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Abstract— This paper introduces a technique for the numerical
generation of basis functions that are capable of parameter-
izing the frequency-variant nature of cross-sectional conductor
current distributions. Hence skin and proximity effects can be
captured utilizing much fewer basis functions in comparison
to the prevalently-used piecewise-constant basis functions. One
important characteristic of these basis functions is that they only
need to be pre-computed once for a frequency range of interest
per unique conductor cross-sectional geometry, and they can be
stored off-line with a minimal associated cost. In addition, the
robustness of these frequency-independent basis functions are
enforced using an optimization routine. It has been demonstrated
that the cost of solving a complex interconnect system can
be reduced by a factor of 170 when compared to the use of
piecewise-constant basis functions over a wide range of operating
frequencies.

I. INTRODUCTION

To date, there exists numerous accelerated integral-equation
based electromagnetic solvers [1], [2], [3], [4], [5], [6] that are
capable of rapid and accurate resolution of large conductor
system impedance, some of which can even account for the
effects invoked by the presence of a semi-conductive substrate.
However, the efficiency of these solvers is being continuously
challenged by the ever increasing operating frequencies which
generate skin and proximity effects that need to be carefully
modeled in order to provide accurate impedance solutions.

Skin and proximity effects are troublesome for today’s fast
solvers due to the fact that most of the mixed potential integral
equation (MPIE) solvers rely on piecewise-constant [7], [2],
[6] or piecewise-linear basis functions to capture conductor
current distributions. As frequency increases, the use of these
basis functions has proven to be computationally expensive
because a very fine discretization scheme must be applied in
order to faithfully capture the exponential variation in cross-
sectional conductor current, thus generating densely-populated
clusters of filaments with highly uneven aspect ratios. One
might think this is not problematic if the discretized system
were to be solved by a fast technique since, theoretically
speaking, the computational cost only scales in a linear fashion
with the total number of basis functions. However, in practice,
direct computation must be used to account for the numerous
near-distanced interactions generated by clusters of long and
skinny filaments which takes a quadratic order of complexity
to resolve.

The explosive cost associated with high-frequency
impedance simulations has spurred the development of
methods that seek to either represent interior conductor
current using surface field quantities [8], [9], [10], [11],
[5] or generate specialized basis functions that have the
built-in capability of capturing interior current variations [12],
[13]. However, major drawbacks have been observed in
the first approach where surface-based formulations such
as [11], [5] result in excessively complex systems that are
numerical unstable at low-frequencies. Therefore, for the sake

of accuracy and robustness of implementation, the latter of
the two approaches is preferred. Specifically, according to
[12], a set of specialized basis functions called “conduction
modes” is analytically derived from the interior Helmholtz
equations governing the flow of longitudinal current through
a conductor. One distinct disadvantage of these specialized
basis functions is that they can only be generated for
those cross-section shapes where analytical solutions of the
diffusion equation are available. Practically speaking, only
rectangular and cylindrical cross-sections can be handled.
Another disadvantage of the conduction mode basis functions
is that they are incapable of capturing proximity effects in
neighboring wires of dissimilar cross-sectional shapes. To
remedy these shortcomings, [13] describes another set of basis
functions called “proximity templates” that is pre-computed
numerically at each desired frequency for each unique
conductor cross-section type. An apparent disadvantage of
such an approach is the high computational cost associated
with constructing these basis functions if there exists a large
number of frequency points of interest. Another disadvantage
is the lack of predictability in the method’s accuracy due
to the fact that its solutions are entirely dependent on the
judicious placement of only a handful of trial samples.

