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ABSTRACT
In this paper we review some of the state of the art techniques for
parasitic interconnect extraction in the presence of random geomet-
rical variations due to uncertainties in the manufacturing processes.
We summarize some of the most recent development in both sam-
pling based (non-intrusive) and expansion based (intrusive) algo-
rithms for the extraction of both general impedance and capaci-
tance in the presence of random geometrical variations. In par-
ticular, for non-intrusive algorithms we discuss both the stochastic
model reduction algorithm for general impedance extraction un-
der uncertainty and the path recycling floating random walk algo-
rithm for capacitance extraction under uncertainty. For intrusive
algorithms we summarize the Neumann expansion, the standard
stochastic Galerkin method, the combined Neumann Hermite ex-
pansion and the stochastic dominant singular vectors method. Fi-
nally, we end the paper by comparing the presented algorithms on
four very large and complex impedance and capacitance extraction
examples.

1. INTRODUCTION
Field solvers are very important in order to determine the perfor-

mance of the electrical circuits in the presence of high frequency
effects, proximity effects and electromagnetic and substrate cou-
pling. Over the last decades a lot of research has been dedicated
to the development of very efficient field solvers, which can han-
dle very large structures. However, such solvers are optimized to
handle a single deterministic structure, and do not account for pos-
sible geometrical variations produced by uncertainties in the man-
ufacturing process. Due to technology scaling, such geometrical
uncertainties are beginning to strongly affect the performance of
both transistors and interconnect structures. In particular, the per-
formance of the transistors is affected by both line edge roughness
and the variations of the doping profile. The performance of on-
chip interconnect structures is affected by width and thickness vari-
ations. Finally, the performance of off-chip interconnect structures
is affected by surface roughness.

A large variety of CAD tools are required in order to fully ana-
lyze the effect of manufacturing processes on the performance of
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the final electrical circuits. Among such tools are process sim-
ulation tools which transform uncertainties of the manufacturing
process parameters into geometrical uncertainties. Then tools to
transform geometrical uncertainties into uncertainties of the elec-
trical parameters of both the transistors and the interconnects. And
finally tools which transform the uncertainties of the electrical pa-
rameters of transistors and interconnects into uncertainties of the
performance parameters of complex electrical circuits.

In this paper we focus on stochastic variation-aware solvers for
interconnect structures, which analyze the effect of geometrical un-
certainties on the electrical performance of the structures and aid in
analyzing the reliability of the designed circuits. We will summa-
rize the state of the art techniques which can be used to analyze the
different types of geometrical variations (such as surface rough-
ness and width/thickness variations) on the electrical characteris-
tics (such as capacitance, resistance or full impedance) of intercon-
nect structures. It should be noted that the on-chip width variations
are typically produced by uncertainties of the lithography and etch-
ing processes and that the thickness variations are typically pro-
duced by the uncertainties in the chemical mechanical polishing
process (CMP). In addition, off-chip surface roughness are typi-
cally produced by uncertainties in the electroplating procedure. It
should also be noted that the geometrical uncertainties are treated
in this paper as random variations. This is primarily due to two
factors. First, despite the ability of process simulation tools to pre-
dict the geometrical description of a structure for a given set of
process parameters, such process parameters are themselves typ-
ically assumed random and therefore the geometrical parameters
predicted by the process simulation tool are random. Second, ac-
curate process simulation tools require knowing the exact location
of the interconnects in the full chip and details of their surrounding.
Since such information is typically not available at the early design
phases, this lack of information makes accurate process simulations
impossible. This lack of knowledge is in turn reflected by assuming
that the geometrical parameters of the interconnects are random.

This paper is organized as follows. Section 2 summarizes the ba-
sic mathematical setup of the problem and some of the tools which
are necessary for analyzing the different methods presented in the
rest of the paper. Then in section 3 sampling based methods are
addressed. In particular details are given for both the stochastic
model order reduction and the path recycling floating random walk
methods. In section 4 the state of the art intrusive algorithms are
summarized. Finally, in section 5 a comparison between the dif-
ferent solution methods is performed on a variety of large scale
examples.

2. PROBLEM SETUP
The general impedance extraction problem is described by Maxwell’s
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equations. Different formulations ranging from differential to in-
tegral formulations have been proposed in literature to solve the
impedance extraction problem [1, 2, 3, 4, 5]. All discretization
based methods, whether differential or integral, rely on first dis-
cretizing the set of unknowns using appropriate basis functions.
The discretized equations are then transformed into a linear system
of equations using standard testing procedure Ax = b.

For the case of stochastic variation-aware extraction the bound-
aries of the computational domain are described by random geo-
metrical parameters. Discretization in the presence of random vari-
ations is a difficult task. Indeed, the only way to discretize a struc-
ture using a constant number of basis, while still allowing the struc-
ture to vary (see Figures 1 and 2), is to use stochastic basis func-
tions, i.e. basis that have a stochastic support. Another way to un-
derstand the stochastic nature of the basis function, is to realize that
in order to keep the total number of volume or surface discretiza-
tion elements constant while still allowing the geometry to vary, is
to allow the discretization elements themselves to vary. Galerkin or
collocation testing is then used to transform the Maxwell’s equa-
tions into a stochastic linear systems of equations. Notice that in
case of Galerkin testing the test functions are themselves random.
Following the testing procedure, the resulting stochastic linear sys-
tems of equations is of the form:

A(p) x(p) = b (1)

where p is a vector of length NP of the random geometrical pa-
rameters, A(p) is a known stochastic matrix of size N×N, b is the
known RHS, and the objective is to obtain the complete distribution
of the N×1 unknown vector x(p).

