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Abstract—The major concerns in state-of-the-art model reduc- balanced realization (TBR), already well-developed in the con-
tion algorithms are: achieving accurate models of sufficiently small trol literature, has been receiving renewed attention in the elec-
size, numerically stable and efficient generation of the models, and tronic design automation community.[20].

preservation of system properties such as passivity. Algorithms, L : .
such as PRIMA, generate guaranteed-passive models for systems Truncated balanced realization algorithms (and their close

with special internal structure, using numerically stable and effi- relatives that generate optimal norm approximants [21]) are
cient Krylov-subspace iterations. Truncated balanced realization of importance in their own right. For small systems—a few

(TBR) algorithms, as used to date in the design automation com- hundred states or so—they are superior in accuracy to the
munity, can achieve smaller models with better error control, but Krylov and other parameter-matching techniques, and also

do not necessarily preserve passivity. In this paper, we show how to id table b d th ducti For |
construct TBR-like methods that generate guaranteed passive re- Provide compuiaie ‘DoUNds oh tne Teauction erfor. For iarge

duced models and in addition are applicable to state-space systemsSystems, direct application of the techniques used to balance
with arbitrary internal structure. and truncate the systems is computationally infeasible, since
; \ 5 .
Index Terms—Passive reduced-order modeling, truncated bal- € computations required have(n*) complexity when

anced realization (TBR), Lure equations, Lyapunov equations, Performed directly ¢ being the order of the system to be
Krylov subspace. reduced). Therefore, the TBR methods are of more interest

when combined with iterative Krylov-subspace procedures.
One formulation of this method is to directly solve the large
Lyapunov equations via a Krylov subspace method [22]-[26].
ODEL reduction has been an active research field in d®he reduced models are obtained directly from the reduced
sign automation over the past decade. In an integrateghpunov equation. Another viewpoint is to obtain an initial
circuits context, initial interest in model reduction techniquegduced model via some initial reduction or approximation
stemmed from efforts to accelerate analysis of circuit intercotechnique and then further compress it using a TBR method.
nect [1]. More recently, model reduction has come to be viewdthis second viewpoint is somewhat more general since the
as a method for generating compact models from all sortsigftial approximation can be generated by any desired method,
physical system modeling tools [2]-[11]. for example rational fitting [27], [18] or a now standard
Because of the need to obtain accurate high-order modelKaflov-subspace technique [2], [28].
reasonable computational cost, the Krylov-subspace model reAn issue with the TBR-type methods that has not been ad-
duction methods [12]-[14] have occupied the forefront of relressed in most of the above mentioned works is that they cannot
search over the past five years. The importance of producibgrelied on to preserve passivity. The techniques in [2], [28] use
passivereduced models has been realized, and several algopassivity-preserving initial reduction, but follow this reduc-
rithms that preserve passivity ®&LC circuits have appearedtion with a standard TBR method. There is no guarantee that
[14]-[18]. the second TBR step will not destroy the passivity of the initial
Recently, it has become apparent that, while very suitable fi@iodel. More problematic, no means is given in either work to
analysis for analysis of large-scale systems, Krylov techniqugstermine if the final model is passive — or not.
such as PRIMA and PVL do not necessarily generate modeld_ess widely appreciated is another dilemma: Krylov methods
as compact as desired (that is, small in order for a given aceurch as PRIMA have practical issues that prevent their wide
racy). [2], [19]. Therefore, another approach, that of truncateghplication to systems outside the class REC circuits.
These methods rely on congruence transformations to preserve
positive semi-definiteness of the matrices that are internal
Manuscript received June 17, 2002; revised December 22, 2002. This pdigerthe state-space representation. However, whether or not a
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the systems that come from rational approximation of tabuldre passivity-preserving balancing transformations. Then in

data [29], the magnetic charge formulation of the inductan&ection VI we show examples that illustrate the relevance

problem [30], and general linear circuits, in particular thosef the various algorithms presented in this paper. Finally, in

with gyrators, formulated in the sparse tableau form. This iss@ection VII, conclusions and acknowledgments are presented.

even appears iRLC circuits: the positive definiteness of the

matrices in the MNA formulation depends on the choices of Il. BACKGROUND

signs (the circuit response is of course invariant to this choic%?.
Further, positive semi-definiteness or even more generally

positive-realness are not necessarily the right properties to seeksiven a state-space model in descriptor form

If the state-space model represents scattefihgdrameters of a du

passive system, the system is passive if the norm c§-jparam- EE =Ax(t) + Bu(t) Q)

e_ter matrix is bOl_Jnded by L_Jr_uty, and so even the transfer func- y(t) =Cx(t) + Du(t) @)

tion has no relation to positive-realness. Such systems cannot

be reduced by congruence with any passiyity _guqrantegs. O”\Rn?ereE,A e R, B € R™?, C ¢ RP*™, D € IRP*?,

othgr hand, wh|'le not well kppwn in thg circuit simulation an?;(t), u(t) € IR?, model reduction algorithms seek to produce a

design automation communities, there is a wealth of knowledgg,ijar system

in the systems and control literature pertaining to passivity-re-

State-Space Models

lated concepts (e.g., [31]-[33]). Likewise, there exist reduc- AT o ~
tion algorithms (e.qg., [34]) with potentially relevant properties, EE =Ax(t) + Bu(t) ©)
though again the significance of the connection does not appear g(t) :C’j;(t) + Du(t) 4)

to be widely appreciated, as, to the best of our knowledge, no

effective truly general-purpose passivity-preserving algorithmghere £, A € R7*¢, B € R?*?, ¢ € R?*?, D € RP*?, of

are now widely available. While we will not present a truly generderqg much smaller than the original ordeybut for which the

eral, large-scale, passivity-preserving, completely structure-mdtputsy(¢) andy(¢) are approximately equal for inpuigt) of

dependent algorithm in this paper, by collecting, applying, arcterest. Often the transfer functions

extending previously obscure techniques, all in the context of

large-scale integrated circuit analysis and Krylov methods, we H(s) =D+ C(sE - A)™'B (5)

hope to provide a first step to that goal. H(s)=D+C(sE— A)™'B (6)
In this paper, we discuss TBR-like model reduction algo- ~

rithms that can preserve system passivity, have computable ea® used as a metric for approximation||# (s) — H(s)|| <

bounds, and, unlike other algorithms such as PRIMA, pose aoin some appropriate norm, for some given allowable esror

constraints on the internal structure of the state-space modwld allowed domain of the complex frequency variahl¢he

We describe variants that preserve both positive-realness (uséfgluced model is accepted as accurate.

for systems that represeltor Z parameters) and bounded-re-

alness (useful for systems that represgmarameters). These B. Passivity

algorithms can be applied directly to a given state-space descripyyhen modeling passive systems—those that cannot produce
tion [27], or can be used as the second stage of a Krylov-sighergy internally—it is desired that the reduced models also be
space-based procedure [22], [24], [2]. In circuit-related applssive. Otherwise, the reduced models may cause nonphys-
cations, extra care must be taken so that TBR-type methggg| hehavior when used in later simulations, such as by gener-
produce models with accurate steady-state response. We sB@g energy at high frequencies that causes erratic or unstable
how to incorporate a particular solution [35] into our overall agime-domain behavior. For many electrical systems of interest,

proach. _ _ _ ~passivity is implied by positive-realness of the transfer function.
The paper is organized as follows. In Section Il, we brieflyhe functionH (s) is positive-real (PR)if

present the relevant concepts and properties of the systems

we will be treating, as well as review Krylov-subspace based H(s) =H(3), 7
method_s in the context of mod_el order reduction. In Se_ctlon I, H(s) is analytic in {s Re(s) > 0}. 8)
we review balanced realizations, present an algorithm for H> ) .

the procedure as well as some physical interpretation, and H(s) + H(s)" 20in {s: Re(s) > 0} (9)

recall available error bounds for truncation of the models. - . "

. . : . . n the above H denotes complex conjugatd,” denotes Her-

We also discuss an important special case in which this . . . .