In this paper, a set of basis functions is introduced that
maximizes the efficiency with which large and complex inter-
connect structures are modeled. According to the procedure
outlined in Sec. III, these basis functions only need to be
pre-computed once per conductor cross-section geometry of
interest. One of the major and novel contributions is that these
basis are valid for a wide range of frequencies of operation.
For the sake of reusability, these basis functions can be stored
off-line with a minimal storage cost. In spite of having the
advantage of being inherently frequency-independent within
a given frequency range, these basis functions are also able
to collectively parameterize the frequency-variant nature of
conductor current distributions, hence providing reasonably
accurate modeling solutions with far fewer degrees of freedom
in comparison to the use of traditional basis functions. Fur-
thermore, a second key contribution is that post-optimization
techniques are applied to the resulting basis functions in order
to guarantee their numerical robustness and avoid system
illconditioning. In addition, these basis functions will not
complicate the cost of volume integrations in a Galerkin
scheme [7] if a mixed-potential integral-equation (MPIE) for-
mulation were used. In Section IV, examples are presented to
demonstrate the superior efficiency with which the specialized
basis functions perform impedance extractions of complex
interconnect systems when implemented in a MPIE fast solver
that also accounts for substrate effects [2].



II. BACKGROUND

A. MPIE Formulation
As in [2], [7], [6], the following set of integral equations

can be used to compute conductor volume current density J
and conductor surface charge density ρ,

J(r)
σ

+ jω
µ

4π

∫
v

GA(r,r′)J(r′)dr′ = −∇φ(r) (1)

1
4πε

∫
s
Gφ(r,r′)ρ(r′)dr′ = φ(r) (2)

∇ · J(r) = 0 (3)

n̂ · J(r) = jωρ(r), (4)

where v and s are the union of conductor volumes and
surfaces respectively, φ is the scalar surface potential, µ is
the magnetic permeability, ε is the dielectric constant, σ is the
conductivity, and ω is the angular frequency of the conductor
excitation. Vector and scalar layered Green’s functions GA and
Gφ account for conductor potentials under the influence of a
semi-conductive substrate. Details regarding their derivation
can be found in [2].

B. Discretization
For a given interconnect structure, after specifying a set of

terminal voltages as inputs, (1)-(4) can be solved numerically
for the current density J and charge density ρ. The standard
approach for such computation is to approximate each type
of unknowns by a weighted sum of a finite number of basis
functions such that, for the calculation of current density
vector:

J(r) ≈ ∑
j

m j(r)I j, (5)

where m j ∈ C3 is a current density basis function, and I j
is its corresponding basis function weight. Similarly, for the
charge density calculation, ρ(r) ≈ ∑m vm(r)qm, where vm ∈C
and qm denotes a charge density basis function and its weight,
respectively. A Galerkin technique [14] can then be used
to generate a discrete system of equations for the weights
according to the derivation in [12], [13]. The resulting linear
system is expressed as follows:[

R+ jωL 0
0 P

jω

][
I
Ip

]
=

[
V
Vφ

]
, (6)

where I is a vector of current density basis function weights,
and Ip is a displacement current vector that is related to charge
density basis function weights in vector q through the relation
Ip = jωq. Sub-matrices of the above system matrix are defined
as:

Ri j =
1
σ

∫
v

mi(r) ·m j(r)dr (7)

Li j =
∫

v

∫
v

GA(r,r′)mi(r) ·m j(r′)dr′dr (8)

Pm� =
∫

s

∫
s
Gφ(r,r′)vm(r)v�(r′)dr′dr. (9)

To solve (6), the matrix equation is first mapped onto an
equivalent circuit topology as described in [6], yielding the
following matrix branch equation:

ZIb = Vb, (10)

where impedance matrix Z, branch current vector Ib, and
branch voltage vector Vb bear one-to-one correspondences to
matrix quantities in (6). Equation (10) can then be combined
with the remaining MPIE equations (3) and (4) through the
imposition of mesh analysis [6] to produce a dense linear
system for the basis function weights. More specifically,

branch voltages in Vb can be related to loop voltages in Vm
through the relation:

MVb = Vm, (11)

where mesh matrix M imposes Kirchoff Voltage Law (KVL)
at each row of M. The same M also maps branch currents in Ib
to their corresponding loop currents in Im through the relation

Ib = MT Im. (12)

Substituting (11) and (12) into (10) generates a meshed system
that can be solved by an iterative method coupled with an
accelerated matrix-vector product technique [1], [2], [3], [4],
[5]. The solution of Im subsequently allows one to determine
branch currents in Ib that contains the actual basis function
weights.