Figure 1: Discretized conductor surface using parameterized
basis functions.

In electrical extraction applications, the output quantity of in-
terest y(p) (e.g. capacitance or admittance) is written as a linear
function of the unknown vector x(p)

y(p) = cT x(p) (2)

where c is a column vector of size N× 1. In certain applications,
such as capacitance extraction, we might be interested in more than
a single quantity (e.g. all coupling capacitances between a target
conductor and all surrounding conductors). In such cases y(p) is a
vector rather than a scalar, and the vector c becomes a matrix C.

It should be noted that in the very special cases of capacitances
or resistance extraction (which require only solving the Laplace
equation) the extraction can be implemented most efficiently using
random walk methods. Such methods are discretization-free and
do not rely on assembling or solving any linear systems of equa-

Figure 2: Discretized conductor volume. Conductor upper sur-
face is rough. The thickness of every filament in a random vari-
able.

tions [6, 7, 8, 9]. One of these methods, namely the floating random
walk (FRW), is addressed in section 3.2

2.1 Random Variability Modeling
Most techniques presented in this paper work with general prob-

ability density functions, but for simplicity of exposition we assume
that the stochastic vector p is described by a multivariate Gaussian
probability density function. We will further assume that in general
such random variables are spatially correlated. Based on the spatial
correlation function, we divide the variations into strongly spatially
correlated and weakly spatially correlated variations. As an exam-
ple of strongly spatially correlated variations, we consider surface
roughness in “off-chip” interconnects. We will assume that the cor-
relation function is Gaussian in order to guarantee the smoothness
of the surface. However, other correlation functions, such as ex-
ponential, have been also applied in the literature [10]. As an ex-
ample of weakly spatially correlated variations, we will consider
the case of “on-chip” interconnect width and height variations. In
such case we will in general assume that the random parameters
in p represent uncorrelated Gaussian variations in the geometrical
dimensions (e.g. width and height) of the interconnects.

If the vector p is composed of correlated random variables then a
Karhunen Loeve expansion (or in other words a truncated Singular
Value Decomposition SVD) is used to expand the random process
as a summation of independent random variables η⃗ [11],

2.2 Polynomial Chaos Expansion (PCE)
For the general extraction problem the elements of the system

matrix depend nonlinearly on the uncorrelated random vector η⃗.
To simplify the computations and the representation of the nonlin-
ear dependence, the matrix elements are often expanded in terms
of orthogonal basis polynomials Ψk (⃗η) in the variable η⃗. Such ex-
pansion is referred to as polynomial chaos expansion [12].

A(p) =
K

∑
i=0

AiΨi(⃗η) (3)

where K is a function of both NO, the order of the orthogonal poly-
nomial expansion, and NP, the number of independent random vari-
ables [13]:

K =

(
NO +NP

NP

)
. (4)

A complete Askey scheme has been developed [14] to choose the
set of orthogonal polynomials such that its weighting function is
the probability density function of the set of independent random
variables η⃗. For the particular case of Gaussian random variables,



the set of probabilistic Hermite polynomials Ψi(⃗η) is the standard
choice, resulting into:

Ai = < A(p),Ψi(⃗η)> (5)

=
∫

η1

⋅ ⋅ ⋅
∫

ηNP

A (⃗η)Ψi(⃗η)
exp(− η⃗T η⃗

2 )

(2π)
NP
2

dη1 ⋅ ⋅ ⋅dηNP ,

= 𝔼 [A(⃗η)Ψi(⃗η)] (6)

Despite the fact that the exponential function in (5) is separable,
the fact that A(p) is dependent on all the independent random vari-
ables in vector η⃗ used to expand the random process, results in an
integral (5) of very large dimension NP independent of NO. Such
integrals are computationally impractical to evaluate. Several tech-
niques have been proposed to avoid this inherent complexity, such
as Monte Carlo integration (not to be confused with Monte Carlo
simulation), and sparse grid integrations [15]. Nevertheless, the
problem of calculating a large number of such integrals in a compu-
tationally efficient framework remains one of the bottlenecks of any
stochastic algorithm that relies on the polynomial chaos expansion.
In [16] a new method, relying on the inner product interpretation of
the expectation, is proposed to overcome this inherent difficulty.

DEFINITION 2.1. Let the modified inner product ⟨⋅, ⋅⟩W be de-
fined by〈

f (p),Ψi(⃗η)
〉

W =
∫

p

∫

η⃗

f (p)Ψi(⃗η)W (p, η⃗)dpdη⃗, (7)

where

W (p, η⃗) =
exp
(
−0.5vT C−1

V v
)

(2π)
D+NO

2
√∣CV ∣

,

and CV is the correlation matrix between p and η⃗ and

v =

(
p
η⃗

)
, CV = 𝔼[vvT ] =

(
𝔼[p pT ] 𝔼[p η⃗T ]

𝔼[⃗η pT ] 𝔼[⃗η η⃗T ]

)

where 𝔼 is the expectation operator, η is an at most NO element

subvector of η⃗ upon which the Nth
O order Hermite polynomial ΨNO (⃗η)=

ΨNO (⃗η) depends, and ∣CV ∣ is the determinant of the correlation
matrix CV .