. : mitian (complex conjugate and transpose), &nd in a matrix
technique actually produces passive reduced models. Then, in AP ; .

. . . context denotes semi-definiteness. In particulaifs) rep-

Section 1V, we present a procedure for constructing TBR-like . )

. : resents thg” (admittance) oz (impedance) parameters of a

methods that guarantee passive reduced models and in additio

are applicable to state-space systems with arbitrar interr?%(ls em, positive-realness &i(s) implies that the underlying
structﬁfe Algorithmic roie dure); are shown. and ay hvsic te-space description is a representation of a passive system
- A9 P X phy C@ ]. If, however,H (s) represents thé (scattering) parameter

interpretation is provided, along with error bounds for th . . .
. X X . . matrix, then to represent a passive system, it is necessary that
algorithms introduced. In Section V we discuss various com-

putational issues and present techniques needed to computactually condition (8) is implied by (9).
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H(s) be bounded-real [33]. A functiof{ (s) is bounded-real positive-real. A typical algorithm for reduction using congru-

(BR) if ence transformations is shown as Algorithm 1. Note however
- that it is entirely possible to have systems with positive-real
H(s) =H(3), (10) H(s), and thus underlying passive models, for which the

H(s) is analytic in {s :Re(s) > 0}. (11) conditions necessary for using PRIMA dwt hold. Such

I— H(s)2H(s) >01in {s: Re(s) > 0}.  (12) systems cannot be reduced in agua_rantged positive-real manner
via congruence transformations. Likewise, congruence-based

The term “bounded” arises as (12) is equivalent to stating tH§€hniques cannot guarantee bounded-real reduced models

|H(s)||2 < 1 in the open right-half plane. from pounded—real starting systems. '
A simple example serves to illustrate. Consider the state-
C. Krylov Methods space model described by the matrices

Recently developed model reduction methods suitable for ap- 1 0 0 -3 0 0
plication to large systems are based on Krylov-subspace tech- p—7=1|0 1 o|, A=|0 -12 12| (14)
0 0 1

niques. 0 0 -1
Definition 1 (Krylov Subspace)The Krylov sub- 1

space K,,(7,r) generated by a matri¢ and vectorr, B=CT = | 02 D =002 (15)

of order m, is the space spanned by the set of vectors _(').2 ’ T

{r,Tr,T%r,..., 7™}, Mathematically, the reduced

models are obtained via a projection operation [36] By use of the positive-real lemma [33], it can be shown that the
. - - T . T . transfer functionH (s) = D + C(sI — A) 1B is positive-real.
E=W"EV A=W AV B=W'B C=CV. (13) However, since thel matrix is indefinite (i.e. A+A” has eigen-

values of both signs), not all obtained by orthogonal projec-

and usuallyV” and W are constructed so that 'Fhe|r COIumnf’ion are definite, so the reduced transfer function is not neces-
span a Krylov subspace. For example, a typical mplementauggr"y positive-real. In particular, chooge= (sI—A)~' Bwith

(PRIMA [37)) is to construct’ = W’ by using the Amoldi al- - “_"1"" "ot the projectors be” = V = Q/[|Q|l2. Then,

gorithm, thereby spanning a Krylov subspace wiith- A~ E, the one-state reduced model hdas= +0.358, and H(0) =
r = A~!B. Because of the moment-matching properties o

- X =0.301. The reduced model is not only not positive-real, it is

Krylov-subspaces, the reduced transfer functifits) will |+ o\ an stable.
agree with the originalH (s) up to the firstq derivatives
on an expansion around some chosen point in the complex
plane (usuallys = 0). PVL [12] uses the Lanczos algorithm
to construct two Krylov spaces for formation & and .  Complementary model reduction techniques are based on
Multipoint approximation algorithms use unions of multiplgruncated balanced realization. We are mostly interested in
Krylov spaces to match the frequency response about sevé&@plying TBR procedures as the second stage of a composite
points in the complex plane [36], [38]. model reduction procedure [2], the first stage being reduction

The Krylov-subspace methods are very effective if operatiohy a Krylov-based projection method. Note that most of the al-
with 7 can be obtained cheaply (via efficient matrix solves dyorithms in [22], [24], are essentially equivalent to a first-stage
matrix-vector products), the dimensigrof the input space is Krylov projection followed by a second-stage TBR procedure.
not too large, and sufficient accuracy can be obtained with a rd4e first discuss the most commonly used approach before
sonable model ordey. These conditions usually hold in pracfresenting passivity-preserving variants. Primarily for clarity,
tical applications. in this section we will assumé& = I, as this assumption
simplifies the computational procedure, and also facilitates
comparisons with the literature related to truncated balanced
realization procedures. In addition, most of the cases of interest
for this paper can be easily manipulated to #ie= I form.
When E is nonsingular, the mapping — I, A — E~'A,
B — E~'B will put a descriptor system into standard form
for a system of ordinary differential equations. Even though

The PRIMA algorithm has another interesting propertyt is common in electrical engineering applications to have
Given a starting passive model, if the original state-spas#uations wherd” is in fact singular and cannot be inverted, in
model can be formulated with positive semi-definiteand £ the situations of interest to us, where an initial projection step
andB = OT, then the transfer function of the final reducedhas taken place, usually is nonsingular. The reason for this
model will be positive-real, meaning the reduced system is alsothat most Krylov-subspace algorithms in the literature build
passive. This is essentially because the projection operatiorpimjection spaces from powers of the matdx ! E acting on
(13) becomes a congruence transformior= V', and since a seed space given y. To obtain a singulakE-matrix after
congruence transforms preserve positive semi-definiteneagrojection step, the space used for projection would need to
the reducedE, A inherit the numerical range properties ofnclude the nullspace aF, but the nullspace is “filtered out”
their parents, implying that the reduced functi(ﬁh(s) is by the Krylov procedure, and so will not enter the projection

I1l. TRUNCATED BALANCED REALIZATIONS

Algorithm 1: Reduction via Congruence

1) ComputeV (e.g., via the Arnoldi algorithm) ,

2) Compute realization of reduced modelas= VIEV, A =
VITAV,B=VTB,C=CV,D =D
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procedure except for special choices of the seed vectors,and truncating the model, retainiag= AL, B=B,,C=0C;
unless deliberately included by special means. See [39] foas the reduced system, therefore has the effect of deleting the
reduction procedure that can result in singulaiVe will defer “weak” internal subsystems. A complete TBR algorithm [41] is
treatment of cases with singulart to Section V-B, where it is shown as Algorithm 2. An approach with improved numerical
shown how to manipulate these cases into the form discusgedperties may be found in [42].

here. We do emphasize thatig possible to formulate the

computational procedure to work wifi directly2 but we have Algorithm 2: Truncated Balanced Realization (TBR)
chosen not to do this as a matter of convenience. 1) SoIveAW + W.AT = —BBT for W,