C. Current Density Basis Functions
To provide physical support for the collection of current

density basis functions m j, the conductor volumes must be
discretized accordingly. First, each conductor volume is dis-
cretized lengthwise into individually conducting segments with
the assumption that a constant current flows in a length-
wise direction through the segments. The number of segments
produced per conductor is dictated by the magnitude of
wavelength.

If basis function m j were piecewise constant [7], [6], then
the interior of each segment should also be discretized on its
cross-section in a manner dictated by skin depth [13]. Bundles
of many tightly-packed parallel filaments with highly uneven
aspect ratios are generated per segment as a consequence of
such discretization at high frequencies. The resulting filament-
to-filament interactions within each segment, however, cannot
be accelerated by today’s fast techniques that are based on the
approximation of distant interactions only. Therefore direct
computations must be used to resolve these near-distanced
interactions with a complexity that grows quadratically with
the number of filaments per segment.

Hence it is extremely advantageous if higher-order basis
can be developed that require much fewer functions to capture
the cross-sectional current variation inherent in the segments.
A general expression for a high-order current-density basis
function m j can be written as follows:

m j(r) =

{
Wj(r)l̂ j∫

a j
Wj(r)dr if r ∈Vj;

0 otherwise,
(13)

where l̂ j is the length-wise direction of current flow in the
jth segment, a j is its cross-sectional area, and Wj returns
the amount of current at a specific location on the segment’s
cross section. Each basis function m j is normalized by a factor

1∫
a j

Wj(r)dr in order to ensure that the corresponding basis func-

tion weight represents the actual branch current component
flowing in filament j. The basis function representation in
(13) is substituted into (7) to generate the following partial
resistance:

Ri j =
1

σ
∫

ai
Wi(r)dr

∫
a j

Wj(r)dr

∫
vi

Wi(r)Wj(r)�̂i · �̂ jdr. (14)

Thus Ri j �= 0 if and only if basis functions mi and m j are
defined on the same conductor segment. Similarly, (13) is sub-
stituted into (8) to generate the following partial inductance:

Li j =
1∫

ai
Wi(r)dr

∫
a j

Wj(r)dr

∫
vi

∫
v j

GA(r,r′)Wi(r)Wj(r)�̂i · �̂ jdr′dr.

(15)
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Fig. 1. Example of a possible source and test conductor pair for
the construction of specialized basis functions that capture skin and
proximity effects in a conductor’s cross-section.

III. DEVELOPMENT OF THE WIDEBAND BASIS FUNCTIONS

This section describes the construction of a set of high-order
basis that minimizes the number of functions per segment,
parameterizes the frequency-dependent nature of current vari-
ation unique to different cross-section shapes, and guarantees
frequency-independence for a wide range of frequencies.

A. Pre-computation of Basis Functions
A procedure for the automatic basis function generation is

presented as follows:
1 For a given conductor of a specific cross-section shape,

let’s call this conductor a “source” conductor, consider
placing another conductor, called ”test” conductor, at a
certain interaction distance ri from the source conductor.
Shorting the conductors at one end while exciting the
structure with a unity current source at a desired fre-
quency point would allow one to examine the current
distribution over the cross section of the source conductor
in response to the proximity effect generated by the test
conductor at position ri. Fig. 1 shows an example of such
source and test conductor pair.
The resulting solution of source current response vi is ob-
tained by using a very fine piecewise constant discretiza-
tion method, hence producing η filaments per conductor
segment. Extending this concept to p such test conductors
situated at various locations surrounding the source con-
ductor, one would thus obtain, for a specific excitation
frequency, a collection V of such current solutions for
the source conductor with V = {vi}, i = 1 . . . p, and each
vector vi is of length η. If the spatial sampling of the test
conductors is sufficiently fine, matrix V would contain a
relevant set of “snapshots” from which proximity effects
for a specific cross-section shape at a specific frequency
can be captured. This step of the procedure is the same
as the basis function generation procedure in [13].