THEOREM 2.1. The Hermite polynomials Ψ(⃗η) are orthogonal
with respect to the modified inner product (7).

THEOREM 2.2. The coefficients fi of the standard Hermite ex-
pansion of the function f (p) can be computed using the modified
inner product:

fi =
〈

f (p),Ψi(⃗η)
〉
=
〈

f (p),Ψi(⃗η)
〉

W (8)

THEOREM 2.3. The maximum dimension of the integrals in (8)
required to obtain the Hermite expansion using the modified inner
product is D+NO, where D is the length of vector p and NO is the
order of the Hermite polynomial.

In other words, the dimension of the integral in (8) is indepen-
dent of the number of orthogonal random variables NP used for
expanding the random process.

Using the modified inner product, one can then easily and very
efficiently calculate the expansion coefficient Ai in (3):

Ai =
〈
A(p),Ψi(η)

〉
W =

∫

p

∫

η⃗

A(p)Ψi(⃗η)W (p, η⃗)dpdη⃗ (9)

3. SAMPLING-BASED METHODS
In non-intrusive (i.e. sampling based) methods, the system (1)

is solved NS times, for different realizations of the random process
p, obtaining the set of solutions {x(p1), x(p2), ⋅ ⋅ ⋅ , x(pNS)}. The
solution at the different sample points is then used to either directly
compute the statistics of the output quantity or to construct a func-
tional representation of the output by using standard multivariate
Lagrange interpolation or polynomial chaos expansions. Examples
of sampling based methods include the Monte Carlo method [17],
and the stochastic collocation method (SCM) [18, 19].

The main advantage of sampling based methods is that they rely
on using a standard deterministic solver in order to compute the
solution at the different sample points. Consequently, such meth-
ods can exploit all the advanced field solver technologies devel-
oped over the last decades [20, 21, 22, 2, 23, 24, 25, 26, 27, 28,
7]. Since such sampling-based methods do not require the develop-
ment of new field solver technologies, they are referred to as non-
intrusive. Another advantage of sampling-based methods is that
they are highly parallelizable and therefore they can exploit the
great advances in parallel computing architectures. On the other
hand, the main disadvantage of sampling-based methods is that a
very large number of sample points is needed in order to accurately
represent the solution.

There are two important research challenges associated with sam-
pling based methods. The first challenge is associated with the de-
velopment of efficient algorithms for sampling large dimensional
stochastic spaces (i.e. large number of statistical parameters). A
variety of methods have been proposed in literature to address this
problem: quasi-Monte Carlo [29], quadrature using sparse grids [30,
31], quadrature using adaptive sparse grids [32] and sampling using
greedy algorithms [33, 34].

The second challenge is associated with the development of ef-
ficient algorithms to simultaneously solve a large number of "sim-
ilar" linear systems of equations, which result from sampling the
stochastic linear system of equations. Different strategies have
been proposed in the literature to address such challenge, such
as parallelization, Krylov subspace recycling [35, 36], stochastic
model order reduction [37, 38, 33, 39] and recycling of FRW [40]
(whenever FRW applies). In the following subsections we will
elaborate more on both the stochastic model order reduction based
methods and the recycling of FRW.

3.1 Statistical Moment Preserving Model Or-
der Reduction (SMOR)

In SMOR the different solutions obtained by solving the linear
system at the different sample points in the stochastic space are
used in order to build a projection matrix, which spans the subspace
in which the solution lives.

x(⃗η) = Uxr (⃗η) (10)

The reduced order solution is then computed as yr (⃗η) = cT Uxr (⃗η).
In [39], the projection matrix U is chosen such that the statistical
moments of yr (⃗η) match those of y(⃗η)

𝔼

[
y(⃗η)k

]
=

∫
y(⃗η)kP (⃗η)dη⃗ =

∫ (
cT A(⃗η)−1b

)k
P (⃗η)dη⃗

≃
Nq

∑
q=1

αq(cT A(⃗ηq)
−1b)kP (⃗ηq) (11)

and/or the coefficients βi of the PCE projection of the reduced out-



put yr (⃗η) match those of y(⃗η)

βi = ⟨y(⃗η),Ψi(⃗η)⟩ =
∫

y(⃗η)Ψi(⃗η)P (⃗η)dη⃗

≃
Nq

∑
q=1

αqcT A(⃗ηq)
−1bΨi(⃗ηq)P (⃗ηq)(12)

Notice that αq are the weights associated with the quadrature
points η⃗q and Nq is the total number of quadrature points required
by the numerical quadrature scheme used to calculate the integral
(Nq increases as k increases).

Theorem 3.1 below provides a way to achieve both objectives,
i.e. matching of the statistical moments, and matching of the coef-
ficients for a multivariate Hermite representation of the output.