2) SolveATW, + W, A = —CTC for W,
3) Compute Cholesky facto#¥, = L.LY, W, = L, L%,

The TBR procedure as first presented in [20] is centerey Compute SVD of Cholesky produbtsV = LT L. wherey:
around information obtained from the controllability Gram- js diagonal positive ant, V have orthonormal columns
mian W, which can be obtained from solving the Lyapuno) Compute the balancing transformatidis= L.V¥~1/2,

A. Standard Approach

equation T-1 = x-1/2yT T
Form the bal lization As= T AT, B =T~'B
AW, + W.AT — _BBT (16) 6)é irrgtTe balanced realization ds= , ,
for W., and the observability Grammia,, which can be ob- 7) Select reduced model order and partitidn B, ' confor-
tained from the dual Lyapunov equation mally o .
8) Truncated, B, C to form the reduced realization, B, C
Atw, 4+ w,A=-CtcC (17)
for W.. B. Error Bounds

Under a similarity transformation of the state-space model One of the attractive aspects of TBR methods is that com-
. . putable error bounds are available. If théh diagonal entry of
A—T7AT, B—T7"B, C—CT (18)  the matrixX in Algorithm 2 is given bys;, and thes; ordered

. . > o9 > -+ > op, then the error in the transfer function of
the input-output properties of state-space model, such as fhe™ o2 = = oA

transfer function, are invariant (only the internal variables aree orderg reduced model is bounded by [21]
changed). The grammians, however, vary under the rules X N
IH(s) = Hy()|w €2 D 0w (22)

W.—-T"*w.r % W,—-T"W,T (19) Ml

and so are not invariant. The TBR procedure is based on two

observations about, and W... First, the eigenvalues of theC. Physical Interpretation of the TBR Procedure
product W, are invariant. These eigenvalues, the Hankel sin-
gular values, contain useful information about the input—outp
behavior of the system. In particular, “small” eigenvalues q rpretation of the method in Algorithm 2.

W.W, correspond to internal sub-systems that have a weak e The observability GrammialV, is related to the., norm of
fect on the input-output behavior of the system and are, the[ﬁ— output produced in free evo(I)ution(t) — 0, V¢ > 0) from
fore, close to nonobservable or noncontrollable or both. Seco%?finitial stater, at time 0 T

since the Grammians transform under congruence, and as any

two symmetric matrices can be simultaneously diagonalized by,

_ [T T _ _
an appropriate congruence transformation [40], it is possible tB VYo% _/0 y(®) y(t)dt,  2(0) = wo, uft) = 0V¢ 2 0.

In order to later contrast the physical significance of pas-
(/ity-preserving TBR methods, here we review the physical in-

find a similarity transformatiorf” that leaves the state-space (23)
system dynamics unchanged, but makes the (transforigd) The controllability GrammiaiV,, on the other hand, is related
andW, equal and diagonal In these coordinates, with/, = to the minimumL, norm of the input over all possible input that
W, = 3, we may partition® into can control the system to the statgat time 0.
Y1 0 T2 Wiz
X = [ 0 EJ (20) o e 7P 0

) _ = inf / u(t)Tu(t)dt, u(t) controlling to 2(0) :xo} .
where}’; describes the “strong” sub-systems to be retained and —o0
¥, the “weak” sub-systems to be deleted. Conformally parti- (24)

tioning the transformed matrices as ) - o
A . A Noting that [ »(t)"y(t)dt and [~__ u(t)"u(t)dt are theL,
Ai- {{111 {112} b= [{31} _ G=[¢) ¢] (21) Dorms of the system output (restrictectta 0) and the system
Asxp Az 2 input (ont < 0) respectively, it is seen that small eigenvalues
2For example, (16), becomeSV, BT + EW.AT = — EBBTET. of the observability Grammial’, are associated with “normal

3To see this it may help to note thidf - and¥, transform according to the ques” [20] (state eigenvectors) that produce small free €vo-
same congruence operation; butiif—! is diagonalized, so &V lution L, output norms. These modes are, therefore, relatively
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unimportant for the system response. Similarly, small eigeanly betransformableto a symmetric, internally positive-real
values of the controllability Grammial¥,. are associated with system. The passivity-preserving reduction property is indepen-
state eigenvectors that we can control only with an input wittent of the system coordinates. This is a very desirable property.
large Ls norm (regardless of what trajectory we follow to reacln contrast, the positive semi-definiteness preserving properties
them). Hence the system is not very likely to be driven into thos# congruence transformations depend on the coordinate system
states and they are not likely to be important for the system ngsed and araot preserved under similarity transformations.
sponse. It can be noticed that some modes, although difficultTheorem 1 is undesirably restrictive in the sense that it only
to be controlled by the input, could produce large outputs. Viepplies to systems that fall into the symmetrizable class, such as
versa, there can be some modes that, although producing siRalandRCcircuits in MNA form, and reductions of such forms
output norms, are controlled with small input norm. This is theéia congruence. Not all systems, however, fall into this class,
reason for the balancing procedure that transforms to coordird more powerful techniques are needed to preserve passivity
nates that “balance” the importance of past inputs and futireTBR methods. These techniques will be coordinate-indepen-
outputs, the weighting being revealed by the eigenvalues of tihent, and completely general.

product of the observability and controllability Grammians. The

algorithm will keep in the final reduced model only modes that  |V. PASSIVITY-PRESERVING TRUNCATED BALANCED

are: REALIZATIONS

* both easily controllable, meaning they do not require & pgsitive Real Conditions

large inputLs norm to reach, and ) : . .
« easily observable, meaning that they produce free evoly-Ve will show in Section VI, by means of a simple example,
tion outputs with largeL, norms. that the TBR procedure of Algorithm 2 does not necessarily pro-

We now turn to the question of when TBR procedures prgycg passive models. In making assessments about passivity, we

. require a tool that can assess the positive-realness of a state-
duce passive reduced models. . . .
space model in a global manner. One such tool is the posi-

D. Passivity Preservation in Symmetrizable Systems tive-real lemma [33], which states that(s) is positive-real if

hat th . il  rel and only if there exist matrice¥, = X7, J., K. such that the
It turns out that there is a special system case, of relevange. equations

to integrated circuits applications, for which the standard TBR

procedure (Algorithm 2) always produces positive-real reduced AX, + X AT = - K, KCT (26)
models. Suppose that the state-space modghsnetricthat is - ~T T
X.C'-B=-K, 27
A= AT, B = CT, and furthermoretl is negative semi-definite. -C T J; 27)
SinceRe{jwl — A} = —1/2(A+ AT) = —A > 0, the system Jede =D+ D (28)

Ergr%silzgegg?ri' Fsrtzm S(Tr?ab\?nc?n%r? ; I/f/)(lalc;;ﬁz :ngfl i ;Y;S are satisfied, and(. > 0 (X, is positive semi-definite).X.
pecting step gorithm <, — ~ . is analogous to the controllability Grammian. In fact, it is the
Thus the similarity transformation is a congruence transforma-

) 2 . e .f:ontrollability Grammian for a system with the input-to-state
tion. The reducedi must be negative semi-definite, and we Wl|ma ina aiven by the matrik.. It should not be surprising that
likewise haveB = C*'. Therefore, the reduced system is pos ppPiNg g y < P g

. . there is a dual set of Lur'e equations 8 = X7 > 0, J,, K,
N Theorem 1:Suppose  stats epace system i ineary iraf{2! &€ gbtained fom (26)-(28) by the substutians. A",
. = - T T .

