares iteratively, but it is not clear whether the
procedure will converge and whether they can handle additional
constraints such as positive realness passivity. In order to reduce
positive real systems, the authors of [19] propose the use of the
KYP lemma/semidefinite programming relationship [20] and
show that the reduction problem can be cast into a semidefinite
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program, if the poles of the reduced models are given a priori.
Reference [21] uses a different result derived from [22] to check
positive realness. In that procedure, a set of scalar inequalities
evaluated at some frequency points are checked. Reference
[21] then suggests an iterative scheme that minimizes the H2

norm of the error system for the frequency points given in the
previous iteration. However, this scheme does not necessarily
generate optimal reduced models since, in order to do that,
both the system model and the frequency points should be
considered as decision variables. In short, the available methods
lack one or more of the following desirable properties: rational
fit, guaranteed stability, and passivity, convexity, optimality, or
flexibility to impose constraints.

In principle, the method proposed in this paper is a rational-
approximation-based model reduction framework but with the
following three distinctions.

1) Instead of solving the model reduction directly, the pro-
posed methodology solves a relaxation of it.

2) The objective function to be minimized is not the
H2 norm but rather, the H∞ norm. As it turns out, the re-
sultant optimization problem, as described in Section III,
is equivalent to a quasi-convex program, i.e., an opti-
mization of a quasi-convex function (all sublevel sets are
convex sets) over a convex set. This property implies the
following: 1) there exists a unique optimal solution to the
problem and 2) there exist polynomial-time algorithms
for its solution. In addition, since the proposed method
involves only a single optimization problem, it is near
optimal with respect to the objective function used (H∞
norm of error).

3) In addition to the aforementioned benefits, it will be
demonstrated in this paper that some commonly encoun-
tered constraints or additional objectives can be added
to the proposed optimization setup without significantly
increasing the complexity of the problem. Among these
features are guaranteeing stability, positive realness (pas-
sivity of impedance systems), bounded realness (passivity
of scatter-parameter systems), and quality factor-error
minimality. In addition, the optimization setup can be
modified to generate an optimal parameterized reduced
model that is stable for the range of parameters of interest.

The rest of this paper is organized as follows. Section II
provides some background. Section III describes the proposed
relaxation and explains why it is quasi-convex after a change
of decision variables. Section IV gives an overview of the
setup of the proposed method and some detail of it. Section V
demonstrates how to modify the basic optimization setup to
incorporate various desirable constraints. Section VI focuses on
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the extension of the optimization setup to the case of PMOR.
In Section VII, more design-oriented modifications will be
discussed. As a special case, the RF inductor design algorithm
will be given. In Section VIII, the complexity of the proposed
algorithm is analyzed. In Section IX, several application exam-
ples are shown to evaluate the practical value of the proposed
method in terms of accuracy and complexity.

II. BACKGROUND

A. Tustin Transform and Model Reduction

In order to work with polynomials of transfer functions in
a numerically reliable way, the following procedure will be
employed throughout this paper. Given a continuous-time (CT)
system with transfer matrix H(s), a standard technique bor-
rowed from the control system community for model reduction
is employed. First, apply a Tustin transform (see, for example,
[23]) s = λ(z − 1)/(z + 1) to construct an equivalent discrete-
time (DT) system; then, reduce the DT system; and finally,
convert it back to CT by applying the inverse transform z =
(λ + s)/(λ − s). The frequency responses of the CT and DT
systems are the frequency axis scaled versions of each other. No
aliasing occurs when using the Tustin transform. In addition,
since the Tustin transform preserves the order of models, the
orders of reduced models remain the same.

The choice of the center frequency λ is somewhat arbi-
trary. While it is true that extreme choices (e.g., picking the
center frequency to be 1 Hz, while the frequency range of
interest is at 1 GHz) can be harmful for the proposed model-
reduction framework, numerical experiments have shown that
a broad choice of center frequencies would allow the proposed
framework to work without suffering any CT/DT conversion
problem. In addition, in our implementation, we employ an
automatic procedure that chooses the center frequency by min-
imizing the maximum slope of the magnitude of the frequency
response, hence, completely avoiding any possibly numerically
harmful extreme situations.

B. Optimal H∞ Norm Model-Reduction Problem

One of the desirable model reduction problems is the H∞
norm optimization. Given a stable transfer function H(z) (pos-
sibly of large or even infinite order) and an integer m (indicating
the order of the reduced model), construct a stable rational
transfer function

Ĥ(z) =
p(z)
q(z)

such that the order of Ĥ(z) is less than or equal to m, and the
error ‖H(z) − Ĥ(z)‖∞ is minimized

minimize
p,q

∥∥∥∥H(z) − p(z)
q(z)

∥∥∥∥
∞

subject to deg(q) = m, deg(p) ≤ m

q(z) �= 0 ∀|z| ≥ 1 (stability). (1)

Unfortunately, (1) is not convex, and it is not known whether
it is NP-hard or not. In other words, existence of an efficient
algorithm for solving (1) is still an open question.

C. Relaxation of an Optimization Problem

A relaxation of an optimization problem is a related opti-
mization problem such that an optimal solution to the original
problem is a feasible solution to the relaxation. A relaxation
can be introduced if it is much easier to solve, and the optimal
solution to the relaxation is useful in constructing a reasonably
good feasible solution to the original problem. However, note
that such feasible solution might not be, in general, an optimal
solution to the original problem. Typical ways for obtaining a
relaxation include enlarging the feasible set and/or replacing the
objective function with another (easier to optimize) function,
whose sublevel set contains that of the original. It will be shown
later in this paper that the same relaxation ideas are useful in
simplifying the proposed model reduction problem.

III. RELAXATION-SCHEME SETUP

This section describes the main theory of the proposed model
reduction framework.

A. Relaxation of theH∞ Norm Optimization

Motivated by the Hankel optimal model reduction [24], the
following relaxation of the optimal H∞ norm model reduction
was proposed in [25]:

minimize
p,q,r

∥∥∥∥H(z) − p(z)
q(z)

− r(1/z)
q(1/z)

∥∥∥∥
∞

subject to deg(q) = m, deg(p) ≤ m, deg(r) < m

q(z) is a Schur polynomial (stability) . (2)

In (2), an anti-stable rational part (r(1/z)/q(1/z)) is added to
the setup of (1), and because of these extra decision variables,
(2) is a relaxation of (1). Aft er solving (2), a (suboptimal) stable
reduced model can simply be obtained as Ĥ(z) = (p(z)/q(z)).
The following lemma, which is from [25], gives an error bound
of the relaxation.
Lemma 3.1: Let (p∗, q∗, r∗) be the optimal solution of (2)

with reduced order m

γ∗ =
∥∥∥∥H(z) − p∗(z)

q∗(z)
− r∗(1/z)

q∗(1/z)

∥∥∥∥
∞

Ĥ(z) :=
p∗(z)
q∗(z)

be a stable reduced model, then

min
D∈R

{∥∥∥H(z) − Ĥ(z) − D
∥∥∥
∞

}
≤ (m + 1)γ∗. (3)

By definition, γ∗ is a lower bound of the error of the optimal
H∞ norm model reduction problem (1), and Lemma 3.1 states
that the suboptimal reduced model provided by the proposed
framework has an error upper bound (m + 1) times its error
lower bound γ∗. In the lemma, Ĥ(z) := (p(z)/q(z)) is the
outcome in solving (2), or (9) that is to be discussed in the
next section. It should be noted that the scalar D in (3) can
be incorporated into the reduced model Ĥ , if Ĥ is not a strictly
proper transfer function. Therefore, the reduced model should
really be understood as Ĥ(z) + D∗, where D∗ is chosen to
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be the optimizing D. In Section IV, (10) will be discussed to
construct a reduced model that always picks the optimizing D.