THEOREM 3.1. IF U is an orthonormal projection matrix and

colspan{U} ⊃ span
{

b,A(⃗η1)
−1b,A(⃗η2)

−1b, ⋅ ⋅ ⋅ ,A(⃗ηNq)
−1b

}
where

{⃗
ηq : q = 1, ⋅ ⋅ ⋅ ,Nq

}
is a set of quadrature points such that (11)

and (12) are exactly integrable for some choice of orthogonal poly-
nomials Ψi(⃗η) THEN

𝔼

[
y(⃗η)k

]
= 𝔼

[
yr (⃗η)k

]
(13)

and

⟨y(⃗η),Ψi(⃗η)⟩= ⟨yr (⃗η),Ψi(⃗η)⟩ (14)

where the reduced output yr (⃗η) is given by

yr (⃗η) = cT U(UHA(⃗η)U)−1UHb (15)

In terms of actual implementation of the algorithm, stacking the
solutions at all quadrature points in one projection matrix U would
result in three different issues, namely, it would require a very
large number of linear system solves and would result in a large-
dimensional and ill-conditioned projection matrix. The standard
solution for the second and third issues (which does not address the
first one) is to compress the projection subspace using a singular
value decomposition (SVD). Instead in SMOR an alternative solu-
tion is presented that addresses all three issues at the same time.
Specifically, the projection matrix is computed sequentially by in-
troducing the solutions at the different quadrature points one at a
time and updating the projection matrix only whenever necessary.
In more detail, before solving a particular large system at a new
quadrature point η⃗q, the algorithm tests if the current projection
matrix accurately represents the solution by computing the follow-
ing residual

r(⃗ηq) = b−A(⃗ηq)xr (⃗ηq) = b−A(⃗ηq)U
(

UHA(⃗ηq)U
)−1

UHb

If the norm of the residual is large, then the current subspace does
not faithfully represent the solution and therefore needs to be ex-
panded with the solution of the new system orthogonalized with
respect to the current subspace. If, on the other hand, the norm is
small then the solution at the new sampling point is accurately rep-
resented using the currently explored subspace and does not need
to be added to the basis. The advantage of using such a proximity
measure is that only one matrix-vector product is done in the origi-
nal space O(N2) and all the rest of the computation, i.e. computing
xr (⃗η), is done in the reduced space, and is therefore very efficient.
The complete SMOR is summarized in Algorithm 1. Notice that a
similar residual measure was used in [34] to determine the points
at which the parameter space should be sampled.

Algorithm 1 Stochastic Model Reduction Method for Solving Lin-
ear Systems with Random Matrices.
1: U← b
2: q← 0
3: for each quadrature point η⃗q do
4: q← q+1
5: generate linear system A(⃗ηq).

6: compute xr (⃗ηq)← U
(
UHA(⃗ηq)U

)−1 UHb
7: compute residual r(⃗ηq)← b−A(⃗ηq)xr (⃗ηq).

8: if ∣∣r(⃗ηq)∣∣
∣∣b∣∣ > theshold then

9: solve for x(⃗ηq), A(⃗ηq)x(⃗ηq) = b
10: extend the basis U with x(⃗ηq)−UUHx(⃗ηq)
11: end if
12: end for

Figure 3: Typical random walk path from conductor I to con-
ductor K.

3.2 Recycling of FRW
The floating random walk algorithm is a discretization-free al-

gorithm for solving the Laplace equation. Consequently, such an
algorithm is only suitable for capacitance and resistance extraction.
In such methods the desired output is computed from the average
contribution of a large number random walks which all start from
the target conductor and end at the source conductor. Each walk is
associated with a random variable, which is derived and computed
from the governing PDEs. The walks are constructed from steps of
nonuniform size and hence the name floating. Each step is taken
by constructing a transition domain, which is centered at the most
recent spatial location reached by the path and which extends until
touching the nearest conductor (the domain is not allowed to en-
close any conductors). The probability density function necessary
for making a transition from the center point of the domain to any
point on the boundary of the domain is computed from the Cube’s
Green’s function. Each walk continues until terminating at a con-
ductor surface (see figure 3). For more details on the FRW method
and the most recent advances of the method, the reader is referred
to [7, 41, 42, 43, 40, 44].

One of the main advantages of the floating random walk algo-
rithm is the fact that the algorithm is inherently local, since each
floating random walk path typically explores only a small part of
the geometry. Such locality implies that the number of conductors
which constrain a particular path is very small compared to the to-
tal number of conductors in the structure. This property is even
more emphasized in typical VLSI structures with a large density of
conductors, where the paths are typically very short and confined.



The proposed path recycling algorithm relies on solving the stochas-
tic PDE using sampling-based methods. As will be clear in the
following discussion, the proposed algorithm works best for sparse
grid based sampling schemes, in which each sample point in the
stochastic space corresponds to perturbing only a small subset of
the parameters. In the path recycling algorithm, the capacitance
of a nominal configuration is first computed. All the paths gener-
ated while solving such nominal configuration are stored. For any
other configuration, which is generated by perturbing some of the
geometrical parameters of the nominal configuration, the locality
implies that many of the paths generated during the solution of the
nominal configuration do not depend on the perturbed conductors.
Consequently, such paths can be completely reused to compute the
capacitance of the new configuration.

Even the paths that depend on a perturbed conductor can be par-
tially reused in the new configuration. Specifically one can truncate
them and complete them by resuming the walk from the first non-
reusable transition domain affected by the change in configuration.
Since the number of paths that require updating is very small com-
pared to the total number of paths, the path recycling FRW algo-
rithm will obtain almost instantly the solution for the new configu-
ration. The complete procedure is formalized in Algorithm 2.