formable to a system of the form in (1), wifa = I, B = C7, — ¢7,C7 — B.The dual equations
A= AT A<0,D > 0.Areduced model generated via Algo- ATX, + X,A=—KTK, (29)
rithm 2 is positive-real. D -

Proof: If the system is already in the special stated form, XoB TO =K ‘:]PO (30)
it is positive-real [14]. That the TBR procedure applies to sys- doJo =D+ D", (31)

tems transformable to this form follows because the balanciplgVe a corresponding observability quantify > 0 for a posi-

ransformation i ntially uni xplained in [20]. In par- . :
t_a sto _at onis essentially u que as expia edin| Q] pqﬂ\{e-reallH(s). It is easy to verify thaf{., X, transform under
ticular, given a state-space model in balanced coordinates, thée

matrix A can differ from any other’ also in balanced coordi- similarity transformation just a8, W, (19), that their eigen-

nates by at most a similarity transformation by a maRithat is values are invariant, and in fact in most respects they behave as
the GrammiansV.., W,,.

diagonal with diagonal entries1. Therefore, there exists some

P and somel” such that B. Guaranteed Passive Balanced Truncations

A= P AP = PTTT ATP = (PT)T A(PT) = (I")T AT, A passivity-preserving reduction procedure follows by noting
(25) thatthe Lur'e equations can be solved for the quantitigsX,

Likewise, for anyB, € in balanced coordinates, there is somehich may then be used as the basis for a TBR procedure. We

T’ such thatB = (T")I'B, C = CT". B may find a coordinate system in whicki, = X, = %, with

Theorem 1 would seem to state that the TBR procedure Hasagain diagonal. In this coordinate system, the matrid¢es

passivity-preserving properties similar to PRIMA, but it is actuB, ¢ may be partitioned and truncated, just as for the standard

ally more general in one sense, and more restrictive in anotHBBR procedure, to give the reduced model defined Ay B,

It is more general in the sense that the starting system negdD). We present this as Algorithm 3 and call it PR-TBR, as
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it preserves positive-realness of the transfer function. Severigthm 2 turn out to be positive-real. Therefore, we propose Al-
approaches that turn out to give essentially similar results hayerithm 5, which performs the TBR procedure, solves the pos-

appeared previously in different contexts [34], [43], [44]. itive-real (or bounded-real) equations for the reduced model in

order to check its passivity, and if it turns out not to be passive,

Algorithm 3: Positive-Real TBR (PR-TBR) discards it and proceeds to Algorithm 3 (or Algorithm 4). There
1) Solve(26)—(28)for X, and(29)—(31)for X,,. is an advantage in this procedure as often the TBR approximates
2) Proceed with steps 3-8 in Algorithm 2, substitutiig for ~are more accurate for a given order than PR-TBR. Because of

W, and X, for W,,. the cubic scaling of cost, it is relatively cheap, compared to the

cost of the TBR reduction, to check a reduced model for pas-

Theorem 2:Algorithm 3 applied to systems with posi-Sivity since the reduced system is presumably of lower order. As
tive-real transfer functions produces reduced models wighenthe TBR models are passive, the net effect of the composite
positive-real transfer functions. algorithm is to approximately double the cost in the worst case,

Proof: From the form of the partitioning, (20) and (21),Versus usually getting better models at smaller cost (PR-TBR
likewise partitioning eithek, or K., itis clear that the reduced COStS” more than TBR) in the more-common average case.

system, in the PR-balanced coordinates, satisfies _Algorithm 5, which appropriately combines all of the pre-
A A o viously presented algorithms, can be used as generic flow for
A + 5 AT = - K KT (32) generating accurate guaranteed passive reduced-order models
. OF - B =— K, JT, (33) of systems with arbitrary structure.
J.J¥ =D + D7, (34)

Algorithm 5: Hybrid TBR

Therefore, the reduced system satisfies the Lur’e equations wihPerform Algorithm 2. o

positive semi-definite; (X; > 0 as¥ > 0). By the posi- 2) Using the reduced model matricds B, C, solve(26)—(28)

tive-real lemma, the reduced system is positive-real. B for X, (or (35)—(37)for Y.). R R
We emphasize that Theorem 2 holds regardless of the inter8jif (26)—(28)(or (35)—(37) are solvable and’. > 0 (orY, >

form of the state-space system. Again, this is not true for cord),

gruence-based procedures. then terminate and returd, B, C.
elsediscard TBR-reduced model and proceed with Algorithm 3
C. Bounded-Real Conditions (or 4).

To obtain equivalent TBR procedures that guarantee a final
transfer function that is bounded-real, useful when working. Error Bounds

with transfer functions representigparameters, we need the - Ag mentioned in Section I1I-B, one of the attractive aspects of

bounded real equations TBR-like methods is that computable error bounds are available.
AY, +Y.AT = - BBT - K_KT (35) Fortunately that _is also the case for the positive-real (bounded-
T T real) algorithms introduced in this paper. For bounded-real sys-
YOu +BD=—-K. J. (36) tems, as discussed in Section IV-C, if thle diagonal entry of
Jed¥ =1 - DD (37) the matrix¥ obtained from Algorithm 4 is given bg;, and
& > & > -+ = &N, then the error in the transfer function

and the corresponding dual equations of the orderg reduced model is bounded by

ATY, +v,A=-C"C - KK, (38) N
Y,B+CTD=—-K,JT, (39) [H(s) = H(s)[leo €2 > (41)
JZJO =I—-DTD (40) k=q+1

that are satisfied witht, > 0, Y, > 0 if the system transfer an expression strikingly similar to (22) (.S ee .[43])' For the POS-
||t|ve-real case unfortunately no such simplified bound exists.

function |s_boqnded-_real. Algonthm 4 performs truncated baUnder the same definitions, the best available error bound is
anced realization while guaranteeing the boundedness of the re-

duced transfer function given by
||H(3) - I'NI(S)HOO < )‘maX(D + DT)

Algorithm 4: Bounded-Real TBR (BR-TBR) ~ N 2
1) Solve(35)—(37)for Y. and(38)—(40)for Y. Z 2&;, 14 Z 2¢; (42)
2) Proceed with steps 3-8 in Algorithm 2, substitutirigfor W (1 —&)? = 1-¢;

— o

W. andY, for W,.
(see [44] where a similar technique was proposed and the error
D. A Hybrid Approach bound was derived). Discussion and derivation of these bounds
ils beyond the scope of this paper. Note however, that for the spe-
Stic procedure discussed here, thewill all be less that unity
D is nonsingular. IfD is singular, and has rank thenp — r
4The bound does not have to be unity; it can be any positive constant. ~ Singular values will be identically unity. Modes corresponding

In many cases, while not guaranteed by construction, it
often the case that the TBR approximants produced by Alg
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to these singular values cannot be truncated. In the case wHésing a similar argument to the classical TBR interpretation,
r < p, the bound of (42) becomes nonsensical. In this case, amall eigenvalues ok, are associated with modes for which
are not aware of a procedure to compute a bound. the maximum energy we can extra&, (zo), is small. They
are, therefore, not likely to be important “energy-wise” for the