B. Change of Decision Variables in the Relaxation Scheme

It is not convenient to directly work with (2) as the set of the
coefficients of the polynomials

Ωm
qpr :=

{
(�q, �p, �r) ∈ R

m × R
m+1 × R

m :

q(z) = zm + �qm−1z
m−1 + · · · + �q1z + �q0

p(z) = �pmzm + �pm−1z
m−1 + · · · + �p1z + �p0

r(z) = �rm−1z
m−1 + �rm−2z

m−2 + · · · + �r1z + �r0

q(z) �= 0 ∀ z ∈ C : |z| ≥ 1
}

(4)

is not convex if m > 2. To overcome the problem, the following
set of decision variables is proposed:

Ωm
abc :={
(�a,�b,�c) ∈ R

m × R
m+1 × R

m :

a(z)=(zm+z−m) + �am−1(zm−1+z−m+1)+· · ·+�a0

b(z)=�bm(zm+z−m) +�bm−1(zm−1+z−m+1)+· · ·+�b0

c(z)=
1
j

(
�cm(zm−z−m)+· · ·+�c1(z−z−1)

)
satisfying a(z)>0 ∀ z ∈ C : |z|=1

}
. (5)

The sets Ωm
pqr and Ωm

abc are equivalent in the sense summa-
rized by the following lemma.
Lemma 3.2: There exists a one-to-one map τm : Ωm

qpr 	→
Ωm

abc, which is defined as follows.

• Given (�q, �p, �r) ∈ Ωm
qpr, (�a,�b,�c) = τm(�q, �p, �r) ∈ Ωm

abc is
defined by

a(z) = |q(z)|2

b(z) = Re
{
p(z)q(z−1)

}
c(z) = Im

{
p(z)q(z−1)

}
.

• Given (�a,�b,�c) ∈ Ωm
abc, (�q, �p, �r) = τ−1(�a,�b,�c) ∈ Ωm

qpr is
defined as follows: Let k ∈ {1, 2, . . . , 2m} and zk be the
(maybe repeated) roots of

zma(z) = 0

then, �q is found by

q(z) = Π
k:|zk|<1

(z − zk) (6)

and �p and �r are uniquely found by the relation

p(z)q(z−1) + q(z)r(z−1) = b(z) + jc(z). (7)

Then, the map τ satisfies the following property:

H(ejω) =
p(ejω)
q(ejω)

+
r(e−jω)
q(e−jω)

=
b(ejω) + jc(ejω)

a(ejω)
∀ω.

(8)

Proof: See the Appendix. �
Lemma 3.2 implies that the stability constraint q(z) �=

0,∀ z ∈ C : |z| ≥ 1 in (4), which makes the feasible set of
(1) nonconvex, can be replaced by the easier to handle (to

be shown) positivity constraint a(z) > 0,∀ z ∈ C : |z| = 1,
and this paves the way to the discovery of efficient algo-
rithms for solving the relaxation problem. With the change of
variables given by the previous lemma and by applying the
identity ejω = cos(ω) + j sin(ω), (2) can equivalently be for-
mulated as

minimize
ã,b̃,c̃,γ

γ

subject to
∣∣∣H(ejω)ã(ω) − b̃(ω) − jc̃(ω)

∣∣∣ < γã(ω)

ã(ω) > 0 ∀ ω ∈ [0, π]
deg(ã) = m,deg(b̃) ≤ m,deg(c̃) ≤ m (9)

with

ã(ω) = 1 + ã1 cos(ω) + · · · + ãm cos(mω)
b̃(ω) = b̃0 + b̃1 cos(ω) + · · · + b̃m cos(mω)
c̃(ω) = c̃1 sin(ω) + · · · + c̃m sin(mω).

Lemma 3.3: Program (9) is quasi-convex (i.e., optimizing a
quasi-convex function over a convex set).

Proof: See the Appendix. �

IV. MODEL-REDUCTION SETUP

This section deals with the solution procedure of the pro-
posed model reduction framework. A summary of the proce-
dure is given as follows.

Algorithm 1: MOR
Input: H(z)
Output: Ĥ(z)

i. Solve program (9) using a cutting plane algorithm (details
in Section IV-A) to obtain the relaxation solution (ã, b̃, c̃).

ii. Compute the denominator q(z) using spectral factoriza-
tion (6). This is explained in Section IV-B.

iii. Solve a convex optimization problem to obtain the numer-
ator p(z) (see Section IV-B).

iv. Synthesize a state space realization of the reduced model
Ĥ(z) = p(z)/q(z) (see [23] for details).

Steps i. and iii. in the earlier algorithm description are more
involved, and they are explained as follows.

A. Solving the Relaxation

Program (9) is a large-scale (with infinitely many constraints)
quasi-convex program, and it can be solved by a localization/
cutting plane strategy. Note that the localization method is
a standard optimization technique, and it is given here for
completeness. Suppose the objective of the program is to find
a point in a target set X (e.g., the suboptimal level set of a
minimization problem) or to verify that X is empty. The basic
algorithm of the localization scheme is as follows.

a. At each step k, maintain a localization set Pk : X ⊂ Pk.
b. Compute a query point, namely, the vector of the current

trial of the decision variables xk ∈ Pk, and check if
xk ∈ X .

c. If xk ∈ X , then terminate the algorithm and successfully
return xk. Otherwise, return a “cut” (e.g., a hyperplane)
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such that all points in X must be in one side of the
hyperplane (i.e., a halfspace). Denote the corresponding
halfspace as H.

d. Update the localization set to Pk+1 : Pk ∩H ⊂ Pk+1.
e. If volume (Pk+1) < ε, for some small ε (which, for in-

stance, is determined by the desired suboptimality level),
then assert that X is empty and terminate the algorithm.
Otherwise, go back to step a.

The choice of the localization set Pk and the query point xk

distinguishes one method from another. Reasonable choice of
localization set/query point can be as follows: 1) a covering
ellipsoid/center of the ellipsoid or 2) covering polytope/analytic
center of the polytope. The former choice results in the ellipsoid
algorithm (see [26] or [27] for detailed reference), while the
latter choice results in the analytic center cutting plane method
(see [28] for reference).

Finding P1 : X ⊂ P1 is problem-dependent and it will be
discussed in Section V in the context of MOR.

The particular implementation in step c. is problem-
dependent, and the subroutine used in such step is com-
monly referred to as an “oracle.” Different oracles pertaining
different model reduction constraints will be discussed in detail
in Section V.