Notice that all the paths associated with the capacitance extrac-
tion of a given configuration need to be statistically independent.
However, different configurations do not require to have statisti-
cally independent paths. Moreover, in some special cases, such as
sensitivity analysis, where the output depends on the difference be-
tween the capacitances of two different configurations, sharing the
same paths is not only an advantage but even a necessity to ensure
numerical accuracy ([40]).

Algorithm 2 Path Recycling
1: while not all configurations tagged do
2: Tag one of the untagged configurations
3: repeat
4: Generate a path for the last tagged configuration
5: for each untagged configuration k do
6: Map current path to configuration k
7: if not valid in configuration k then
8: truncate and complete path
9: end if

10: Use path to update capacitance matrix of configuration
k

11: end for
12: until convergence of the last tagged configuration
13: end while

4. INTRUSIVE EXPANSION-BASED METH-
ODS

As implied by the name, in expansion based methods one typ-
ically seeks to compute a stochastic expansion of the unknown.
Examples of such expansions are the Neumann expansion and the
polynomial chaos expansion. Specialized solvers are needed in or-
der to either compute desired statistical moments from such ex-
pansions or the coefficients of such expansions. Hence such meth-
ods are sometimes referred to as intrusive methods. In this section
we review four different intrusive methods. The first of them is
based on the Neumann expansion. The last three methods are all
based on the polynomial chaos expansion (PCE). The three meth-
ods are organized as follows. We first start by the standard method
to compute the PCE coefficients which is the stochastic Galerkin

method. We then present a more efficient method to compute the
coefficients in cases which are characterized by small variations.
We finally present the stochastic dominant singular vectors method
to efficiently compute the coefficients of the PCE for any general
problem and which is very efficient for cases of large variations.

4.1 Neumann Expansion
The stochastic system matrix A(p) in (1) is first written as A(p)=

A0 + ΔA(p), a sum of a deterministic expectation matrix A0 =
𝔼[A(p)] and a stochastic matrix ΔA(p). Second, A(p) is substi-
tuted in the linear system (1), and the inverse is expanded using the
Neumann expansion to obtain:

x(p) = x0−A−1
0 ΔA(p)x0 +A−1

0 ΔA(p)A
−1
0 ΔA(p)x0 + . . . (16)

where x0 = A−1
0 b. The above series converges provided that

max ∣λ(A−1
0 ΔA(p))∣< 1. (17)

The required statistics of the unknown current vector x(p) can then
be obtained from (16), however, such computation (even just the
average) is computationally very expensive [45, 46]. The main

complexity is associated with the term 𝔼

[
ΔA(p)A

−1
0 ΔA(p)

]
, which

involves computing the expectation of the product of two stochas-
tic matrices separated by a deterministic matrix. This term can be
rewritten using the Kronecker product ⊗ and the vector operator
vec(⋅) as 1:

𝔼

[
ΔA(p)A

−1
0 ΔA(p)

]
= vec−1

(
𝔼

[
ΔA(p)

T ⊗ΔA(p)
]

vec(A−1
0 )
)

(18)
The complexity of storing and evaluating (18) is O(N4), which
is computationally prohibitive. The complexity of computing the
statistics increases even more dramatically if the order of the term
in the Neumann expansion is increased and/or if we compute high
order statistical moments.

A couple of techniques have been proposed to reduced the com-
plexity of computing (18) [47, 48]. In particular, the variation-
aware capacitance extraction algorithm in [47] relies on using the
H-matrix [23] to sparsify both A−1

0 and ΔA(p)T ⊗ΔA(p). The final
complexity of the algorithm is O(Nlog2N). On the other hand, the
variation-aware resistance/inductance extraction algorithm in [48]
relies on using “stochastic” high order basis functions in order to
reduce N (without reducing the complexity of the problem O(N4)).
Both [47, 48] are specialized for very particular applications. More-
over, they are useful only for computing the average and possibly
a low order approximation of the variance. It is very hard to gen-
eralize such algorithms to general or more complex applications.
Furthermore, computing high order statistics using such a method
is for all practical purposes computationally impossible.

4.2 Stochastic Galerkin Method
The stochastic Galerkin method (SGM) has been developed by

Ghanem [45]. It has been traditionally called the stochastic finite
element method. In SGM the objective is to compute the coeffi-
cients of the PCE of the solution. This is achieved by first expand-
ing the system matrix A(p) using polynomial chaos (5). The un-
known x(⃗η) is then written as an expansion of the same orthogonal
polynomials x(⃗η) = ∑K

j=0 x jΨ j (⃗η), where x j are unknown vectors.

1When the vector operator is applied to a matrix A of dimension
N×N the result is a vector of size N2×1 obtained by stacking the
columns of the matrix into a large vector. Using Matlab’s notation
vec(A) = A(:)



Both expansions are then substituted in (1)

K

∑
i=0

AiΨi(⃗η)
K

∑
j=0

x jΨ j (⃗η) = b. (19)

A Galerkin testing, i.e. projection on the space of the same set
of orthogonal polynomials, is applied to obtain a linear system of
equations.