2 Now select a set of frequency samples Sn = {s1,s2, ...,sn}
at which step 1 is repeated. It becomes crucial that Sn

spans the entire range of desired operating frequencies.
In addition, the frequency samples should be fine enough
so that the interpolation of the resulting sampled currents
faithfully captures their overall variation with frequency.
The combination of such spatial and frequency sampling
subsequently generates a collection Vpn of source current
solutions with Vpn = {vi}, i = 1 . . . p×n.

3 It becomes evident that the span of matrix Vpn cap-
tures a conductor’s cross-sectional current distribution,
accounting for both frequency-dependent skin effects
and frequency plus spatial-dependent proximity effects.
Therefore the subspace spanned by Vpn can be used to
generate a set of specialized basis functions. More specif-
ically, let’s determine q (q� p×n, q� η) such linearly-
independent basis functions, the collection of which, U =
{u1,u2, . . .uq}, approximates Vpn. The accuracy of the
approximation is measured by the minimal distance, in
a least square sense, between the span of U and Vpn. To
satisfy this minimization requirement, a singular-value-
decomposition (SVD) method is used to generate these q

orthogonal basis functions from the q dominant singular
vectors of Vpn. Each one of these q basis functions
can be viewed as a mode representing an orthogonally-
decomposed current distribution shape over a conductor’s
cross section. Therefore a weighted sum of these current
distribution modes is capable of accounting for the cross-
sectional current distribution at any particular frequency
point within the range from which the basis functions are
generated.

In practice, at most 8 of these specialized basis functions
(q = 8) are needed to accurately capture current distributions
in most cross-section shapes over a wide span of frequencies.
In contrast, a much larger number (η � 8) of piecewise-
constant basis functions is needed to capture the cross-
sectional current variation at one frequency point, and this
number grows rapidly with the increase in frequency. In
addition, the frequency-independent nature of the specialized
basis functions implies that they only need to be pre-computed
once for each unique cross-section geometry and can be stored
off-line for repeated use. Since the number of these basis
functions is small, storage cost is negligible.

B. Post-optimization of Basis Functions
In this section, we will demonstrate how optimization can

be applied to the set of basis functions U = {u1 . . .uq} con-
structed from the previous section in order to avoid numerical
difficulties encountered when these basis functions are used to
approximate unknown current densities in a conductor system.

According to (5), the current density distribution in the ith
conductor segment can be approximated by a weighted sum
of the basis functions in U as:

Ji ≈
q

∑
j=1

u j �̂i

ones(η)T u j
Ii

j, (16)

where the current variation unique to a cross-section shape
can now be effectively captured by the span of U within
a given frequency range. Coefficient Ii

j denotes the weight
corresponding to the jth basis function (u j) as it contributes
to the overall current distribution in segment i. In turn, each
u j is a vector of η piecewise-constant filament currents, the
sum of which provides an accurate approximation of the cross-
sectional current contained in the jth basis function mode. In
order to ensure that such current is in general nonzero, we
post-process the basis functions as follows:

Given a basis function matrix U={ui, i=1..q}, where
U is an orthonormal matrix with possible column
sums being zero, we need to determine a set of
coefficients {αi j, i=1..q, j=1..q} such that

m j =
q

∑
i=1

αi jui, (17)

where m j forms a column of a new basis function
matrix M={m j, j=1..q}. M is subjected to the fol-
lowing constraints in terms of α:

• Orthogonality:
(
mk ·m�=0 if k > �

)
−ε <

( q

∑
i=1

αikui

)T ( q

∑
i=1

αi�ui

)
< ε i f k > �, (18)

where ε is a small constant.
• Nonzero column sums:

(
∑m j > β

)
∣∣∣∣
( q

∑
i=1

αikui

)T

ones(η)
∣∣∣∣ > β, (19)

where β is a positive non-zero threshold con-
stant and ones(η) is a η-length vector of one’s.