B. Constructing the Reduced Model

The denominator q(z) and the numerator p(z) of the reduced
model could be found by applying (6) and (7) in Lemma 3.2.
However, the following more practical procedure yields a re-
duced model whose approximation quality is no worse than
that obtained with (7). Once q(z) is found, calculate p(z) as
the optimal solution to the following:

minimize
p,γ

γ

subject to

∣∣∣∣H(ejω) − p(ejω)
q(ejω)

∣∣∣∣ < γ, ∀ ω ∈ [0, π],

deg(p) ≤ m. (10)

Note that (10) is convex and can be solved by a localization
method. In addition, note that, since the degree of the numerator
p can be m, the transfer function is not strictly proper, and the
optimal constant term D in (3) is automatically chosen when
(10) is solved.

C. Obtaining Models of Increasing Orders

In the proposed model reduction framework, the information
from an order m model reduction can relatively cheaply be
reused to find the reduced models of order m + k (with k > 0).
We describe here the update procedure for order m + 1 reduced
model (the procedure for higher order reduced models is the
same). Suppose (ã∗

m, b̃∗m, c̃∗m) is the optimal trigonometric poly-
nomials for order m reduction and assume the corresponding
error is γ∗

m, then

b̃∗m(ω)+0 · cos ((m + 1)ω)+j (c̃∗m(ω)+0 · sin ((m + 1)ω))
ã∗

m(ω) + 0 · cos ((m + 1)ω)

is automatically a valid (stable, passive, etc.) candidate for
the order m + 1 reduction problem. Therefore, it can be used
as the initial center of the localization set (e.g., covering el-
lipsoid) for the m + 1-order problem. The localization set for
the m + 1-order problem can also be inherited from that of the
order m problem by appending the previous localization set in
the following way. Let xm be the vector of decision variables
of the order m problem, x∗

m be coefficients of the optimal
trigonometric polynomials (ã∗

m, b̃∗m, c̃∗m) of order m, and P ∗
m

be the symmetric positive semidefinite matrix that defines the
ellipsoid of the order m localization set, then

(xm − x∗
m)′ P ∗

m (xm − x∗
m) ≤ 1.

Now, let xm+1
a , xm+1

b , and xm+1
c be the coefficients of the

m + 1-degree terms in the m + 1-degree trigonometric poly-
nomials of the m + 1-order reduction problem. If there exists
some M > 0 s.t. |xm+1

a | < M , |xm+1
b | < M , |xm+1

c | < M ,
then

(xm−x∗
m)′P ∗

m(xm−x∗
m)+|xm+1

a |2+|xm+1
b |2+|xm+1

c |2≤1+3M2

can be used as the initial ellipsoid (i.e., localization set) for
the m + 1 model reduction problem. The order m optimal
objective value γ∗

m can be used as the initial objective value
when the m + 1-order procedure starts. Using these initial
iterates for the m + 1-order problem, relatively few cuts will
be required to obtain the m + 1-order optimal trigonometric
polynomials.

V. CONSTRUCTING ORACLES

Nontrivial oracles will be discussed in this section.

A. Stability: Positivity Constraint

From Lemma 3.2, it can be seen that the positivity constraint
ã(ω) > 0 in (9) is equivalent to the stability constraint in
(2) requiring q(z) to be a Schur polynomial. Therefore, the
positivity constraint must be strictly imposed for all ω ranging
from zero to π, and therefore, the common engineering practice
of enforcing such constraint on only a finite set of points in that
interval will not suffice. In order to address this issue, consider
the positivity constraint

ã(ω)=1+ a1 cos(ω)+ · · ·+ am cos(mω)>0 ∀ ω ∈ [0, π].
(11)

It is sufficient to check whether

min
ω∈[0,π]

ã(ω) > 0.

Since ã(ω) is continuous over [0, π], the minimum is attained,
and it can only be at the roots of

dã(ω)
dω

= −ã1 sin(ω) − · · · − mãm sin(mω) = 0 (12)

as the boundary points are included with

dã(0)
dω

=
dã(π)
dω

= 0.
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If there exists ω0 among the roots of (12) s.t. ã(ω0) ≤ 0, then
ã(ω0) > 0 defines a cut; otherwise, the positivity constraint
is met.

In order to find the roots of (12), the identity ejω = cos(ω) +
j sin(ω) can be applied to (12)

dã(ω)
dω

= − 1
2j

(
a1(z − z−1) + · · · + mam(zm − z−m)

)
:= ∂ã(z)
= 0

with z = ejω . Note that zm∂ã(z) is an ordinary polynomial
of degree 2m and ejω �= 0,∀ ω ∈ R. Therefore, any ω0 is a
root of (12) if and only if it is a root of ∂ã(ejω), and the root
finding task can be performed by finding (unit circle) roots of
an ordinary polynomial zm∂ã(z) of degree 2m.

B. Passivity for Impedance Systems: Positive Real Constraint

For some applications, it is desirable that the reduced model
transfer function has positive real part. In order to impose this
constraint, it suffices to note that the real part of the transfer-
function approximation in (9) is b̃(ω)/ã(ω). Therefore, the only
modification to (9) is to add the constraint

b̃(ω) > 0, ∀ ω ∈ [0, π]

and the treatment of this oracle is similar to that of the positivity
constraint discussed in Section V-A.

However, it should be noted that (10) should accordingly be
modified to guarantee the positive realness of the final reduced
model. That is, the following constraint should be added.

p(ejω)q(e−jω) + p(e−jω)q(ejω) > 0, ∀ ω ∈ [0, π]. (13)

It is important to realize that (13) is linear with respect to the
decision variable p(z), and the left side defines a trigonometric
polynomial.

C. Passivity for S-Parameter Systems: Bounded
Real Constraint

For S-parameter models, the notion of dissipative system is
given by the bounded real condition (i.e., |H(z)| < 1, ∀ z ∈ C,
|z| = 1). To model this property, (9) can be modified by adding
the constraint

ã(ω) > |b̃(ω) + jc̃(ω)|, ∀ ω ∈ [0, π].

To construct the oracle, first check the positivity of the trigono-
metric polynomial

ã(ω)2 − b̃(ω)2 − c̃(ω)2 > 0, ∀ ω ∈ [0, π].

If this condition is met, then bounded realness is satisfied at the
current query point; otherwise, if the constraint is violated for
some ω0 ∈ [0, π], then the constraint

ã(ω0) >
∣∣∣b̃(ω0) + jc̃(ω0)

∣∣∣

defines a cut. It is noted that (10) should be modified similarly
to preserve the passivity of the final reduced model.

D. Multiport Positive Real Passivity

For a multiport transfer matrix H(z) ∈ C
n×n with real coef-

ficients, positive real passivity means

H(ejω) + H(ejω)′ > 0, ∀ ω ∈ [0, π], (14)

with ′ denoting complex conjugate transpose. The following is
a procedure to construct the multiport positive real passivity
oracle.