K

∑
i=0

K

∑
j=0

〈
Ψi(⃗η)Ψ j (⃗η),Ψℓ(⃗η)

〉
Aix j = ⟨b,Ψℓ(⃗η)⟩

∀ℓ ∈ {1, ⋅ ⋅ ⋅ ,K} (20)

Equation (20) is equivalent to a linear system of the form

Ãx̃ = b̃, (21)

where

Ã =
K

∑
i=0

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝

γi00 γi10 ⋅ ⋅ ⋅ γiK0
γi01 γi11 ⋅ ⋅ ⋅ γiK1

. . .
γi0K γi1K ⋅ ⋅ ⋅ γiKK

⎞
⎟⎟⎟⎠⊗Ai

⎞
⎟⎟⎟⎠

x̃ =
(

xT
0 xT

1 ⋅ ⋅ ⋅ xT
K

)T
, b̃ =

(
bT 0 ⋅ ⋅ ⋅ 0

)T ,

γi jℓ =
〈
Ψi(⃗η)Ψ j (⃗η),Ψℓ(⃗η)

〉
and ⊗ is the Kronecker product. The

size of this linear system is O(NK), i.e. the original system size
N, times K the total number of multivariate orthogonal polynomi-
als used to expand the random function. Notice that for a moderate
size 100-dimensional parameter space, K is 5,000. Solving the cor-
responding linear system would require O(K2N2) time complex-
ity when using an iterative solver, and O(K3N3) time complexity
when using a direct solver. Such complexity would result in an ex-
tremely inefficient electrical extraction algorithm, probably much
worse that Monte Carlo simulation.

4.3 Combined Neumann Hermite Expansion
(CNHE)

In the CNHE the coefficients of the PCE of the solution are com-
puted very efficiently by starting from the Neumann expansion (in-
stead of by solving the very large and complex equation 21). The
approach in this section is ideal for small variations which satisfy
the convergence properties of the Neumann expansion. An exam-
ple of problems for which the CNHE is very efficient is impedance
extraction in the presence of moderate surface roughness.

In the CNHE the Neumann expansion (16) is used to avoid the
complexity of solving a large linear system, and the modified poly-
nomial chaos expansion is used to simplify the calculation of the
statistics of the unknown vector. This combined approach is imple-
mented by first expanding A(p) in terms of Hermite polynomials
using the modified inner product (7)

A(p) = A0 +
K

∑
i=1

AiΨi(⃗η) (22)

and then substituting this expansion in the Neumann expansion (16):

x(⃗η) = A−1
0 b−A−1

0

(
K

∑
i=1

AiΨi(⃗η)

)
A−1

0 b+ (23)

+ A−1
0

(
K

∑
i=1

AiΨi(⃗η)

)
A−1

0

(
K

∑
i=1

AiΨi(⃗η)

)
A−1

0 b+ . . .(24)

From (24) it is observed that the problem has been transformed
from solving a huge linear system into doing instead a large num-
ber of small matrix-vector multiplications, or small linear system
solves. Using the output equation, equation (24) is simplified to:

y(⃗η)≃ y0−
K

∑
i=1

zT
0 uiΨi(⃗η)+

K

∑
i=1

K

∑
j=1

vT
i t jΨi(⃗η)Ψ j(η), (25)

where y0 = cT x0, x0 = A−1
0 b, z0 = A−T

0 c, ui = Aix0, vi = AT
i z0,

and t j = A−1
0 u j. Notice that the complexity of evaluating (25) is

significantly less than that of evaluating (24) due to the use of the
adjoint equations to compute z0 and vi.

Algorithm 3 Combined Neumann Hermite Expansion (CNHE)
1: Compute the coefficient matrices Ai using (9) as in Theo-

rem 2.2.
2: Solve the nominal A0x0 = b and adjoint problems AT

0 z0 = c
for x0 and z0, respectively.

3: for each coefficient matrix Ai do
4: ui← Aix0
5: vi← AT

i z0
6: Solve A0t j = u j for t j
7: end for
8: Use (25) to assemble the second order expansion for the re-

quired output y(η) (for instance the input current).

4.4 Stochastic Dominant Singular Vectors Method
(SDSV)

For problems which are described by large dimensional high-
order PCE, computing the coefficients of the PCE either using the
standard SGM or even by using the CNHE is a computationally
very expensive task. The fundamental problem with the PCE is that
it assumes that all the coefficients of the expansion are equally im-
portant and that all of them need to be computed. However, in many
practical cases the PCE expansion can be significantly compressed
by using problem-specific polynomial basis di(⃗η) which are typi-
cally computed as linear combinations of the standard polynomial
basis.

x(⃗η) =
K

∑
i=0

xiΨi(⃗η) =
K

∑
i=0

xidi(⃗η) (26)

Notice that the suggested representation is nonlinear of x(⃗η), since
both the deterministic component as well as the stochastic compo-
nent are unknown. To better understand the idea behind our work
let us consider expressing x(⃗η) in terms of its dominant basis:

x(⃗η) =
K

∑
i=0

xiΨi(⃗η) = Xh(⃗η) =
r

∑
i=0

σiuiṽT
i h(⃗η) =

r

∑
i=0

uivT
i h(⃗η).

