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Abstract— This paper describes an efficient method for
solving an inverse optical scattering problem associated with
the optical semiconductor process inspection. The method
determines the geometric features of a fabricated structure,
from spectroscopic ellipsometry measurements, by combin-
ing a parameterized low-order model with an optimization
algorithm. We make improvements on the polynomial fitting-
based parameterized moment matching technique to extract
such model automatically. Since the resulting model is inex-
pensive to evaluate, the method shows large speedup without
losing much accuracy: the examples show more than 1000
times speedup with less than 1% error in the final geometric
parameter estimation.

I. INTRODUCTION

The technology for fabricating integrated circuit struc-
tures requires very finely tuned photolithographic-etching
processes. Undercutting or over-rounding easily occurs,
for instance, by erroneous acid concentrations and/or
longer/shorter etch time. Consequently, accurate and on-
line process monitoring techniques are vital to ensure
correct fabrication parameters which produce consistent
features.

A commonly used on-line monitoring device is spectro-
scopic ellipsometry: it illuminates an etched surface with
light over a wide range of frequencies and measures the
scattered field. Then, the actual shape of the scattering
surface can be inferred from the scattered field. Because
the scattered field does not directly give the shape infor-
mation, inferring the shape of the scattering surface is a
challenging inverse problem [1], [2], [3], [4] and must be
solved rapidly as the inspection is performed on-line. Table
lookup over a database of pre-computed scattered field and
scatterer relations has been employed [5], but large tables
are needed to achieve the desired accuracy.

In this paper, we reconstruct the shape of the scattering
surface using a parameterized low-order model: the model
simulates the measurement process, and the difference
between the measured and the simulated scattered fields
is minimized. If the model is a function of parameters
describing the geometric features of the scattering surface

and is accurate enough, the difference-minimizing param-
eters are close to the true ones.

The proposed method consists of four major steps: (a) an
integral formulation describing the scattering; (b) a bound-
ary element method for solving the integral equations; (c) a
parameterized model order reduction algorithm to acceler-
ate the model evaluation; and (d) an optimization algorithm
to determine the geometric parameters by matching the
model output to the measurement data. The steps from
(a) to (c) create a parameterized low-order model directly
from the Maxwell’s equations, so that it is practically
as accurate as a field solver but, at the same time, is
inexpensive enough for repeated evaluations. Then, the
model is coupled with a suitable optimization algorithm
to deduce the unknown parameters in step (d).

Our main contributions are modifying the parameter-
ized moment matching (PMM) techniques for oscillating
functions and parameter dependent inputs; applying the
polynomial fitting-based PMM technique in [6] to the
optical scattering analysis, creating a parameterized low-
order model; and combining the model with an optimiza-
tion algorithm to perform a fast inverse optical scattering
analysis.

II. BACKGROUND

A. Integral Formulation and Boundary Element Method

The scattering of an electromagnetic wave from an
object can be modeled using the PMCHW formulation [7],
[8], [9], [10]. The resulting coupled integral equations have
tangential components of the surface electric and magnetic
fields as unknowns, denoted J and M respectively; we can
also interpret them as the equivalent surface electric and
magnetic currents.

Then, a surface discretization can be introduced to
convert the coupled integral equations into a system of
algebraic equations: the surface is discretized into triangu-
lar panels, and J and M are approximated using weighted
combinations of RWG basis functions [11]. Once the
approximate J and M are computed, they can be used to
determine the scattered field at any point in space.



Suppose a set of parameters p = (p1, p2, · · · , pk) char-
acterizes the geometric features of a scattering surface;
in addition, p may also include the wavelength of the
incident field. Then, for a given p, the overall problem
after discretization is

A(p) x(p) = b(p), y(p) = C(p) x(p) (1)

where A(p) and C(p) are the discretized integral operators,
b(p) is the vector of integrals of the incident field, half
of the entries in x(p) represent the discretized J, and the
other half represent the discretized M [10]. The variable
y(p) is the approximated scattered electric field at a given
measurement point, and C(p) relates the surface electric
and magnetic currents to the measured electric field. The
entries of A(p), b(p), and C(p) are functions of p, since
the Green’s function in the integral operator and the
discretization of the surface change as functions of p.

For a complicated inspection geometry, the number of
unknowns, N, can exceed several thousand. This large
number of unknowns implies that (1) is costly to solve.

B. Model Order Reduction

In order to reduce the cost of solving (1) to compute
the scattered field y(p) due to a set of parameters p, we
use a technique referred to as parameterized model order
reduction. In this section, we describe a parameterized
model order reduction technique called the parameterized
moment matching (PMM) method.