Let

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k]

be a state space realization of H(z) and define the 2 × 2 block
matrix

Σ :=
[

0 C ′

C D + D′

]
:=

[
Σ11 Σ12

Σ21 Σ22

]
. (15)

Consider the generalized eigenvalue problem

z

[
−Σ11 + Σ12Σ−1

22 Σ21 A′ + Σ12Σ−1
22 B′

−I 0

]

−
[

0 I
−A + BΣ−1

22 Σ21 −BΣ−1
22 B′

]
= 0. (16)

The following Lemma presents the oracle construction
procedure.
Lemma 5.1: If the generalized eigenvalue problem [(16)]

does not have any eigenvalue on the unit circle, then (14) is
satisfied. Otherwise, there exists ω0 ∈ [0, π], such that ejω0

is an eigenvalue of (16) and H(ejω0) + H(ejω0)′ �> 0. In this
case, if v0 ∈ C

n is an eigenvector associated with a nonpositive
eigenvalue of H(ejω0) + H(ejω0)′, then

v′
0

(
H(ejω0) + H(ejω0)′

)
v0 > 0 (17)

defines a (real coefficient) linear cut with respect to the coeffi-
cients of the numerator of H .

Proof: See the Appendix. �

E. Objective Oracle

In the case where the transfer function H of the original
system is explicitly fully specified (in terms of system matrices,
numerator/denominator, or pole/zero/gain) and the exact H∞
norm is to be minimized, one can use the following oracle.
Given the current iterates (ã, b̃, c̃) and the desired level of
optimality γ, an unstable transfer function

Ĥ(ejω) :=
b̃(ω) + jc̃(ω)

ã(ω)

can be realized. Then, the difference system H − Ĥ can be
formed to check (e.g., using MATLAB function norm) if its
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L∞ norm (similar to H∞ norm but not restricted to stable
systems) is less than γ. If the corresponding L∞ norm is not
smaller than γ, then a violating frequency ω0 can be identified,
and the cut∣∣∣b̃(ω0) + jc̃(ω0) − ã(ω0)H(ω0)

∣∣∣ < γã(ω0)

can be enforced.
In the case where the transfer function H of the orig-

inal system is specified as sample data (ωi,H(ωi)), where
i = 1, 2, . . . , N , the L∞ norm check of the difference H − Ĥ
can be simplified to checking N inequalities.

Finally, if the original transfer function H is again explicitly
given (e.g., system matrices) but the L∞ norm oracle afore-
mentioned is deemed too expensive to compute, the frequency
response of H can be sampled and the proposed algorithm
still applies (although the H∞ norm error is no longer guar-
anteed). Uniform sampling of the DT frequency axis over the
range of interest is generally a good choice for the proposed
algorithm.

VI. EXTENSION TO PMOR

This section discusses how the setup in (9) can be extended
to solve the problem of PMOR (i.e., to construct a parameter-
dependent model, stable for all parameter values of interest). In
particular, the positivity (stability) oracle will be discussed. The
main idea of the oracle construction is to relate the following
three mathematical objects: positive multivariate trigonomet-
ric polynomial, finite sum of squares (SOS) of multivariate
trigonometric polynomials, and (convex) SOS programming.

Enabling PMOR capability of (9) means allowing the co-
efficients of the trigonometric polynomials to be parameter-
dependent. That is

a(z,p) = a0(p)+a1(p)(z + z−1)+· · ·+am(p)(zm+z−m)

b(z,p) = b0(p)+b1(p)(z+z−1)+· · ·+bm(p)(zm+z−m)

c(z,p) =
1
j

(
c1(p)(z − z−1)+· · · + cm(p)(zm − z−m)

)

where p ∈ P ⊂ R
np . That is, p denotes the vector of design

parameters whose values vary in the set P . The parameterized
version of (9) is

minimize
ã,b̃,c̃,γ

γ

subject to
∣∣∣H(ejω,p)ã(ω,p)−b̃(ω,p)−jc̃(ω,p)

∣∣∣
<γã(ω,p) ∀ ω ∈ [0, π] ∀ p ∈ P
ã(ω,p) > 0 ∀ ω ∈ [0, π],p ∈ P
deg(ã) = m, deg(b̃) ≤ m, deg(c̃) ≤ m. (18)

The key problem with the application of the localization
methods to (18) is that the positivity oracle is different from
the nonparameterized case if P is not a finite set. In general,
it would be very difficult to satisfy the parameterized positivity

constraint if the parameter dependence of ã on p is arbitrary.
However, if the dependence is polynomial

ã(ω,p) =
∑

k

(∑
i

ci1,i2,...,inp
pi1

1 pi2
2 , . . . ,p

inp
np

)
cos(kω)

(19)

then it can be shown that a sufficient condition for positivity
can be found using a SOS argument. The resulting oracle will
involve the solving of a semidefinite program, which can be
performed in polynomial time. The underlying reason is as
follows. If P is bounded (with p

k
and pk being the lower and

upper bounds for the kth parameter, respectively), then pk =
(pk + p

k
+ (pk − p

k
) cos(ωk))/2, and therefore, ã(ω,p) is a

multivariate trigonometric polynomial. The following theorem,
from [29], provides a sufficient condition for the positivity of
ã(ω,p).

Theorem 6.1: A trigonometric polynomial is positive if and
only if it is a finite SOS of trigonometric polynomials.

Although the statement in the earlier theorem is sufficient and
necessary, care must be taken to apply the necessary direction
of the theorem. Specifically, to apply this direction, one must
consider the set of all finite SOS, which is impossible to char-
acterize. Nevertheless, the theorem does provide a guideline to
efficiently construct an oracle, since for every finite SOS of
trigonometric polynomials, there exists a quadratic form θ′Qθ,
where θ is a vector of appropriately chosen monomials and
Q = Q′ ≥ 0 (see [30] and [31]).

Searching for P = P ′ ≥ 0 : θ′Pθ = ã(ω,p) is a semidefi-
nite programming feasibility problem. The positivity oracle that
uses this search is summarized as follows.

Algorithm 2: PMOR POSITIVITY ORACLE
Input: query point ã
Output: declaration of constraint met, or a cut (α, β) :α′xa >β,
for all vector of coefficients xa of positive trigonometric poly-
nomials

i. Given trigonometric polynomial ã(ω, p), pick a vector
of monomials θ ∈ C

k, for instance, as guided by [30]
and [31].

ii. Solve the semidefinite program

minimize
y∈,R,P

y

subject to θ′Pθ = ã(ω,p) + y ∀ ω ∈ [0, π] ∀ p ∈ P
P = P ′ ≥ 0. (20)

iii. if (20) is feasible and optimal y∗ < 0,
return Positivity constraint is met

else
return Cut (α, β) constructed using the information of

the solution to (20).

The following lemma certifies the correctness of the oracle
and gives a constructive proof of the existence of (α, β).

Lemma 6.1: If (20) is feasible and the optimal value
y∗ < 0, then ã(ω,p) > 0, ∀ω ∈ [0, π], p ∈ P . Otherwise, a cut
(α, β) ∈ R

na × R can be returned. The cut has the following
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property: α′xa > β for all xa ∈ R
na such that the optimal

objective value of (20) is negative.
Proof: See the Appendix. �

It must be noted that the cut returned by (20) is restrictive
in the sense that it eliminates all the candidates xa that do not
result in y∗ < 0, while some of which can still produce positive
trigonometric polynomials. Nevertheless, it is generally true
that this is not too conservative if the vector of monomials is
properly chosen.