(27)

where
r
∑

i=1
σiuiṽT

i is the SVD of X, σiṽi = vi and r is the total num-

ber of dominant basis and h(⃗η) is a vector of the Hermite orthogo-
nal polynomials:

h(⃗η) =
(

Ψ0(⃗η) Ψ1(⃗η) ⋅ ⋅ ⋅ ΨK (⃗η)
)T

. (28)

Note that vT
i h(⃗η) is a scalar polynomial and that (27) can therefore

be expressed as

x(⃗η) =
r

∑
i=0

vT
i h(⃗η)ui (29)



where ui is an unknown vector of length N and vi is an unknown
vector of length K representing a direction in the stochastic space.

The Key Idea. The solution vector x(⃗η) is decomposed in the
form of the summation (29) and its components are sequentially
computed, i.e. at every iteration n of the algorithm one solves only
for un and vn. These vectors are computed such that they minimize
the norm of the residual at iteration n.

This is achieved by first substituting (29) in (1) to obtain

A(⃗η)
r

∑
i=0

vT
i h(⃗η)ui = b(⃗η) (30)

Assume that at step n of the algorithm, all vectors ui,vi : i= 0, ...,n−
1 are known and define

xn(⃗η) =
n

∑
i=0

vT
i h(⃗η)ui = xn−1(⃗η)+vT

n h(⃗η)un (31)

and

rn(⃗η) = b(⃗η)−A(⃗η)xn(⃗η) (32)

Equation (32) can be put in a recursive form by using (31)

rn(⃗η) = b(⃗η)−A(⃗η)xn−1(⃗η)−A(⃗η)vT
n h(⃗η)un

= rn−1(⃗η)−A(⃗η)vT
n h(⃗η)un (33)

where x0 = 0 and r0 = b.
As mentioned above, at step n of the algorithm, un and vn are

computed such that the stochastic norm of the residual rn(⃗η) is
minimized

min
un,vn

𝔼

[
rn(⃗η)rn(⃗η)T

]
(34)

One approach to minimizing (34) is to set the gradient f′ of the
objective function to zero using Newton’s method. The implemen-
tation details are omitted, however, for more details the reader is
referred to [49]. Notice that following the computation of the nth
pair of dominant vectors, the norm of the residual is updated and
is used as an indicator of the accuracy of the solution. In other
words, the search for pairs of dominant vectors is repeated sequen-
tially until the norm of the residual becomes smaller than a given
threshold.

The main advantage of the SDSV is that the number of the free
optimization parameters (length of both un and vn) is O(N +K),
which means that at every iteration one only needs to solve a lin-
ear system of the same size for a complexity O(N +K)2. Such
minimization is performed only r times, where r is the number of
dominant basis of x(⃗η). Note, typically r≪ K ≃ N. Consequently,
the complexity of SDSV scales with just O(N2), practically inde-
pendent of the number of parameters.

Algorithm 4 presents a complete summary of SDSV. Note that
both unknowns un and vn are combined into a single vector z.

5. RESULTS
In this section we compare the performance of the following

state-of-the-art stochastic simulations methods: Monte Carlo method
(MC), stochastic collocation method (SCM), stochastic model or-
der reduction method (SMOR), path recycling via FRW, standard
Neumann expansion (NE), stochastic Galerkin method (SGM), com-
bined Neumann Hermite expansion (CNHE), and the stochastic
dominant singular vector (SDSV). All algorithms are tested on the
following four examples:

1. Large 3D On-Chip capacitance extraction example in the pres-
ence of width and thickness variations. This example is com-
posed of 6 conductors arranged on top of 289 small metal

Algorithm 4 The Stochastic Dominant Singular Vectors Method
(SDSV)

1: x(⃗η)← 0, r(⃗η)← b(⃗η)
2: un← x0, the solution of the nominal problem
3: vn← e1

4: z← (uT
n vT

n
)T

5: while ∣∣r(⃗η)∣∣2S > Threshold do
6: repeat
7: form first derivative f′
8: form Hessian f′′
9: solve linear system f′′Δz =−f′

10: z← z+Δz
11: un← z(1 : N,1), vn← z(N +1 : N +K,1)
12: until ∣∣f′∣∣< Threshold
13: x(⃗η)← x(⃗η)+unvT

n h(⃗η).
14: r(⃗η)← r(⃗η)−A(⃗η)unvT

n h(⃗η).
15: un← x0
16: vn← e1

17: z← (uT
n vT

n
)T

18: end while

fill as shown in Figure 4. The red conductor (in the mid-
dle of the second layer) is the target conductor for which we
want to compute the capacitance vector. The total number of
discretization elements is N=25,788 and the total number of
parameters is NP=295.

2. Large 3D parallel-plate capacitance extraction example in the
presence of surface roughness. This example is composed of
2 square plate conductors of size 20 separated by a distance
of 1 unit length (see Figure 5). The upper plate is very rough
(σ = 0.2 and Lc = 1). The total number of discretization
elements is N=21,000 and the total number of parameters is
NP=323.

3. Large 3D impedance extraction in the presence of random
geometrical variations. This example (shown in Figure 6)
is composed of four different inductors. The dimensions of
every wire (total of 48) is an independent random variable.
For the discretization based methods, the total number of
discretization elements is N=10,358 and the total number of
parameters is NP = 48.

4. Large 3D impedance extraction in the presence of random
surface roughness. This example (shown in Figure 6) is com-
posed of four different inductors. The upper surface of each
conductor is assumed rough. For the discretization based
methods, the total number of discretization elements is N=10,358
and the total number of parameters is NP = 400.