F. Physical Interpretation of the PR/BR-TBR Procedures  system response. Small eigenvaluestgfare associated with

In Section I1I-C we discussed how the TBR procedure, afiodes for which the minimum amount of enery(xo) we
eigenvalues of associated Grammians, could be interpreted'@ye to supply in order to reach them is large. Hence it is rel-
terms of the relative importance of system modes to the systaffyely difficult to drive the system into those states and they
input and output norms. It turns out that the PR/BR-TBR tecR'€ not likely to be important “energy-wise” for the system re-
niques have a similar interpretation, but one that is more clos&jonse.
tied to a circuit-theoretic notion of energy. To make this con- AS in the classical TBR, it can be noticed that some modes,
nection, we draw upon concepts from the theory of dissipati@hough energy-wise hardly accessible, are energy-wise im-
dynamical systems, discussion of which can be found in [3fj0rtant and we can extract back from them large amounts of
[32], [43]. energy. Vice-versa, there can be some modes for which, al-

In order to provide a physical interpretation for thdhoughwe cannot extract large amounts of energy, they require
PR/BR-TBR algorithm let us introduce the concept of a suppfy Small amount of energy to reach. Thus, in a similar way as
function s[u(t), y(t)]. A supply function describes the rate aflassical TBR, PR-TBR balances the importance of past energy
which power is supplied by the environment into the systerfiPuts and future energy outputs by transforming to a coordi-
and typically is defined such thafu(t), ()] > 0 implies a nate system in whictk, and X. are equal and diagonal, and
positive amount of energy input, whiku(t), ()] < 0 means in which the invariant quantities that are the eigenvalues of the
energy is extracted from the system back to the environmeRtoduct ofX, and.X,. are easily calculated. The algorithm will
When the system inputs and outputs are currents or voltagé@ep in the final reduced model only modes that are:
i.e., when the system transfer function represents impedances both“energy-wise” easily “controllable”, that is they do
or admittance matrices, we may use the supply function not need much energy input to be reached;
s[u(t),y(#)] = w(t)Ty(t). When the system transfer function e+ and“energy-wise” easily “observable”, that is, it is pos-
represents scattering parameters, we may use the supply sible to extract a lot of energy from them.
function s[u(t), y(t)] = w(t)Tu(t) — y(t)Ty(t). Regardless of  Itis also interesting to note ([34], [31], [43]) that the solutions
the particular form of supply function we can further define th&, and_X,, of the positive real Lur'e (29)—(31) and their dual

following two quantities: (26)—(28), are related and not unique. Specifically, there exists
a minimal solutionX, ,,,;, and a maximal solutiotX, ,,,.x for
Vav(@o) (29)~(31), a minimal solutiotX,. i, and a maximal solution
— sup {_/ s[ut), y(B)]dt, 2(0) = xo} (43) X max fOr (26)—(28), such that
0

¢, max

= X < Xomax = X, (49)

c,min”

< X o= L < X
‘/1"8(1(‘1.0) 0 = Ao,mln X > )&0 (48)

— inf { /_ OOO s[u(t), y(#)]dt, u(#) controlling to 2(0) = a:o}

The procedure in Section V produces the minimal solutions used
(44) in (46)—(47) respectively

whereV,, (x0) is theavailable stoageenergy or maximum en- X, =X, = XL (50)
ergy that can be extracted from the system over any possible tra- Y. —x ' o le (51)
jectory of the state from an initial statg at time 0.V, (zo) can ¢ —emin =

be interpreted as tivequired supplyor the minimum amountof e same physical interpretation presented above for positive
energy that must be provided by the environment to the systegy| systems representing impedance or admittance can be given

in order to control the system to statgat time 0 over any pos- 4 hounded real systems representing scattering parameters by
sible trajectory. It can be shown ([31], [32]) that for d|SS|pat|vaeﬁmng as in [43]

and controllable system¥,,(xz¢) is always a positive number
not larger tharV, o (o) 2§ Y, zo =Vav(zo) (52)

zp Y 20 =Vieq(20). (53)

0 S Vvav(xo) S V;eq(xo)- (45)

Furthermore, it can be shown ([31], [32]) that the solutio \g/h?reYo andy, are the.mlmmal solutions of the 'bounded real
X, and X, to the positive real Lur'e (29)—(31) and their ur'e (38)—40) and Fhelrdu_al (35)~(37), respectively, obtained
dual (26)—(28), respectively, obtained from the procedure Ehom the procedure in Section V.
Section V have a physical interpretation for passive immittance
systems in terms of the energy quantitigs(zo) andVieq (o) V. COMPUTATIONAL CONSIDERATIONS
- In this section, we discuss the computational techniques
zg Xo 2o =Vav(20) (46) needed to compute the passivity-preserving balancing transfor-

o X' o =Vieq(®0)- (47) mations. The complexity of the algorithms presented is cubic



8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 8, AUGUST 2003

in the number of state variables, due to the use of direct, dengigerel, X € R™"*", X e IRP*™. Then from the invariance
linear algebra for eigenvector computations and matrix—-matendition€ZA = AZ, it can be verified thafX is indeed the
products. Thus, standard TBR and the passive-TBR variastdution to (26)—(28). To compute an invariant subspace of such
cannot be directly applied to extremely large systems suatspecial form, the rank-singularity of the pencil is first com-

as large collections of interconnect because of the high culpiessed [45] using a QR factorization.dfto reduce the dimen-
computational complexity. However, this cost is acceptablesfon of the pencil t®n. Then, we find an invariant subspace
the algorithms are being applied to systems that are moder&tec IR?"*" (for example, via the QZ method [47]) of the form

in size, as is usually the case with systems that result from a

prior reduction step. Therefore, we wish to reiterate that in the Z, = [?‘} . (56)
case of large systems, one would use the TBR algorithms as 2

a “second step”of a “two-step” reduction procedure. DUring y can be computed a& = X,X[. To obtain the extremal

the first step, whenever possible (see Section 1I), one would)tions discussed in Section IV-F, which incidentally corre-

use the less computationally demanding (but less efficier}ong to minimum-phase spectral factors [43], we take the sub-
Krylov subspace guaranteed passive reduction techniques syShce that corresponds to stable eigenvalues of the pencil. In the
as PRIMA to reduce the originally very large system to ordggqjar case, if a stable subspace (in particular, if the pencil has

around few hundreds. At such point one can easily use withQyifre imaginary eigenvalues) cannot be constructed, the system
much computational effort passive-TBR to reduce the systeg, positive-real.

to order around 10 to 20. This “two-step” procedure produces
a much better compression (i.e., better accuracy for the saBieAdditive Decomposition of Nonstandard Systems
final order) than using PRIMA to reduce in one single step the

.. . In general, state-space models must be written in the form
original very large system to the final order around 10 to 20. g P

Focusing now exclusively on the second-step reduction, first dz
we show how the basic computations may be performed for sys- E dt =Az(t) + Bu(?) (57)
tems in the standard form of (1)—(2). Next, we show how more y(t) =Cx(t) + Du(t) (58)

general models described by differential-algebraic systems caﬂ I . .
be put into this form for purposes of reduction. Finally, we di where the matrixZ is singular. Extensions of the positive-real
' a are available for models in the descriptor form wiiere

cuss technigues needed to handle a special case (singular or : .
D-matrix) that often occurs in integrated circuit (IC) applica'—s singular such that the transfer function cannot be put into the
tions. standard form [46]. A full coverage of all special cases, and the
details of manipulating? directly, is beyond the scope of this
paper. Instead we propose a simple procedure that will allow us
to use the method in Section V-A for solving the positive real

Solution of the Lur’e equations and solution of algebraic Rie@quations. We propose performing an additive decomposition of
cati equations (ARE’s) are closely related. An overview of basihe transfer functiodf (s) = D+ C(sE — A)~! B into the form
numerically robust computational procedures is given in [45].