While the specific construction of the positivity constraint
oracle in Lemma 6.1 requires the dependence of ã on the
design parameter to be polynomial, there is no restriction in
the dependence of b̃ and c̃, and they can be chosen to best
fit the problem at hand. Finally, it is noted that (20) can be
solved using free semidefinite programming solvers such as
SeDuMi [32].

The details of how to construct (20) and (34), used in
the proof of Lemma 6.1 in the Appendix, will be shown in
the Appendix through the special case in which two design
parameters are allowed.

VII. ADDITIONAL MODIFICATIONS BASED

ON DESIGNERS’ NEED

We show here that the proposed Algorithm 1 (MOR), which
is given in Section IV, and Algorithm 2 (PMOR), which is
given in Section VI, are quite flexible, and they can serve as a
basic framework which can easily be modified to account for
several additional desirable constraints devised, for instance,
from a designer’s knowledge about the specific system to be
modeled.

A. Explicit Approximation of Quality Factor

When the transfer function H is, for instance, the impedance
of an RF inductor, the accurate representation of the quality
factor

Q(ω) :=
Im

(
H(ejω)

)
Re (H(ejω))

, ω ∈ [0, π]

is of critical importance for the designers in order to evaluate
the system performance. In this case, the basic problem in
(9) can be modified to guarantee a very good quality factor
accuracy

minimize
ã,b̃,c̃,γ

γ

subject to
∣∣∣H(ejω)ã(ω) − b̃(ω) − jc̃(ω)

∣∣∣ < γã(ω)

∣∣∣∣∣ Im
(
H(ejω)

)
Re (H(ejω))

b̃(ω) − c̃(ω)

∣∣∣∣∣ < ργb̃(ω)

ã(ω) > 0 b̃(ω) > 0 ∀ ω ∈ [0, π]

deg(ã) = m, deg(b̃) ≤ m, deg(c̃) ≤ m. (21)

ρ in the second set of the constraint is a tuning parameter of the
relative accuracy between match on frequency response and on

quality factor. The oracles for (21) are similar to those for (9).
The positive real part constraint and the reduced model should
be constructed using

minimize
p,γ

γ

subject to

∣∣∣∣H(ejω) − p(ejω)
q(ejω)

∣∣∣∣ < γ ∀ ω ∈ [0, π]∣∣∣∣∣Im
(
H(ejω)

)
Re(H(ejω))

− p(ejω)q(e−jω)−p(e−jω)q(ejω)
p(ejω)q(e−jω)+p(e−jω)q(ejω)

∣∣∣∣∣<ργ

p(ejω)q(e−jω) + p(e−jω)q(ejω) > 0 ∀ ω

deg(p) ≤ m. (22)

Again, this program is quasi-convex, and the oracle procedure
with (13) can also be applied here.

B. Weighted Frequency Response Setup

In some applications, the desired approximation accuracy is
different in different frequency ranges. For those applications,
the objective function of (9) can be replaced by∥∥∥W (z)

(
H(z) − Ĥ(z)

)∥∥∥
∞

where W (z) are weights that can be chosen to be larger for the
“more important” frequency range.

C. Matching of Frequency Samples

Program (9) can be modified so that the reduced transfer
function matches exactly the original transfer function at some
particular frequencies ωk between zero and π. In order to do
this, equality constraints such as

H(ejωk)ã(ωk) − b̃(ωk) − jc̃(ωk) = 0 ∀ k

can be imposed. Similarly, (10) can be modified to make sure
that the final reduced model matches the full model at those
frequencies. Besides the intended use of exact sample match-
ing, this modification has the practical meaning of reducing
the number of optimization decision variables in (9) and (10),
hence, reducing the runtime significantly.

D. System With Obvious Dominant Poles

Algorithm 3 implements a PMOR procedure, and it is spe-
cialized in the case where the full model has a pair of “dominant
poles.” It is given because it can take advantage of the problem-
specific insight common, for instance, in RF inductor design.
Note that the reduced model Ĥ(z,p) is stable, because, as
described in Algorithm 3, |ẑ∗(p)| < 1, and Ĥ(z,p) is stable
∀p ∈ P .

Algorithm 3: PMOR: RF INDUCTOR DESIGN
Input: H(z,p)
Output: Ĥ(z,p)

i. Construct reduced models H̃p(z) for each p ∈ P1 ⊂ P ,
where P1 is a finite (training) set
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ii. Identify the dominant poles z∗p of models H̃p(z)
iii. Construct proper “nondominant” systems H1

p(z) s.t.

H̃p(z) =
Kp(

z − z∗p
) (

z − z̄∗p
) (

z2 + Apz + H1
p(z)

)
(23)

where Kp ∈ R and Ap ∈ R

iv. Construct global interpolation model K̂(p), Â(p), and
ẑ∗(p). Special attention should be paid to the model ẑ∗(p)
to make sure that |ẑ∗(p)| < 1, ∀p ∈ P

v. Solve (18) to find a parameterized model Ĥ1(z,p) with
nondominant systems H1

p(z) as inputs.
vi. Construct reduced model of the original system using (23).

That is

Ĥ(z,p) =
K̂(p)(

z − ẑ∗(p)
) (

z − ẑ∗(p)
) (

z2 + Â(p)z + Ĥ1(z,p)
)

.

Note that, in order to make sure the final model Ĥ(z,p) is
passive, pole and zero information of the “dominant” system
can be taken into account to form the numerator of the overall
system when parameterized “nondominant” system Ĥ1(z,p) is
being computed.

VIII. COMPUTATIONAL COMPLEXITY

There are two sources that contribute to the complexity. The
first part is the computation of the frequency samples, which,
when using accelerated solvers [33]–[35], is O(n log(n)) for
each frequency point, with n being the order of the full model.
The examples in Section IX usually required from 20 to 200
frequency samples. The second part is the cost of running
the optimization algorithm. The complexity analysis here is
based on the specific method of ellipsoid algorithm (which is
implemented as a test code). If q and nv are the order of the
reduced model and the number of decision variables in the
optimization, respectively, then nv = O(q). Based on the fact
that the volume of the bounding ellipsoid is reduced by at least a
factor of 1 − (1/nv), it can be concluded that it takes O(n2

v) =
O(q2) iterations to terminate the algorithm. At each iteration of
the ellipsoid algorithm, the cost is O(q2) (matrix vector product
performed when updating the bounding ellipsoid). Therefore,
the cost of the second part is O(q4). The overall complexity of
the algorithm is summarized as

O (n log(n)ns) + O(q4)

with ns being the number of frequency samples computed.
Similarly, for the parameterized case, nv = O(qΠqpk), where
qpk is the degree of the polynomial with each parameter pk, as
in (19), and the complexity is

O (n log(n)ns) + O(qΠqpk)4. (24)

Based on our experience in running the examples in Section IX,
the bottleneck for nonparameterized model reduction is repre-
sented by the computation of the frequency response samples,

TABLE I
REDUCTION OF RF INDUCTOR FROM FIELD SOLVER

DATA USING QCO AND PRIMA

i.e., the first term in (24), unless the samples are available as
measured data. For parameterized applications, on the contrary,
the bottleneck is solving the relaxation, as there are many more
decision variables. Therefore, the second term of (24) becomes
the dominating factor.

