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ABSTRACT
In this paper, we present an efficient method to model the interior
of the conductors in a quasi-static or full-wave integral equation
solver. We show how interconnect cross-sectional current distribu-
tions can be modeled using a small number of conduction modes as
basis functions for the discretization of the Mixed Potential Integral
Equation (MPIE). Two examples are presented to demonstrate the
computational attractiveness of our method. In particular, we show
how our new approach can successfully and efficiently capture skin
effects, proximity effects and transmission line resonances.

1. INTRODUCTION
As integrated circuit frequencies keep increasing toward the GHz

region, quasi-static and full-wave electromagnetic analysis is be-
coming progressively more important. In particular, Signal In-
tegrity (SI) and Electro-Magnetic Interference (EMI) problems can
often result in expensive post-prototype ad-hoc fixes and, some-
times, force the complete redesign of the system layout. In order
to avoid these unpredictable additional costs and design time, it is
desirable to address SI and EMI problems directly during design,
for PCBs, packages, as well as IC’s. In this paper, we address the
most pressing task: the verification problem.

The past decade’s intense development of accelerated integral
equation solvers has made it possible to perform static and quasi-
static electromagnetic analysis of packages or circuit boards with
hundreds of conductors in just a few minutes on a workstation [1,
2, 3, 4]. The computational performance provided by these fast al-
gorithms makes it now feasible to consider developing tools which
can readily perform full-board analysis, for use in applications such
as SI and EMI diagnosis and resolution.
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If the application requires many fullwave analyses of entire PCBs
or packages, reducing computation time will remain critical, and
therefore minimizing the number of unknowns used for each con-
ductor remains an important problem. The most common approach
to minimizing the number of unknowns used to discretize on-chip
and on-board interconnect is to make a thin conductor, or 2 1

2 -D,
approximation or a “skin-depth” approximation [5] using surface
impedances. In addition, it has been recognized that the many con-
ductor interiors can be decoupled into separate Helmholtz prob-
lems, which can then be combined with a global exterior Helmholtz
problem [6, 7]. The many Helmholtz equations can then be solved
either by integral or by differential methods. In this paper we
take a somewhat different approach, and make use of the interior
Helmholtz equation to generate basis functions for use in the stan-
dard Galerkin technique for solving the Mixed Potential Integral
Equation (MPIE).

When solving the MPIE, in which the unknowns are conductor
volume currents and surface charges, it is possible to tune the dis-
cretization to the problem by selecting basis functions which accu-
rately represent the expected current flow and charge density. When
discretizing relatively long and thin conductors, piecewise-constant
basis functions are typically used [8]. The functions are generated
by first chopping the long wires into a large number of sections that
are short compared to the wavelength of the highest frequency of
interest. Then, the surface of each section is covered with panels,
each of which hold a constant charge density. To model current
flow, the interiors of each conductor section is divided into a bun-
dle of parallel filaments. Each filament carries a constant current
density along its length. An example for a section of thin wire is
shown in Figure 1. When modeling current crowding phenomena
at high frequencies, such as skin effect and proximity effect, each
conductor section must be discretized into filament bundles with a
very large number of filaments.

Figure 1: Discretization of a short section of thin conduc-
tor. The volume is discretized into parallel filaments along the
length. The conductor surface is discretized into panels shaded
in gray.



Even if sparsification techniques are used to solve the resulting
system, the strong interaction between filaments in each conductor
section must be resolved directly. The implication is that if n fila-
ments are needed to properly represent current distribution in each
conductor section, then the cost of even a fast solver will grow with
n2. For this reason, finding a different basis which uses fewer func-
tions to represent current distribution in each conductor section can
have a significant impact on solver speed.

2. CONDUCTION MODES
Combining the two curl Maxwell differential equations, and us-

ing the “good conductor hypothesis”, σ � jωε, we obtain the gov-
erning Helmholtz diffusion equation for the region inside each con-
ductor: ∇ � ∇ � E � jωµσE � 0 � In terms of the current density,
J, and of the skin depth, δ � � 2 ��� ωµσ 	 , we have ∇ � ∇ � J �


1 � j
δ � 2

J � 0 � Assuming the current in each conductor section

flows primarily lengthwise, J can be approximated by J � Jzâz,
where âz, points along the conductor length. The scalar Jz then
satisfies

∂2Jz

∂x2 � ∂2Jz

∂y2 
�� 1 � j
δ � 2

Jz � 0 � (1)

The general solution of (1) is the infinite series:
Jz � x � y 	�� ∑νCνe � ψνxe � ηνy � where Cν are free coefficients and ψν

and ην satisfy ψ2
ν � η2

ν � 
 1 � j
δ � 2 � Each term in the previous series

is referred to as a “conduction mode” [9]. As an illustrative exam-
ple of a very simple conduction mode, let us choose ψν � 1 � j

δ and
ην � 0 � This mode can account for cross-sectional current distribu-
tions decaying exponentially as 1 � δ from the edge of the conductor
cross-section. The picture on the left in Fig. 2 shows a graphical
representation of such current distribution.
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Figure 2: Current density for an “edge mode” (on the left) asso-
ciated with the shaded rectangular cross-section (on the right).