We summarize this procedure below. See [46] and references H(s) = Hoo + Hp(s) (59)
therein for more recent coverage of related computational pr%ﬁerer is strictly proper, i.e., it is a purely rational function

lems. . . .
Solution of the Lur'e equations, and related AREs, can l{é”(s — 0ass — oo, Hoo will contain the portion of the

A. Solving the Lur'e Equations

)
done by computing the invariant subspace of a matrix penci nsfer function that is nonzero as- oc.
y computing . b b For a bounded real functiod{ (s) can approach a constant,
AE — A, i.e., solving a generalized eigenvalue problem. Qf

) . I ut can have no higher order termssirso
course, as is usual, for reasons of numerical stability, it is desir-

able to avoid eigenvector computations, and instead work with H.o(s) = Do (60)
Schur (or generalized Schur) forms that can expose invariant

subspaces in a numerically stable manner. In the positive-rédisomeD, suchthat| D || < 1. Fora positive-real function,
case, the pencil we needds— A, H(s) may have a pole at infinity, but if so it must be simple with
a Hermitian, nonnegative definite, residue matrix [33]. There-
fore, in the positive-real case

I 00 A 0 B
E=10 I 0f, A=|0 —AT ct . H., = Do + sK (61)
0 0 0 ¢ —-BT D4+DT

(54) for someD,, suchthatD,, + D% >0, K., = K2 > 0.
Suppose that via some means we have computed an invariarfio perform such a decomposition, by using the procedure
subspaceZ € RZ"HP)*" that satisfiessZA = AZ, A € from [48] we first transform the syste, B,C, D, E) to an

IR™*™, of the special form equivalent systerid,, By, Cy4, D, E;) where the matrix pencil
sEyq — Ay is block-diagonal. In this form the system may be
I written as
Z=|X (55) [Eu 0 A 0
X Ea = [ 0 En] M7 0 An (62)
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B
de[B;

The block partitioning is chosen such that the sub-pexicil, —
Ao contains all the 'infinite’ structure of the systeifizo will
have zeros on the diagonal, add, will be nonsingular. 11,
A1) will contain all the finite structure, andél;; will be non-
singular by construction. Next, by defining

} Ca=[C1 Co]. (63)

Note that, for a positive-real systemnitustbe the case that ei-
therk = 2, or C,oN'B., = 0forall/ > 1. In any event these
terms may be deleted from the model without harm since they
do not appear in the input/output relation. For bounded real sys-
tems, all termsV' for [ > 0 may be removed. Note additionally
thatk is also known as thiedexof the DAE in (57). DAE’s with
index greater than 1 are not accurately solved by the algorithms
typically used in circuit simulators [50].

A, IEﬁlAn, B, = EﬁlBl, C,=C4 (64) Finally, consider the state-space model in standard form
N =A3} Fy, Boo = E'By, Cop = C. 65
22 £022 11 P2 2 (65) % — Aya(t) + Byult) (75)
we may transform to an equivalent system _
(Ay,Bw, Cyw, Dy, E,) that has a structure resembling the y(t) =Cpa(t) + Dooul?) (76)
Weierstrass form [49], with transfer function
I 0 Ay O 1
E, = 0N Ay = 0o Il (66) Ho(s) =Doo+ Cp(sl — A))™"B, = H(s) — sK... (77)
B If H(s) is bounded-real, theK,, = 0 andH(s) = H,(s).
Bu=|,| Co=1[C, Cx]. 67 ) " %0 “
|:Boo:| [ ] ©7) H,(s) is positive-real ifH (s) is positive-real as well, because

Here, A, will be nonsingular andV will be a nilpotent matrix,
that is, a matrix such thav* = 0 for somek > 0. For the
systems of interest in this paper, it turns out that genekady1

ork = 2.

H,(s) is analytic in the open right half-plane, and

H,(jw) + HY (jw) =H(jw) + H (jo) — jo(Ke — KX)
=H(jw) + H"(jw) 2 0.

With the system in this form, the transfer function can beperefore, to obtain a passive reduced model of the original

decomposed as
H(s) = Cp(sI — A))"'B, — Coo(I —sN) ' B, (68)
so it is clear that the strictly proper terf,(s) is given by
Hy(s) = Cyp(sI — Ap) ' B, (69)

Likewise, it turns out that the matricéé, C.., B.. contain all

information about the “infinite” behavior of the transfer func

tion,

H,,=-0.(—-sN)'B,. (70)

To see thatindeeH ., is composed only of terms with powers

of s* fork > 0, i.e., the term® ., +sK ., in our particular case
we inspect the form of/ — sN)~!. BecauseV is nilpotent,
(I —sN)~* can be written as a finite seriesfirterms of powers
of sN.

(I —sN)™*
= [[+ 5N = (sN)? + (sN)> + - + (=1)*(sN)*1].
(71)
For example, considér = 2. In this case, noting thav? = 0
(I—sN)YI4+sN)=I—-sN+sN—(sN)?>=I—(sN)*=1

(72)
we conclude that/ — sN)~* = I 4+ sN. The first two terms in

system of (57) and (58), we may apply the passivity-preserving
model reduction methods to the system in (75) and (76).

As an aside, note that this procedure also provides a means to
perform a passivity check on descriptor systems. In particular,
the descriptor system of (1) and (2) is positive-real if and only
if Koo = KX > 0, and the matrices\,,, B, C,, D, satisfy
the positive-real conditions (26)—(28) or (29)—(31). The system
is bounded-real if and only i, = 0 and the matricesl,,

By, Cp, Do satisfy the bounded-real conditions (35)—(37) or
(38)—(40).

C. Infinite Zeroes
It is known that the simple procedure in Section V-A breaks

’ down when the transfer functidd (s) has a zero exactly on the

imaginary axis (including a zero at infinity). The positive-real
equations can still be solved in this case [34], but more sophisti-
cated computational procedures are necessary. Of particular in-
terestin IC applications is the case= 0. In this case, we have
used the method for solving the positive-real equations given in
[51].

Note that physical systems, modeled to a high level of fidelity,
are usually strictly positive real, so do not have troublesome
zeros. The additive decomposition procedure of Section V-B
may be necessary to reveal this. EveWifs singular,D.., may
be nonsingular.

the expansion are enough to calculate the information we neBd.Achieving DC Accuracy

The first term leads to

Do =D — CouBoy (73)

and the second to

Ko =—-CxNB.