IX. APPLICATIONS AND EXAMPLES

In this section, several application examples are shown to
illustrate how the proposed optimization based model reduction
algorithm works and performs in practice. All the examples
in this section were implemented in MATLAB and run on a
Pentium IV laptop with 1-GHz clock, 1 GB of RAM, and
running Windows XP.

A. ROM: Comparison With PRIMA

In this section, the proposed algorithm is compared with the
commonly used model reduction method of moment matching.
The first two examples are nonparameterized comparison. The
last example is a parameterized modeling problem for a two-
turn RF inductor, as described in [9].
RF Inductor Example: The first example is a comparison

between multipoint moment matching (PRIMA) [36] and the
proposed algorithm for reducing a seven-turn spiral RF inductor
model generated by an electro-magneto-quasi-static (EMQS)
mixed-potential integral equation (MPIE) solver [35]. The orig-
inal model has an order of 1576. PRIMA is set to match
two moments at DC, six moments at each of the following
frequencies: 4, 8, and 12 GHz. The resulting model has an order
of 20. On the other hand, two models are constructed using the
proposed method. One has an order of 14 using 20 frequency
samples (same computational cost as PRIMA), and the other
has an order of 20 using 40 frequency samples (same order
as PRIMA). When using the proposed method, both stability
and positive real passivity oracles are checked in this exam-
ple. The following error metric is computed: max(|H(f) −
Ĥ(f)|/|H(f)|, f ∈ [0, 14 GHz]. Comparison results are shown
in Table I, with QCO being the shorthand for the proposed
quasi-convex optimization method.
RLC-Line Example: This is a cooked-up example in which

the full model is not quite reducible. The example is presented
here in order to examine how PRIMA and the proposed method
perform in a poorly defined setup. In this example, we reduce an
RLC line segmented into ten sections (full model order 20) with
an open circuit termination. The transfer function is the admit-
tance. The model is obtained as follows: inductor currents and
capacitor voltages are the state variables. Kirchhoff’s Current
Law is imposed at each capacitor node, and the branch equation
is used between adjacent nodes. The reduced models of both
methods have an order of ten, and PRIMA is set to match four
moments at 104 rad/s, four moments at 5 × 104 rad/s, and two
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Fig. 1. Magnitude of admittance of an RLC line. (Solid line) Full model.
(Solid with stars) PRIMA 10th order ROM.

Fig. 2. Magnitude of admittance of an RLC line. (Solid line) Full model.
(Solid with stars) QCO 10th order ROM.

Fig. 3. Inductance of RF inductor for different wire separations. (Dashed) Full
model. (Dashed–dotted) Moment matching 12th order. (Solid) QCO 8th order.

moments at 105 rad/s, respectively. Figs. 1 and 2 compare the
magnitudes of the admittance of the full model and the reduced
models by PRIMA and by the proposed method, respectively.
The difficulties encountered when modeling this example with
PRIMA are discussed in [37]. As expected, in this example,
PRIMA performs better locally, but the proposed method does
better for the whole frequency range of interest.
PMOR of Two Turn RF Inductor: In this example, the two

turn RF inductor in [9] is analyzed. In [9], A 12th order
parameterized reduced model was constructed using a moment
matching method. On the other hand, we have constructed an
8th order PROM using the proposed method. Fig. 3 show the
comparison results in [9] for the case of wire width D = 1 µm
and wire separation W = 1, . . . , 5 µm, with the additional
result of the proposed method superimposed.

B. ROM: Comparison With a Rational Fit Algorithm

In the third example, we compare the proposed method with
an existing optimization-based rational fit [17], [18], [21] by
constructing a reduced model from measured frequency re-

Fig. 4. Identification of RF inductor. (Dashed line) Measurement. (Solid line)
QCO-reduced model. (Dashed-dotted line) Methods from [17], [18], and [21].
(a) Real part of impedance. (b) Quality factor.

sponse of a fabricated spiral RF inductor [38]. In this example,
the order of the reduced model is ten, and the positive real part
constraint is imposed. Frequency weights (preferring samples
of up to 3 GHz) are used, and the quality factor is explicitly
minimized. In particular, (21) is solved with tuning parameter
ρ = 10−4. Runtime for the proposed method was 60 s. On the
other hand, rational fit [18], vector fitting [17], and passivity
enforcement [21] were used in combination to construct another
passive model for comparison. The runtime in running the
mentioned algorithms was 30 s.

Fig. 4(a) and (b) shows the real part of the impedance and the
quality factor of the model produced by the proposed approach
comparing it to measured data and to a model of the same
order [(10)] generated using the optimization-based approaches
in combination.

C. ROM: Comparison to Measured S-Parameters From an
Industry-Provided Example

In the fourth example, we identify a reduced model
from measured multiport S-parameter data. On a commer-
cial graphic card, 390 frequency-response samples have been
measured. The internal architecture and implementation de-
tails are not available. Although the original data is multiple-
input–multiple-output, data from only one port are used to
construct the reduced model. Fig. 5 shows the comparison result
for the corresponding ports. The reduced model is order 20. The
model was identified in 30 s.

D. ROM: Frequency-Dependent Matrices Example

In the fifth example, we apply the proposed method to reduce
a model of an RF inductor generated by a full-wave MPIE



10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 3, MARCH 2008

Fig. 5. Magnitude of one of the port S-parameters for an industry-provided
example. (Solid line) Reduced model (order 20). (Dashed line) Measured data
(almost overlapping).

Fig. 6. Quality factor of an RF inductor with substrate captured by layered
Green’s function. Full model is infinite order and QCO reduced model order
is six.

Fig. 7. Magnitude of S12 of the coupled inductors. (Circle) Full model.
(Solid line) QCO reduced model.

solver accounting for the substrate effect using layered Green’s
functions [35], [39]. Since the system matrices are frequency-
dependent, the order of the full model is infinite. The order of
the reduced model is six, and the positive real part constraint is
imposed. Computation time was 2 s. Fig. 6 shows the result of
the quality factor.

E. ROM: Two Coupled RF Inductors

A 10th order passive reduced model of two coupled four-turn
RF inductors (identical, side by side) was constructed. It took
about 120 s to build the reduced model. Fig. 7 shows the result
for the magnitude of S12, and Fig. 8 shows the phase of S12.

F. PMOR of Full-Wave RF Inductor With Substrate

In this example, an 8th order passive parameterized reduced
model is constructed for an RF inductor with substrate. The

Fig. 8. Phase of S12 of the coupled inductors. (Circle) Full model.
(Solid line) QCO reduced model.

Fig. 9. Quality factor of parameterized RF inductor with substrate.
(Cross) Full model from field solver. (Solid line) QCO reduced model.

design parameters are wire width (W ) and wire separation (D).
The parameter space is a square from (1, 1) to (5, 5) µm. In
constructing the reduced model, 25 (W,D) pairs forming a
grid of (1 : 5) × (1 : 5) were used as training data. The reduced
model is validated with simulation results from field solver on
a ((1.5 : 1 : 4.5) × (1.5 : 1 : 4.5)) grid, and Fig. 9 shows the
result. Construction of the reduced model took overnight.