For current distributions generated by interconnect problems, Jz
can be accurately represented using only a few conduction modes.
For example, a combination of four simple edge modes, one for
each edge, can account for most of the high frequency cross-sectional
conductor current distribution. At very high frequency, a few other
modes might be needed to account for corner effects. The sim-
plest example of corner mode is obtained by choosing ψν � ην �

1�
2 � 1 � j

δ ��� As it is shown in the picture on the left in Fig. 3, this

mode can easily account for a cross-sectional current distribution
decaying exponentially from the corner of the conductor cross-
section.

0

50

100

150

200

250 0

20

0

20

40

60

0

50

100

150

200

250 0

20

0

20

40

60

Figure 3: On the left: “corner mode” for a rectangular cross-
section. On the right: example of a single basis function ob-
tained combining two horizontal edge modes.

3. CROSS-SECTION BASIS FUNCTIONS
Let the cross-sectional current density be represented by a col-

lection of global basis functions: J � r ��� ∑ j � k I jkw jk � r �! where j is a
summation index over all the pieces of conductors, and k is a sum-
mation index over all the basis functions chosen for each piece. The
conduction modes presented in the previous section can represent
a natural choice for our global basis functions:

w jk � r �"�$#%& %'
âz j

A jk
∑ν e ( ψ jkν ) x * x jkν + e ( η jkν ) y * y jkν + ifr , V j

0 otherwise

(2)

where x and y are variables spanning the cross-section of conduc-
tor piece j, and refer to one of its corners: r � r jcorner - x âx j -
y ây j . Translation constants x jkν, y jkν, and “plus” signs in front
of ψ jkν and η jkν account for modes decaying from the other cor-
ners or edges. We have chosen to introduce a normalization con-
stant A jk defined such that parameter I jk represents the part of the
current on the cross-section associated with basis function wjk:

A jk �/. S j
∑ν e ( ψkν ) x * x jkν + e ( ηkν ) y * y jkν + dxdy 0 In some cases, such as

when building Reduced Order Models (ROM), it is possible and
convenient to also pre-orthogonalize our set of basis functions.

To reduce the number of degrees of freedom for the discretiza-
tion, it is possible to “pair-up”, into a single basis function, modes
which are likely to have the same magnitude. One example where
the combination of two modes into a single basis function is help-
ful is in modeling a PCB trace. In this case, one may wish to com-
bine the lower horizontal edge mode with the upper horizontal edge
mode into one single basis function, as shown in the picture on the
right in Fig. 3. In fact, the very large aspect ratio of the PCB cross-
section traces, and the relative large separation between layers, typ-
ically do not allow significant proximity effect differences between
lower and upper horizontal edge modes. Large differences, instead,
can often be observed between any modes on opposite lateral sides
(left to right), due to proximity effects. For this reason, the two
lateral edge modes should instead be assigned to two separate basis
functions.

4. A TRANSMISSION LINE EXAMPLE
In this example, we tested the ability of our method to capture

transmission line phenomena such as impedance resonances. We
modeled two PCB traces, 30cm long, very close together in a copla-
nar transmission line configuration. Traces are 250µm wide, 35µm
thick and 150µ far apart.
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Figure 4: Admittance amplitude vs. frequency for a shorted
coplanar T-line. The continuous line is obtained using a very
fine 252 thin filaments per cross-section discretization. The cir-
cles are the results obtained using only 3 conduction modes per
cross-section.
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Figure 5: Admittance phase vs. frequency for the same copla-
nar T-line as in Fig. 4.

Worst case high-Q resonances are obtained when the two traces
are shorted at one end, and are excited on the other end at some spe-
cial frequencies with an ideal voltage source. For instance, when
the frequency is such that the transmission line length is close to a
quarter of a wavelength or to half a wavelength, one can observe in
Fig. 4 and 5 resonance peaks. Such peaks are typically difficult to
simulate with accuracy since they are very much influenced by the
internal current distribution on the conductors. Continuous lines in
Fig. 4 and 5 are obtained using a classical piece-wise constant very
fine cross-sectional discretization of 252 thin filaments per cross-
section. This kind of discretization is sufficient to consider those
continuous lines the “exact” solution. Circles are obtained instead
using only three conduction modes per wire cross-section: two lat-
eral edge-modes basis functions as on Fig. 2 (left), and one com-
bined horizontal modes basis function as in Fig. 3 (right). Both in
the thin filaments method and in our conduction modes method, we
subdivided each trace along its length into pieces short compared
to a wavelength.