(74)

Itis known that the TBR technique in Algorithm 2 often leads
to reduced models that exhibit a mismatch of the dc gain when
compared to the original unreduced model. It was noticed pre-
viously that the technique tends to give good approximations of
the impulse response, but the approximation may have a large
steady-state error for the step response. In general, in fact, the
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algorithm tends to perform better at high frequencies thanatdc,
showing a high-frequency error that tends to zero. While this
might be acceptable in certain applications of the technique, it
is a significant problem when considered in the context of cir- 004
cuit level model order reduction. Therefore, such property has
always been regarded as a significant drawback of the technique.’s
In order to address this problem, a useful computational tool @ o
is transformation to theeciprocal systemThis approach has
previously been presented in the context of what is called the
singular perturbation approximation, first when applied to bal- B T e PSR 3
anced system [35], [52] and also in the context of positive- and
bounded-real systems [53]. This approximation relies typically
on the fact that it is possible to partition the state vector into =% ‘ ‘ . . K ‘ , g
two sets of variables. One of these sets is composed of vari- 0T 05 0% %S 0% 0.1 s 0o
ables which are termed “fast,” i.e., its states have very fast tran-
sient dynamics and decay rapidly to certain steady values in fii¢ 1. ‘t'Minime deigednvalléleI of trar;sféerb fu?ctiémsd gégd to i(;lustraéel_d
neighborhood of a given frequency (for instance: 0 for the o0 PoStveTea FEIUCEC moFel gensrarsd by s andar procet ove- ool

. . . line: original (positive-real) order-26 transfer function. Dashed line: TBR result
dc case that we are interested here, but the technique is easilyder 7. Dashed—dotted line: PR-TBR result of order 7. Note negative sign

V ]

o

-0.01 - - A

generalized for any frequency). of TBR results indicating non-positive-realness.
Given an initial system with transfer functidi(s), the re-
ciprocal system is a state-space system with transfer function VI. RESULTS

H(s~1). In some problems, there is an advantage to performingI thi i h les that illustrate th |
balanced truncation on the reciprocal system because of the fren) IS Oslec |o|_n, \llav'?ts (;Vtvhexarr}p €s | a 'lchus rate etrz €
guency properties of the error. The reciprocal transformatigfi cc and applicabiiity ot the various aigoriinms presented in

mapss = 0into s = oo, so balancing the reciprocal systerﬁhIS Paper.
tends to produce better approximations at low frequencies. .

In [35] it was shown that the model obtained with the singulél'}' A Non-Passive ROM Generated by TBR
perturbation approximation to an internally balanced system,First, we demonstrate empirically that standard TBR (Algo-
i.e., the model obtained by truncating the reciprocal system féthm 2) can generate models that are not passive by examining
an internally balanced system, enjoys the same error bou@dp-state lumped circuit model of a crystal filter. We configured
as the truncated balanced approximation. Furthermore, sincé@ circuit to model the two-portimpedance parameters from the
is easy to prove that the reciprocal of a (strictly) positive_reﬁ]put to a differential output. This created a 26-state state-space
(bounded-real) system is also (strictly) positive-real (bounde@hodel that is positive-real. We then generated all the possible
real) (see [53]) it is then clear that one can combine the réBR models of orders 1-26, and used the positive real lemma
ciprocal system technique with Algorithm 3. The resulting rdo inspect them for positive-realness (equivalent to passivity in
duced-order model will, therefore, be guaranteed positive-rétis case). Several of the models were found to be nonpassive
(bounded-real). We, therefore, propose Algorithm 6 in order {gee Fig. 1). We then generated all the possible PR-TBR models.
generate reduced-order models that do not suffer from dc &dl were found to be positive-real as expected.
curacy problems. In fact, the models generated by Algorithm 6Note that thed, £ matrices for this test case were obtained
will match the transfer function exactly at de £ 0). via MNA analysis, and in particular, satisfy the conditions nec-
essary to apply PRIMA (they are of the form given by (2) in [37]
with C = E andG = A, C, andG nonnegative definite). Since
this example could form a subsystem of a larger passive system,
T L i or be the result of some previous reduction procedure, its exis-

—ATB,C — QA D — D —CA™B ) tence proves that examples exist for which PRIMA is applicable
2) Perform Algorithm 2, Algorithm 3, or Algorithm 4. and produces passive models, but for which TBR generates non-

3) Perform the inverse reciprocal transformatidn— A~ passive approximations in a second-stage procedure.
B—-A1'BC—-CAYD—-D-CA'B

Algorithm 6: DC-Accurate TBR
1) Perform the reciprocal transformatifg8] A — A~!, B —

B. A Symmetrizable System

It is interesting to note that this behavior of the TBR-like al- Our next example (Fig. 2) is a spiral inductor modeled with
gorithms is reminiscent of the situation in moment-matchinfpe magnetoquasistatic electromagnetic tool FASTHENRY
Krylov methods: Krylov spaces based driend to match well [54]. This example first appeared in [2]. In general, as we
at infinity, while those based od~! tend to match well at dc. mentioned already in many other parts of this paper, model
The contrast is much less strong in the TBR case becauseoafer reduction is a “two-step” procedure. During the first step
its near-optimality properties. On transfer functions with largene would use “nonoptimal” but computationally tractable
norm away from either dc or infinity, TBR will achieve goodKrylov subspace moment matching techniques such as PRIMA,
relative error near the large-norm areas preferentially, as masice the original system is typically too large to be handle
be done to achieve an absolute error bound. by the more optimal TBR techniques. For this example the
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— Full
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-400t
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frequency t(ns)
@ Fig. 3. \oltage response across spiral inductor, in parallel with small
40 : i " " capacitor, driven by short current pulse. Response computed from original
model (solid line), TBR approximation of second order (dash line) and PR-TBR
approximation of fifth order (dash—dotted line, nearly exact) are shown.
35¢
30l error properties. Given that PR-TBR is more computationally
T involved than TBR, for the special case of symmetrizable sys-
| tems it makes sense to use TBR exclusively.
3
=
20l C. A Bounded-Real Example From Rational Function Fitting
In the next example we consider the bounded-real variant of
15 the TBR procedure (BR-TBR). First, a rational fitting method
was used to fit a high-order model to tabulated two-jsopa-
10 , i i , rameter data originating from a full-wave EM field solver. The
10° 10° 10! 10° 10° 10" fitting algorithm, which has provision for automatic estimation
frequency of model order, was tuned to a conservative setting, and gener-
(b) ated an order-42 initial model that was nearly an exact fit to

Fig. 2. (a) Real part of reduced models of impedance (resistance) of spifae data in the given frequency range. The resulting 42-state
i”‘?'u‘itFJf(-ilESt)o'rmsﬁgigaiifri’eng gi;igzeéimﬁemcgégﬁh%ig t(iigci:gtuéipgfet)hgfﬁr model was much larger than desired for final simulation, so the
Zfelz)aolfna typicél reduction procedure. As a second step one could apply eiﬁ%&'TBR procedure was used to reduce the model to six states.
TBR or PR-TBR. Dashed line: model of order 5 generated via TBR. Dash—croEBe results are shown in Fig. 4. The reduced model had norm
!ine:_ModeI of order 5 ggr_]erated using PR-TBR on inverse system. All modgd$unded by unity, indicating that it represented a passive ele-
in this example are positive-real. ment. Several models of orders six to eight were also generated
by both TBR and congruence transform strategies, but all had
= horms ranging from 1.05 to 1.9, i.e., they were not pas-
%tive. Such techniques are, therefore, unusable for this type of
systems. We likewise re-iterate that PRIMA is not suitable for

ither [29].
aci,se systems either [29]

initial system of around 1500 states is reduced to a 60-st
positive-real model using PRIMA. This model is nearly exal
in the frequency range shown.