1) PMM: Consider an N-dimensional system of
equations parameterized affinely with respect to p =
(p1, p2, · · · , pk) as

(A0 + p1A1 + · · ·+ pkAk) x(p) = b, (2)

and we are interested in the response y(p) from

y(p) = C(p) x(p). (3)

Using the projection strategy in [12] with a projection
matrix V ∈ R N×n, (2) and (3) can be reduced to

(Â0 + p1Â1 + · · ·+ pkÂk) x̂(p) = b̂

ŷ(p) = Ĉ(p) x̂(p)
(4)

where Âi = VT AiV, b̂ = VT b, and Ĉ(p) = C(p)V. The
reduced system in (4) is much lower in order than the
original system if n � N.

In order for (4) to maintain fidelity, the projection
matrix V must be chosen carefully; one approach shown
in [13] chooses V so that the first few Taylor expansion
coefficients of ŷ(p) in (4) match those of y(p) in (3).

2) Polynomial Fitting-Based PMM: In practice, the
matrix A(p) as a function of p is not known explicitly,
and it is also unlikely to be an affine function.

The polynomial fitting-based PMM in [6] samples the
matrices at different points in the parameter space, some-
times referred to as snapshots, and fits the entries with

polynomials. For a given matrix A(p), the polynomial fit
Ã(p) is

Ã(p) = Ã0 +∑
j

p jÃ j +∑
j,k

p j pkÃ j,k + · · · . (5)

Unfortunately, (5) is not an affine function of pi’s. By
redefining the parameters as

p′i =




p j, j = 1, · · · ,k
p j pk, j = 1, · · · ,k,k = 1, · · · ,k

...

(6)

the resulting Ã(p′) is an affine function of a new set of
parameters p′ = (p′1, p′2, · · ·), and the PMM in subsubsec-
tion II-B.1 can be applied. With a slight abuse of the
notation in the rest of the paper, we use p and pi instead
of p′ and p′i, respectively.

III. IMPROVEMENTS IN INTERPOLATION-BASED PMM

As explained in subsection II-A, the optical scattering
problem is a function of some geometric parameters and
possibly the wavelength, denoted as p. In this section,
we investigate the additional issues related to constructing
an affinely parameterized model Ã(p), b̃(p), and C̃(p)
by fitting the snapshots of A(p), b(p), and C(p) with
polynomials.

A. Fitting in Frequency

For the examples that we are considering, the size of
the object is of the order of a wavelengths, but the mea-
surement point is usually a number of wavelengths away.
In this setting, the entries of C(p) are strong nonlinear
functions of the wavelength. This is because the Green’s
function for the integral equation,

Gν(�r−�r′) =
e− jω√ενµν||�r−�r′||

4π||�r−�r′|| , (7)

oscillates for large ||�r−�r′||, even with a small change in
ω.

To improve the accuracy of the polynomial fit, a nominal
distance is factored out. Assume that there is a cluster of
panels all within a range smaller than the wavelength λ,
and let the center of the cluster be �r0. By factoring out
||�r−�r0||, Gν(·) is

Gν(�r−�r′) = e− jω
√

ενµν||�r−�r0|| · e− jω
√

ενµν(||�r−�r′ ||−||�r−�r0||)

4π||�r−�r′||
= e− jω

√
ενµν||�r−�r0||G′

ν(�r−�r′)
(8)

and (||�r−�r′|| − ||�r−�r0||) in G′
ν(·) remains small. Hence,

G′
ν(·) can be easily fitted with a polynomial.



B. De-parameterization of b(p)

For the scattering problem, b(p) is a function of p due
to geometric variations or the change in the wavelength.
Even after b(p) is fitted with

b̃(p) = b̃0 + p1b̃1 + · · ·+ pkb̃k, (9)

using the method in subsubsection II-B.2, we cannot apply
PMM directly to find the projection matrix V.

We modify the system Ã(p), b̃(p), and C̃(p) with affine
dependency on the parameters to have constant right-hand
side vector b̃′. Since the method is related to the PMM
method in [13], and we are limited by space in this paper,
the details will be given in a following Transaction paper.
The system after the modification is

Ã′(p) x̃′(p) = b̃′, ỹ′(p) = C̃′(p) x̃′(p), (10)

and the PMM can be readily applied to find V.

IV. INVERSE SCATTERING PROBLEM

In order to estimate the geometric features of the scat-
tering surface, we want to determine p such that y(p) in
(1) matches the measured field ym as closely as possible.
This problem is stated as a least-squares problem [14]

min
p∈X

||f(p)||2, (11)

where f(p)= y(p)−ym and X is the range of all admissible
parameter values. In practice, the real and imaginary
parts of y(p) are minimized separately to recover real
parameters from the optimization problem.

A well-known algorithm for solving nonlinear least-
squares problems is the Levenberg-Marquardt algorithm,
which is a trust-region variant of the Gauss-Newton al-
gorithm [15]. To use this algorithm, we have to compute
f(p), and its Jacobian matrix Fi, j = ∂ fi(p)

∂p j
at each step.

Unfortunately, solving for f(p) and F takes most of the
computation time.