For the inductor application in this section, the initial model
has more than 2000 states (quasi-static), while the reduced
model has an order of eight. To construct the parameterized
reduced model in this example, 25 individual models were used
as training data.

G. PMOR of a Large Power-Distribution Grid

In this example, a passive parameterized reduced model
of a power-distribution grid is built using the techniques in
Section VII-C and those similar to Algorithm 3. The design
parameters are die size D ∈ [7, 9] mm and wire width W ∈
[2, 20] µm. Distributed uniformly in the design space, 25 full
models are used as training points for the reduced model of
order 32. To test the parameterized reduced model, compar-
ison of full model and reduced model is done at parameters
D ∈ {8.25, 8.75} mm and W ∈ {4, 8, 12, 14, 18} µm. Figs. 10
and 11 show the result at D = 8.25 mm and D = 8.75 mm,
respectively.

X. CONCLUSION

In this paper, a relaxation framework for the optimal H∞
norm MOR problem is proposed. The framework has been
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Fig. 10. Real part of power-distribution grid at D = 8.25 mm and W =
4, 8, 12, 14, 18 µm. (Dashed) Full model. (Solid) QCO reduced model.

Fig. 11. Real part of power-distribution grid at D = 8.75 mm and W =
4, 8, 12, 14, 18 µm. (Dashed) Full model. (Solid) QCO reduced model.

demonstrated to perform approximately as well as PRIMA
when reducing large systems and better than PRIMA for exam-
ples that require a more global accuracy in frequency response.
Unlike PRIMA, the proposed method has a guaranteed error
bound, and it can reduce models with frequency-dependent sys-
tem matrices; hence, it can capture, for instance, substrate and
full-wave effects. Unlike other optimization-based methods, the
proposed method has been shown to be very flexible in preserv-
ing stability and passivity. Finally, the proposed optimization
setup has also been extended to solve parameterized MOR
problems. Several examples have been presented validating
both the MOR and PMOR approaches against field solvers and
measured data on large RF inductors, IC power-distribution
grids, and industrial-provided package examples.

APPENDIX

A. Proof of Lemma 3.2

Given (�q, �p, �r) ∈ Ωm
qpr, it is shown that in order to satisfy

(8), (�a,�b,�c) must be defined as τm(�q, �p, �r). In addition, condi-
tion a(z) > 0, |z| = 1 is satisfied, because a(z) = |q(z)|2 and
q(z) �= 0 for |z| ≥ 1.

Now, consider the case when (�a,�b,�c) ∈ Ωm
abc is given.

Condition (8) implies that a(z) = p(z)p(1/z), |z| = 1,
and therefore a(z) = p(z)p(1/z),∀z ∈ C, and hence,
zma(z) = zmp(z)p(1/z). Since zma(z) �= 0 on the unit
circle, p(z)p(1/z) �= 0 also on the unit circle. In addition,
if z0 is a zero of q(z)q(1/z), then 1/z0 is also a zero of
q(z)q(1/z) by symmetry. Therefore, zmp(z)p(1/z) has
exactly m stable zeros and m unstable zeros, and therefore, the
Schur polynomial q(z) as given in (6) is unique. Now, show
that there exists a unique (�p, �r) : (�q, �p, �r) ∈ Ωm

qpr. Similar to

the argument for a(z) = p(z)p(1/z), (8) implies that (7) holds
∀z ∈ C. Again, this implies that

zm (p(z)q(1/z) + q(z)r(1/z)) = zm (b(z) + jc(z))

∀ z ∈ C (25)

and this means that the equality between two ordinary poly-
nomials of degree no larger than 2m. That is, (25) can be
represented as

c2mz2m + c2m−1z
2m−1 + · · · + c0 ≡ zm (b(z) + jc(z))

where ck,∀k ∈ {0, . . . , 2m} are linear functions of coefficients
of (�p, �r). Now, consider the linear map M : R

2m+1 	→ R
2m+1 :

c = M(�p, �r), where c is the vector of all ck. That is, the map
from the 2m + 1 coefficients of p(z) and r(z) (deg(p) ≤ m
and deg(r) < m) to the coefficients ck. If ∃(�p, �r) ∈ R

2m+1 :
M(�p, �r) = 0, then from (25), it holds that

p(z)q(1/z) ≡ −q(z)r(1/z). (26)

Since q(z) is a Schur polynomial, (26) implies that r(z) has
at least m zeros, which means that r(z) ≡ 0 as deg(r) < m,
and by (26) again, p(z) ≡ 0. Therefore, Null(M) = 0 and (25)
[or (7)] uniquely defines (�p, �r) : (�q, �p, �r) ∈ Ωm

qpr. �

B. Proof of Lemma 3.3

First, note that ã(ω) > 0, ∀ω ∈ [0, π] defines the intersection
of infinitely many halfspaces (each defined by a particular
ω ∈ [0, π]), and therefore, the feasible set is convex. Second,
consider a sublevel set of the objective function (for any
fixed γ). Since |z| = max|θ|=1 Re(θz)∀ z ∈ C condition
|H(ejω)ã(ω) − b̃(ω) − jc̃(ω)| < γã(ω)∀ω ∈ [0, π] is equiva-
lent to

Re
(
θ
(
H(ejω)ã(ω) − b̃(ω) − jc̃(ω)

))
< γã(ω) (27)

∀ω ∈ [0, π], |θ| ≤ 1, which is the intersection of halfspaces
parameterized by θ and ω. Therefore, the sublevel sets of the
objective function of (9) are convex, and the quasi-convexity of
the program is established. �

C. Proof of Lemma 5.1

Note that (14) is the same as

u′H(ejω)u + u′H(ejω)′u > 0 ∀ u ∈ C
n, u �= 0, ω ∈ [0, π]

(28)

and it is equivalent to [with Σ as defined in (15)][
x

u

]
Σ
[
x

u

]′
> 0 (29)

subject to “system constraints”

zx =Ax + Bu (30)

Hu = Cx + Du for z ∈ C. According to KYP lemma [40],
frequency-dependent inequality [(29)] subject to “system
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constraint” [(30)] holds if and only if the system (with un-
knowns x, u, and ψ)

zx = Ax + Bu
ψ

z = A′ψ − Σ11x − Σ12u

B′ψ = Σ21x + Σ22u (31)

does not have nonzero solutions for |z| = 1. Assuming that
Σ22 is invertible and solving for u from the last equation of
(31), the earlier condition is equivalent to the condition that the
generalized eigenvalue problem (the DT counterpart of what is
known as Hamiltonian in CT)

z

[
−Σ11 + Σ12Σ−1

22 Σ21 A′ + Σ12Σ−1
22 B′

−I 0

]

−
[

0 I
−A + BΣ−1

22 Σ21 −BΣ−1
22 B′

]
= 0 (32)

does not have any eigenvalue on the unit circle, which is exactly
the condition given in Lemma 5.1.