All algorithms are optimized for computational efficiency. When-
ever applicable, we exploit parallelization, computational reuse (e.g.
table look-ups), numerical approximations, data compression and
any other available implementation tricks (provided the accuracy
threshold is met). Table 1 summarizes the comparison results. No-
tice that we are reporting two different times corresponding to 3%
and 8% accuracy thresholds. Notice further that the entries in the
table are rounded to simplify comparing the results and that all
numbers in brackets are estimated. Finally notice that the SCM
is of second order accuracy since the first order scheme produces
error more than 8%.

From the table we can draw several conclusions related to the
relative performance of the various methods:



Table 1: Comparison of the performance of the Monte Carlo Method (MC), stochastic collocation method (SCM), SMOR, FRW,
Neumann expansion method (NE), SGM, CNHE, SDSV, for four different examples. N is the total number of discretization elements.
P/K are respectively the total number of parameters and the total number of orthogonal polynomials (dimension of the basis) used
to describe the variability. The percentage beside the Time (e.g. 3% and 8%) refers to the accuracy threshold. Reported times are
all in hours. All numbers in brackets are estimated.

MC SCM SMOR FRW NE SGM CNHE SDSV

Ex.1: 3D-cap. Time 3% (600) (6,000) (24) 1 (13,000) (360,000) (1200) 8
param. var. Time 8% 60 (6,000) 12 0.25 (13,000) (360,000) 12 6

N=25K, P/K=295/44K Memory 20GB 20GB 20GB 5MB 20GB 20GB 20GB 20GB

Ex.2: 3D-cap. Time 3% (650) (6,500) (70) 6 (12,000) (500,000) (260) 12
rough surface Time 8% 65 (6,500) 14 2 (12,000) (500,000) 13 7

N=21K, P/K=323/53K Memory 20GB 20GB 20GB 20MB 20GB 20GB 20GB 20GB

Ex.3: 3D-imp. Time 3% 10 10 7 – (100) (50) 6 8
param. var. Time 8% 10 10 7 – (100) (50) 6 8

N=10K, P/K=48/1K Memory 10GB 10GB 10GB – 10GB 10GB 10GB 10GB

Ex.4: 3D-imp. Time 3% (1400) (21,000) (56) – (100) (2,000,000) (720) 12
rough surface Time 8% (140) (21,000) 28 – (100) (2,000,000) 36 10

N=10K, P/K=400/81K Memory 16GB 16GB 16GB – 16GB 16GB 16GB 16GB

1. The SCM, NE and SGM perform very poorly in all examples.
Except for the performance of the NE in the forth example,
these methods are outperformed by all the other methods.
This is primarily due to the fact that such methods are not
adaptive and require very large computational effort before
any meaningful results are obtained. For all examples, a sec-
ond order scheme of such methods was both necessary to
reduce the error below 8% and sufficient to reduce it below
3%. This explains why the performance of such methods
does not change for the different error thresholds.

2. The FRW is the best method to extract the resistance or ca-
pacitance in the presence of variations in the metal (not in
the material properties). Such methods scale extremely well
with the size of the problem and with the dimension of the
parameter space.

3. The SDSV is the best method to extract the impedance in the
presence of large dimensional variations. Despite the need
for a large setup time, such method scales extremely well
with the dimension of the parameter space.

4. The CNHE is the best method to extract the impedance in the
presence of small dimensional variations, provided that the
output is accurately described using a low order multivari-
ate expansion in the parameter space. Such method requires
solving linear systems which only involve the average ma-
trix. Furthermore, such method utilize the adjoint concepts
to significantly reduce the computational effort.

5. The SMOR is the best method to extract the impedance in
the presence of small dimensional variations, provided that
the output is a high order multivariate expansion in the pa-
rameter space. Such method fully exploits fast field solver
techniques and therefore significantly reduces the solution
time of the independent linear system solves. In addition,
due to the non-intrusive nature of the SMOR it is the easiest
presented method in terms of implementation cost and it can
be very easily generalized to handle non-linear and dynamic
problems.

Figure 4: Large Capacitance Extraction Structure. Discretized
using a total of 25788 different panels.

6. CONCLUSION
In this paper we have presented a large number of the state of

the art algorithms which are suitable for the extraction of the elec-
trical characteristics in the presence of manufacturing process vari-
abilities. It has been observed that sampling based methods via
FRW are best suited for stochastic capacitance extraction. It has
also been observed that CNHE is best suited for general impedance
extraction problems provided that the manufacturing variabilities
are small, the SMOR is very best suitable for general stochastic
impedance extraction provided that the stochastic space can be ef-
ficiently sampled. For complex problems characterized by large
variations in large dimensional stochastic spaces the SDSV is the
best technique. One of the important remaining research direc-
tion is the development of stochastic fast solvers such as stochastic
fast precorrected-Fast Fourier transform or stochastic fast multi-
pole method. Another important research direction is to complete
the stochastic CAD flow by developing stochastic process simula-
tion tools, stochastic device simulation tools and stochastic circuit
simulators. To achieve such goal the stochastic algorithms need to
be generalized to be both nonlinear and dynamic.



Figure 5: Large Parallel Plate Capacitance Extraction Struc-
ture. Discretized using a total of 21,000 different panels.

Figure 6: Array of 4 Inductors.
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