Since this order is still considered excessive, and since Kryl
subspace model reduction technigues are in general not optim
when comparing accuracy for a given final order it is standard
procedure to further reduce the PRIMA model using TBR. TH%‘ A PEEC Connector
frequency responses of the PRIMA model, TBR model, and This example features a connector structure from Teradyne
PR-TBR model are shown in Fig. 2, and the time-domain réc. composed of 18 pins with a ground shield around and
sponses are shown in Fig. 3. In [2], it was commented that thetween the conductors. This structure or portions of it were
reduced models after the TBR procedure appeared to be pasgiveviously used [19] to illustrate a PEEC formulation based on
but no explanation was given. Here we have rigorously check@RIMA that generates passive reduced-order models. While
using the positive-real lemma, that the models were indeed pt®e resulting model was indeed provably passive, disappointing
sive, and gave a proof as to why, for symmetrizable systemegiuctions were reported, due mostly to the inability of the
such as this, that should be the case. Note, however, that BRIMA algorithm to zero-in on the relevant modes of the
results shown in Fig. 2 from TBR and PR-TBR are slightly difsystem. In fact volume discretization of the interior of the
ferent. This is not surprising as, while both TBR and PR-TBRonductors in order to properly model skin-effect leads to the
guarantee passivity in this case, they are different computatioagpearance of various internal subsystems that have negligible
techniques with different physical interpretations and differeeffect in the structure impedance but which can fool the PRIMA
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Fig. 4. Magnitude of rational function fit and reduced model§eparameters tabulated by full-wave field solver. Solid line shows initial data and oder-42 rational
fit (complete overlap). Dash-dotted line shows order-6 reduced model obtained via BR-TBR.

algorithm. In order to address such issue in [28] the same dikely to be passive it is advantageous to obtain such a model,
ample was used to illustrate a two-step algorithmRaCorder check it for passivity, and only proceed to the PR-TBR algo-
reduction based on PRIMA followed by TBR, in an attemptithm if the passivity check fails. Of course, it would be possible,
to solve the above problem. Significant order reductions weusing TBR, to compute and check another model of slightly dif-
reported after the second step of reduction as TBR is ablefément order, and this is fairly easy to do since TBR essentially
determine that those modes are not observable nor controllapl@aduces models of all orders simultaneously. However in gen-
While this clearly shows that further reduction after the PRIMA&ral changing the order is not guaranteed to always produce a
stage is possible and indeed desirable, passivity was no longassive model. In fact, as the next example shows, there are sys-
guaranteed in the final, smaller models. tems where TBR almost never produces a passive model. This
Here we have used the same example and checked the jma-particular problem when one of the requirements specified
sivity of reduced-order models of various orders. We believe thay the user is having a model of a particular size or no larger
the modes that are being discarded by TBR are related to thethman a certain size. Furthermore, since there is a cost associated
ternal subsystems resulting from skin-effect modeling. As suwlith the passivity check, it is not practical to check “too many”
the character of the problem after the initial PRIMA reductionlternative models before proceeding to PR-TBR.
is predominanthRL, a type of system for which we know that .
TBR is passive (see Section IlI-D). Once more we generated An RLC Line
all the possible TBR models for the system obtained after theFor our next example we use a 40-segment unifBircline
PRIMA reduction and used the positive real lemma to inspegiat isL.-dominated. The values of the line were chosen to be
them for positive-realness (again equivalent to passivity in this = 25, ¢ = L = 0.39894. For the purpose of comparison
case). Due to thalmostsymmetric nature of the systems, alwe computed 25th-order models using both TBR and PR-TBR.
most all the models we obtained were found to be passive. HoWg. 5(a) shows the low-frequency behavior of the exact line
ever, models of order 19 and 29 were found to be nonpassiifapedance as well as that obtained using the two models. For
a problem if the model is to be used in time-domain simulahis particular case it turns out that PR-TBR performs much
tions. This example shows once more that TBR can indeed lgssiter than regular TBR in terms of the model error. More impor-
to large reductions in model-order but can produce nonphysitaht, however is the result shown in Fig. 5(b) where we plot the
models. The example also presents a strong case for usingritigimal eigenvalue of the symmetric part of the transfer func-
hybrid algorithm presented earlier (see Section IV-D and Alggion as a function of frequency. As can be seen from the plot,
rithm 5). Since the majority of the TBR-produced models atte minimal eigenvalue for the TBR model can go below zero
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Fig. 5. (a) Magnitude ot’;, for LC line in normalized units. (b) Minimum eigenvalue of symmetric part of reduced model transfer function. Note that the
minimum eigenvalue of the TBR model drops below zero for some frequencies, indicating nonpassivity.

at some frequencies which implies that the model is honpassive 107"
and may produce nonphysical responses when used in time-do-
main simulations. In fact, on this exampgimost noneof the

models produced by TBR were passive. Only very high order
models exhibiting an almost exact match to the transfer func-

tion over the entire frequency axis were passive. In contrast, all

the models produced by the PR-TBR method were found to be & |
passive, as expected. =

F. DC Accuracy Improvement

Our final example illustrates the behavior of the reciprocal
system technique in preserving accuracy at low frequencies. An 107 : : : :
abstract system of order 64 was constructed, and the PR-TBRal- ~ '° 10 19 roquency
gorithm, both the “standard” and the “reciprocal” variants, were
applied to generate reduced models of order 4. Since PR-TBR 6. Solid line: Original order-64 model. Dash—dotted line: order-6 reduced
was used, both reduced models were guaranteed-passive. i nIt.from PR-TBR. Dash line: order-6 reduced model PR-TBR, reciprocal
results are shown in Fig. 6. Standard PR-TBR is very accurate
at high frequencies, but not so accurate near dc. The reciprocal
variant is very accurate near dc, but trades this for accuracy at
high frequencies. Note that both methods show a fairly goodin this paper, we presented a family of algorithms that can
match to the features around the sharp large-amplitude rebe-used to compute guaranteed passive, reduced-order models
nance. This is in agreement with [35], where it is shown thaf controllable accuracy for state-space systems with arbitrary
using the reciprocal transformation before and after the bahternal structure.
anced-truncation procedure results in models that are exacthyhe algorithms presented are similar to the well-known trun-
accurate at dc. In fact, it is possible to choose any frequentgted balanced realization (TBR) techniques and share some of
point so such that the reciprocal systems can be computed ahéir advantages, such as computable error bounds. However,
then reduced as an approximation at any frequeggcguch that unlike standard TBR techniques, the algorithms presented have
the reduced model will match the value of the original systebeen shown to produce provably passive reduced-order models.
ats = so. In addition, unlike other techniques known to also produce pas-

VII. CONCLUSION
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sive reduction, the algorithms presented pose no constraints ofs]
the internal structure of the state-space. They are thus equally
well applicable to systems that represent for instaricer Z 9]
parameters as well as systems that repreSqrarameters. An
hybrid algorithm was also presented where a TBR model is first
computed, then checked for passivity and the passive-TBR aho]
gorithm is only used if that check fails. Our hybrid algorithm

is more reliable than simply slightly changing the order of the
produced model which can often produce passive systems, eﬁ—l]
though not always. In addition we also examined a dc-accu-
rate technique that can be used in conjunction with the algo-
rithms presented in order to produce models that have accuraig,
steady-state responses.

We have experimented with our techniques in a large numb Is
of settings and have shown that they can be used as standalon
procedures or as part of second step reductions for systems with
a large number of unknowns, perhaps replacing the usual TB 3]
procedure. We have thus applied our method to obtain reduced
models of various structures, namely the two-port impedance
of a crystal filter, a spiral inductors, a large connector and af!®]
RLC line. All models were found to be accurate and passive.
All previously known techniques failed to produce acceptable
models in some of the examples used. (16]

Further applications of the algorithms are possible, for ex117]
ample, balancing the Lyapunov observability Grammian versus
the Lur’e controllability Grammian could be useful in obtaining

. L o [18]
passive models in situations (commorRibCinterconnect anal-
ysis) where the number of outputs (e.g., from voltage observa-
tion points) exceeds the number of inputs (i.e., drivers). [19]
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