If the earlier condition is satisfied, then (14) is met.
Otherwise, let ejω0 be an eigenvalue of (32), and it needs to be
shown that

H(ejω0) + H(ejω0)′ �> 0. (33)

Indeed, ejω being an eigenvalue of (32) implies that (31) is
satisfied with ejω0 and the corresponding x, u, and ψ; then,
the quadratic form in (29) becomes

x′Σ11x + x′Σ12u + u′Σ21x + u′Σ22u

= x′(A′ψ − e−jω0) + u′B′ψ

= 0

and the result is (33). The fact that (17) defines a linear cut
should be obvious. �

D. Proof of Lemma 6.1

First, consider the case when (20) is feasible. Since θ′Pθ >
−∞ and |ã(ω,p)| < ∞, an optimal solution exists. Let it be y∗.
If y∗ < 0, then ã(ω,p) = θ′Pθ − y∗ > θ′Pθ > 0.

Next, consider the case when (20) is feasible but y∗ ≤ 0.
First, note that two polynomials are equal if and only if the re-
spective coefficients are equal. Second, for symmetric matrices
A and B, Tr(A,B) =

∑
i,j A(i, j)B(i, j), and therefore, the

sum of coefficients of θ′Pθ associated with the same monomial
can be written as Tr(T, P ) for some symmetric T , whose
entries are either one or zero. Finally, note that coefficients of
monomials in ã(ω,p) is linear with respect to coefficient vector
xa. Then, (20) can be written as

minimize
y,P

y

subject to Tr(P ) = b0 + y

Tr(TiP ) = bi ∀ i ∈ I
P = P ′ ≥ 0 (34)

where Ti = T ′
i is the matrix collecting the coefficients of the ith

monomial, bi = bi(xa) is a linear function of xa being equal to
the coefficient of the ith monomial, and I is the index set of all
possible monomials in the expression ã(z, zp). Now, consider
the Lagrangian of (34)

L(λ)= minimize
y,P=P ′>0

{
y + λ0(Tr(P ) − y − b0)

+
|I|∑

i=1

λi (Tr(TiP ) − bi)

}

= minimize
y,P=P ′>0


y(1−λ0)+Tr


P


 |I|∑

i=0

λiTi




−

|I|∑
i=0

λibi




with T0 being the identity matrix. It is true that

L(λ) =
{
−
∑|I|

i=0 λibi, if λ0 = 1,
∑|I|

i=0 λiTi ≥ 0
−∞, otherwise.

At the optimum, the optimal primal/dual pair (y∗, λ∗) has the
following property:

−
|I|∑

i=0

λ∗
ibi = y∗.

Define b = [b1 · · · b|I|]′ and recall that b is a linear function
of xa. That is b = Mxa for some matrix M of appropriate di-
mension. Then, under condition y∗ ≥ 0 (hence, a cut is needed),
it holds that −λ∗′Mxa ≥ 0. Therefore, all solution [of (18)] xa

that pass the positivity check of the oracle (i.e., y∗ < 0) should
satisfy

−λ∗′Mxa < 0 (35)

and therefore (M ′λ∗, 0) is the desired cut.
Finally, consider the case when (20) is infeasible. By ar-

gument of the statements of alternatives, infeasibility of (20)
implies the existence of feasible dual solution λ ∈ R

|I|+1

λ0 = 1
|I|∑

i=0

λiTi ≥ 0
|I|∑

i=0

λibi ≤ 0.

Therefore
∑|I|

i=0 λibi > 0 will lead to the same type of cut as
in (35). �

E. PMOR Stability Oracle With Two Design Parameters

Consider the case in which only two design parameters
are allowed. Denote the parameters as D and W (i.e., wire
separation and wire width for RF inductor design). Let m be
reduced order, M and N be the highest degrees of D, and W in
the coefficients of “denominator” ã(ω,p). That is

ã(ω,D,W ) =
m∑

k=0

M∑
i=0

N∑
j=0

ãijkDiW j cos(kω) (36)
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bijk :=
M∑

p=|i|

N∑
q=|j|



⌊

p−|I|
2

⌋∑
s=0

(
p

|i| + 2s

)
D

p−|i|−2s
0 D

|i|+2s
1

(
|i| + 2s

s

)


⌊

q−|j|
2

⌋∑
t=0

(
q

|j| + 2t

)
W

q−|j|−2t
0 W

|j|+2t
1

(
|j| + 2t

t

) ap,q,|k|

(
p

q

)
:=

p!
(p − q)!q!

(40)

where index i and j are associated with design parameter D and
W and index k is with the frequency variable ω. ãijk ∈ R are
optimization decision variables in (20).

Now, consider the transition from the right-hand side of (20)
to (34). To this end, it is necessary to introduce further change
of variables. Let z := e

√
−1ω and with a charge of variables

(aijk = (1/2)ãijk), (36) becomes

ã(ω,D,W ) =
m∑

k=0

M∑
i=0

N∑
j=0

aijkDiW j(zk + z−k). (37)

Furthermore, assume that D∈ [D, D̄] and W ∈ [W, W̄ ], then

D =D0 + D1 (zD + zD−1)

W =W0 + W1 (zW + zW−1) (38)

whereD0 =0.5(D+D),W0 =0.5(W +W ),D1 =0.25(D−D),
W1 = 0.25(W − W ) and zD ∈ C, |zD| = 1, zW ∈ C, |zW | =
1. Using the parameterization of D and W in (38), (37)
becomes

m∑
k=0

M∑
i=0

N∑
j=0

aijk

(
D0 + D1

(
zD + z−1

D

))i

·
(
W0 + W1

(
zW + z−1

W

))j (zk + z−k)

:=
m∑

k=−m

M∑
i=−M

N∑
j=−N

bijkzi
Dzj

W zk (39)

where bijk are linear functions of coefficients aijk in (37).
Now, consider the transition from the left-hand side of (20)

to (34). Define n := (M + 1)(N + 1)(m + 1) and consider the
vector of monomials

θ = [ z0
Dz0

W z0 · · · zi
Dzj

W zk · · · zM
D zN

W zm ] ∈ C
n

where the indexes change from j to k to i, |zD| = |zW | =
|z| = 1. The quadratic form with P ∈ S

n×n
+ in the left-hand

side of constraints in (20) is

θ′Pθ =
M∑

i=−M

N∑
j=−N

m∑
k=−m

Tr(TijkP )zi
Dzj

W zk (41)

where Tijk ∈ S
n×n

Tr(TijkP ) =
∑

(s,t):θ(s)′θ(t)=zi
D

zj
W

zk

P (s, t).

The constraint θ′Pθ = ã(ω, p) + y in (34) can be imposed by
enforcing the coefficients of zi

Dzj
W zk to be equal in right-hand

side of (40), which is shown at the top of the page and left-hand
side (41) for all necessary triples (i, j, k). Finally, note that the
extra scaler y can be incorporated into the comparison with the
(0, 0, 0) term.

With the optimization problem in the form of (34) setup, it
can be solved by a standard semi-definite programming solver,
such as SeDuMi, and the rest is exactly the same as those in the
proof of Lemma 6.1.
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