The problem is now formulated in such a manner that a
standard optimization technique can be applied to solve the q2

unknown α’s, thus yielding a new ortho-normal basis function
matrix M having the same span as the original matrix U , but
guaranteeing nonzero column sums.

C. Incorporation of Basis Functions into MPIE

This section demonstrates how the collection of such modal
basis functions, obtained using the procedure in Sec. III-A
and optimized using the method in Sec. III-B, is incorporated
into the MPIE formulation to produce a reduced system of
equations for the potentials of a large interconnect network.

After replacing U in (16) by the optimized set of basis
functions M(= {m j}; j = 1 . . .q), one is able to use the new
basis functions in a Galerkin technique to produce a linear
system of equations for the unknown basis function weights.
Let’s examine the detail of this process. To obtain partial
resistance Ri j in (14) in terms of basis function vectors mi
and m j, the following approximation can be made:

Ri j ≈ 1

σ∑η
k=1 mik ∑η

k=1 m jk

η

∑
k=1

mik m jk
lik
aik

, (20)

where the η piecewise-constant current values in each basis
function vector are considered to be discrete samplings of a
continuous modal cross-sectional current distribution. Value
mik is the kth piecewise-constant current in the ith mode, lik
and aik are the length and cross-sectional area, respectively,
of the filament on which the kth piecewise-constant current
of the ith mode is defined. If there are n conductor segments
in the discretized system and q basis function modes for each
segment, then R is a block-diagonal matrix of size qn× qn
with each block being q×q.

Similarly, for the calculation of partial inductance Li j in
(15):

Li j ≈ 1

∑η
k=1 mik ∑η

k=1 m jk

·
η

∑
k1=1

η

∑
k2=1

mik1
m jk2

∫
vik1

∫
v jk2

GA(r,r′)�̂i · �̂ jdr′dr, (21)

where L is a dense matrix of size qn×qn. One immediately
notices that the system setup cost associated with computing
the integrals of higher-order basis functions as in (21) is
actually the same as those involving piecewise-constant basis
functions. Furthermore, the accelerated integration techniques
introduced in [2] for piecewise-constant basis functions can
still be applied to the higher-order basis functions introduced
in this paper. More importantly, due to the fact that q � η,
R and L matrices produced by the use of the specialized
basis functions are much smaller in comparison to the use
of piecewise-constant basis functions, which generate, instead,
matrices of size ηn×ηn.

IV. RESULTS

This section utilizes our specialized high-order basis func-
tions to efficiently extract the impedances of various complex
IC structures. The basis functions are implemented in an
EM solver where a pre-corrected FFT (pFFT) scheme [3] is
introduced for the accelerated matrix-vector products involving
dyadic Green’s function kernels so that substrate effects can
be accounted for. The specialized basis functions’ efficiency is
validated by comparing their performance to that of piecewise-
constant basis functions.

A. Stacked Inductors
A set of specialized basis functions is first pre-computed in

the frequency range of [0.01MHz . . .10GHz] for trial copper
wires with rectangular cross-sections that are 5µm thick and
10µm wide. Subsequently, impedance analysis utilizing the
specialized basis functions is performed on four structures as
shown in Fig 2.a,b,c,d, where each structure is embedded in
a silicon oxide dielectric (εr = 3.9) above a silicon substrate
(εr = 3.9, ρ = 1Ω · cm).

Fig. 2. a. A three-layer M3-M2-M1 inductor. b. A one layer M3
inductor. c. A two-layer M3-M2 inductor. d. A two-layer M3-M1
inductor.