Using an affinely parameterized low-order approxima-
tion of (1),

(Â0 + p1Â1 + · · ·+ pkÂk) x̂(p) = b̂

ŷ(p) = (Ĉ0 + p1Ĉ1 + · · ·+ pkĈk) x̂(p),
(12)

generated by the polynomial fitting-based PMM and the
techniques in section III offers two main advantages.
First, the entries of F are products of Âi, Ĉi, and b̂,
which are straightforward to compute. Second, solving
for both f(p) and F requires inverting Â(p), which is the
small matrix associated with the reduced model. Note that
applying the Levenberg-Marquardt to (1) directly would
be substantially more expensive.

V. SUMMARY OF ALGORITHM

• Pre-computing the model:

1) Compute the discretized integral operators A(p)
and C(p) as well as the integrals of the incident
field b(p) in (1) for a number of different p
vectors in the parameter space (subsection II-
A).

2) Fit the entries of A(p)’s, b(p)’s, and C(p)’s to
get Ã(p), b̃(p), and C̃(p) as in (5) (subsubsec-
tion II-B.2 and subsection III-A).

3) De-parameterize b̃(p) to get Ã′(p), b̃′, and
C̃′(p) (subsection III-B).

4) Compute the projection matrix V as in [13]
for the de-parameterized system, and form the
reduced model ˆ̃A′(p), ˆ̃b′, and ˆ̃C′(p) (subsubsec-
tion II-B.1).

• Estimating the geometric parameters:

1) Measure the field ym.
2) Solve (11) iteratively (section IV) by evaluating

the objective function and its Jacobian matrix
associated with the reduced model.

VI. EXAMPLES

A. Case One: a Sphere

The scatterer is a ball of silicon dioxide (ε = 11.7, µ = 1,
and σ = 0) centered at the origin. The test conditions are

• The radius of the sphere is r ∈ [95nm,105nm] with
the nominal value of r0 = 100nm.

• The incident field is a plane wave with λ ∈
[190nm,210nm] with the nominal value of λ0 =
200nm, coming from θ = π/3, polarized in the x̂-
direction, and the phase being zero at the origin.

• The scattered field is measured at distance 20.013λ0
away from center in the (1,1,1) direction.

The values for λ/λ0 and r/r0 are sampled at 0.95,
0.99, 1.01, and 1.05; and they are fitted with a third order
polynomial. Then, moments are matched at (λ/λ0,r/r0) =
(1,1), (0.95,0.95) up to the first order. The reduced model
is of size 30-by-30 compared to the original model of size
576-by-576, and it is parameterized in both the wavelength
and the radius. As a result, our approach gives about a
factor of 8000 times speedup in each model evaluation.

The exact values of the scattered field are evaluated
at three different wavelengths to form ym. Fig. 1 shows
||f(p)|| versus the radius, and the optimizer has converged
to a minimum of 97.3nm, identifying the true value 97nm
with an error of 0.3%.

B. Case Two: a Pillar

The pillar shown in Fig. 2 is a simplification of a wall
of silicon dioxide that is formed after each etch. It has
width w in both the x̂ and the ŷ-directions and height h in
the ẑ-direction. The test conditions are
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Fig. 1. Plot of the objective function in (11) evaluated with a
parameterized reduced model for the sphere example.

• The width and the height are w ∈ [22nm,28nm] and
h ∈ [45nm,55nm] with the nominal values of w0 =
25nm and h0 = 50nm, respectively.

• The same incident field and observation point are used
as in the sphere case.

The values for w/w0 and h/h0 are sampled at 0.85, 0.95,
1.05, and 1.15; and they are fitted with a third order poly-
nomial. Then, moments are matched at (w/w0,h/h0) =
(1,1) up to the second order. Note that the wavelength is
not a parameter, and three separate models are built for
different wavelengths. Each original model is of size 540-
by-540 and each reduced model is of size 50-by-50, which
gives about a factor of 1000 times speedup.

Again, the exact values of the scattered field are eval-
uated to form ym. Fig. 2 shows ||f(p)|| versus the width,
and the optimizer has converged to 104.9nm, identifying
the true value of 105nm with 0.1% error.
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Fig. 2. Plot of the objective function in (11) with the parameterized
reduced model for the pillar example.

VII. CONCLUSION

In this paper, we described an approach to efficiently
solve an inverse optical scattering problem associated with
the optical semiconductor process inspection. The method
combines the PMCHW formulation, boundary element
method, and parameterized moment matching to form
a parameterized low-order model; and the Levenberg-
Marquardt algorithm is used to minimize the least-squares
difference between the measured and computed scattered

fields. Coupling an optimization algorithm with a parame-
terized low-order model significantly reduces the compu-
tational cost associated with repeated model evaluation.

The approach was demonstrated on a silicon dioxide
sphere and a pillar to estimate their radius and width,
respectively. We achieved factors of 1000 and 8000 re-
duction in computation, while successfully identifying the
parameters of interest with errors of 0.3% and 0.1%.
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