In Fig. 5, we measure that our three conduction modes method
gives a worst case 1.3% error in the position of the second half-
wavelength admittance resonance. A higher worst case error (9.6%)
is measured on the amplitude of the same resonance. Fig. 6 com-
pares at such resonance frequency the current distributions on the
cross-section of one of the traces. On the left we show the result
from the very fine 252 thin filaments discretization. On the right we
show our three conduction modes solution. One can observe that
the two current distributions are very much alike, except for the cor-
ners. At this frequency, currents begin to crowd more significantly
on the corners of the cross-section, requiring the inclusion of a few
“corner modes” in the set of the discretization basis functions, if
higher accuracies are needed.
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Figure 6: Cross sectional current distributions at the half-
wavelength resonance. On the left: result from a very fine
cross-sectional discretization. On the right: result from the 3
“edge” conduction modes per cross-section method. Inclusion
of corners modes can farther improve the fit if higher accura-
cies are needed.

5. AN IC BUS EXAMPLE
In a second example, we tested the ability of our method to

model skin effects and proximity effects on an IC bus example
shown in Fig. 7. Six interconnect wires are routed very close to
each other (2µm) for a long path. Each wire is 2µm wide and 2.5µm
thick, presenting a completely different cross-sectional aspect ratio
from the previous PCB trace example. The six wires are routed in
a dog-leg bus configuration, where the three sections are 100µm,
200µm and 50µm long respectively. The four wires in the center of
Fig. 7 are signal wires. The first and last wire are instead ground
return wires. In our experiment, we grounded on one side the sec-
ond wire from the right in Fig. 7, and we drove the other side with
an ideal voltage source.
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Figure 7: IC bus: 4 signal wires between two ground return
wires.
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Figure 8: Re
�
Z � (above) and L � Im

�
Z � � jω (below) vs. fre-

quency for bus in Fig 7. The continuous lines are obtained us-
ing a very fine thin filament discretization with 90 filaments per
wire cross-section. Circles show the results obtained using only
three conduction modes.

Fig. 8 shows the resistive part (above) of the impedance as a
function of frequency, as well as L � Im

�
Z � � � jω 	 , the “inductive”

part of the impedance (below). The continuous lines are obtained
using a very fine piece-wise constant thin filament discretization
with 90 filaments per wire cross-section. These 90 filaments are
sufficient to consider the continuous lines in Fig. 8 as the “exact”
solution. Circles show the results obtained using only three con-
duction modes. In the worst case, our three conduction modes give
an error of 1.5% in the resistive part of the impedance, and 0.9% in
the inductive part of the impedance.

In Fig. 9, we compare for a worst case 30GHz harmonics, the
cross-sectional current density on the driven wire. On the left we
show the result from the very fine thin filament discretization. On
the right we show the result obtained using only 3 conduction modes
per cross-section. Comparing such figures, we observe that our
method captures accurately both skin effects and proximity effects.

In a different experiment on the same IC bus example, we finally
observed that for the same final 1.5% accuracy, the classical method
would require at least 49 thin filaments per cross-section when used
in an optimal way, with smaller filaments near edges and corners.
Therefore, in this example, we conclude that our approach requires
16 times fewer parameters than the classical method for the same
final accuracy.
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Figure 9: Comparison for the cross-sectional current density
on the driven bus wire. On the left we show the result from
a very fine thin filament discretization. On the right we show
the result obtained using only 3 conduction modes per cross-
section.

6. CONCLUSIONS
In this paper, we have presented a new method for modeling in-

ternal conductor current distributions in a quasi-static or full-wave
electromagnetic simulator. We have shown how to derive conduc-
tion modes for use in the discretization of the Mixed Potential Inte-
gral Equation. We have demonstrated the method on two examples,
an IC bus and a shorted transmission line example. We showed that
skin effects, proximity effects and transmission line resonances can
all be successfully and efficiently captured for different wire con-
figurations and cross-sectional aspect ratios. In our examples, for
the same final accuracies, using our conduction modes method, lin-
ear systems of equations are obtained 16 to 23 times smaller than
when using the classical thin filament discretization methods.
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