For the three-layer M3-M2-M1 inductor in Fig. 2.a, the
vertical heights of its three spirals are 16µm, 26µm and 36µm,
respectively, above the silicon substrate. The single-layer M3
inductor in Fig. 2.b is composed from the topmost layer of
the inductor in Fig. 2.a. The M3-M2 inductor of Fig. 2.c is
composed from the top and middle layers of the three-layer
inductor. The M3-M1 inductor of Fig. 2.d is composed from
the top and bottom layers of the same three-layer inductor.
In turn, each inductor spiral is composed of a 4-turned copper
wire that is 5µm thick and 10µm wide with a lateral dimension
of 0.25mm2 and a separation distance of 2µm between metal
windings.

Fig. 3 shows the error generated from the utilization of
the high-order basis functions in comparison to the solution
obtained from a fine piecewise-constant discretization scheme.
For a maximum absolute error of only 0.25%, 8 specialized
basis functions per conductor segment are needed in contrast to
the requisite 48 piecewise-constant basis functions per segment
to obtain the same amount of accuracy.
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Fig. 3. Error analysis for the usage of specialized high-order
basis functions. Analysis is performed on the single-layer inductor
example.

The factor of 6× reduction in the number of basis functions
translates to a significant 36× reduction in the computational
cost of near-distance interactions when solving the system in
a pre-corrected FFT (pFFT) scheme. This fact is confirmed
by the FLOP (floating point operation) count decomposition
in Table. I for each major stage of the pFFT scheme as it is
applied to our single-layer inductor example.

Note that even though the cost of assembling projection (P)
and interpolation (I) matrices is only reduced by a factor of
8.6 for the use of higher-order basis functions, there exists
a dramatic 36.28× reduction in the cost of pre-correction,
an observation that matches our theory that by reducing the



piecewise- Higher- reduction
constant order factor

# filaments 720 120 6
P and I matrices 1.9e5 2.3e4 8.3

D matrix 1.1e9 6.8e8 1.6
Pre-correction matrix 1.27e10 3.5e8 36.3

Iterative solve 1.18e8 9.4e6 12.6

TABLE I
FLOP COUNT FOR THE ASSEMBLY OF EACH PFFT STAGE FOR
FILAMENT POTENTIAL CALCULATIONS OF THE SINGLE-LAYER

INDUCTOR AT FREQUENCY=1GHz.

overall number of basis functions by a factor of N, one is
able to reduce the cost of resolving nearby interactions, which
cannot take advantage of the acceleration offered by pFFT,
by a factor of N2 as manifested at the pre-correction stage.
Furthermore, the cost of iterative solve is reduced by a factor
of 12, which is approximately O(NlogN).

Additionally, Fig. 4 shows the quality factor analysis of the
four inductor structures in this section.
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Fig. 4. Quality factor analysis for the four inductors.

Their overall simulated behavior confirms the research con-
ducted by [15] which theorizes that a stacked spiral inductor’s
self-resonance frequency ( fSR) can be drastically modified by
the vertical placement of its spiral layers, and in some cases,
by as much as 100%. Typically, a stacked structure exhibits
a single fSR = 1

2π
√

Leqceq
, where Leq and Ceq are the equiva-

lent inductance and capacitance of the structure, respectively.
Generally speaking, the inter-layer capacitance between the
spirals has a much greater impact on fSR than the layer-to-
substrate capacitance. Hence increasing the stack separation
distance diminishes the inter-layer capacitance while maintains
a relatively constant inductance because the lateral dimensions
of a stacked inductor are nearly two orders of magnitude
greater than its vertical dimension. Results in Fig. 4 confirm
that this is indeed the case for our inductor examples. One
observes that fSR of the M3-M1 inductor is 25% greater than
that of the M3-M2 inductor. Even more dramatic is the fact
that fSR of the M3-M1 inductor is 100% greater than that of
the M3-M2-M1 inductor.

B. Conductor Array with Trapezoidal Cross-sections
A second set of specialized basis functions is pre-computed

in the frequency range of [1MHz . . .40GHz] for trial copper
wires with trapezoidal cross-sections that are 1.2µm thick,
1µm wide on the top base and 0.6µm wide on the bottom
base. Subsequently, impedance analysis is performed on an 8-
conductor bus example with each conductor 300µm in length
and separated 2µm from the neighboring wires. Fig. 5.a offers
a zoomed view of such configuration. The entire structure is
embedded in a dielectric (εr = 3.9) and situated 16µm above
a conductive substrate (ρ = 0.1Ω · cm, εr = 11.7).
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Fig. 5. Structural view of an array of 8 conductors with (a).
trapezoidal cross-sections and (b). rectangular cross-sections.

Due to the combined effects of irregular cross-sectional
shape and skin and proximity phenomenon, each conduc-
tor’s trapezoidal cross-section must be discretized finely if
piecewise-constant basis functions were used. This concept is
illustrated by the fine cross-sectional mesh shown in Fig. 5.a.
To be specific, 104 piecewise-constant filaments per conductor
are required for this particular example. In contrast, only 8
specialized higher-order basis functions are needed to capture
the same conductor cross-sectional current distribution for a
maximum error of only 0.0072% as shown in Fig. 6.
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Fig. 6. Error analysis for the usage of higher-order basis functions.

This is a factor of 13× reduction in the number of basis
functions, which translates to a reduction of 169× in the
computational cost of near-distanced interactions when solving
the system in a pre-corrected PFFT scheme. FLOP count
analysis in Table II confirms such claim. For the use of higher-
order basis functions, the cost of constructing P and I matrices
are reduced by a factor of 17, the cost of D matrix construction
is comparable to that of piecewise-constant basis functions, but
the cost of pre-correction is reduced by a factor of 170 and
the cost of solving the system using an iterative method is
reduced by a factor of 108.

piecewise- Higher- reduction
constant order factor

# filaments 832 64 13
P and I matrices 2.3e5 1.3e4 17.7

D matrix 2.8e9 1.6e9 1.8
Pre-correction matrix 1.7e10 1.0e8 170

Iterative solve 1.3e8 1.2e6 108.3

TABLE II
FLOP COUNT FOR THE ASSEMBLY OF EACH PFFT STAGE FOR

FILAMENT POTENTIAL CALCULATIONS OF THE CONDUCTOR
ARRAY EXAMPLE AT FREQUENCY=1GHz.

To further demonstrate the versatility of our solver, we can
compare the impedances extracted for the trapezoidal example
to those extracted for the case where the conductors have
rectangular cross-sections (1.2µm thick and 0.8µm wide). Such
configuration is shown in Fig. 5.b. The simulation setup is
such that resistance and inductance are extracted under the
condition where the two center conductors are shorted at one
end, while capacitance extractions are performed under an
open-circuit condition. The resulting resistance, inductance,



and capacitance comparisons are shown in Fig. 7.a, b, and
c, respectively.
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Fig. 7. Comparisons of (a) resistance, (b) inductance and (c)
capacitance between the 8-conductor array with trapezoidal cross-
sections and the array structure with rectangular cross-sections.

V. CONCLUSION

In this paper we have described a procedure for the nu-
merical construction of shape-unique basis functions that are
capable of parameterizing the frequency-dependent nature of
a conductor’s cross-sectional current variation, hence captur-
ing electromagnetic phenomenon such as skin and proximity
effects with fewer degrees of freedom in comparison to
the commonly-used piecewise-constant basis functions. The
frequency-independent nature of the basis functions implies
that they only need to be pre-computed once for each unique
cross-section shape and are valid over a pre-specified range
of frequencies. In addition, these basis functions have proven
to be robust and computationally efficient. Examples have
conclusively demonstrated that the use of these basis functions
achieves a 36 to 170 factor of reduction in the cost of solving
large and intricate interconnect systems when compared to the
use of piecewise-constant basis functions.
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