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Abstract— In this paper we present a parameterized reduction
technique for non-linear systems. Our approach combines an
existing non-parameterized trajectory piecewise linear method
for non-linear systems, with an existing moment matching param-
eterized technique for linear systems. Results and comparisons
are presented for two examples: an analog non-linear circuit, and
a MEM switch.

I. INTRODUCTION

The presence of several non-linear analog circuits and
Micro-Electro-Mechanical (MEM) components in modern
mixed signal System-on-Chips (SoC) makes the fully auto-
matic synthesis and optimization of such systems an extremely
challenging task. The availability of techniques for generat-
ing Parameterized Reduced Order Models (PROM) of non-
linear dynamical systems could serve as a first step toward
the automatic and accurate characterization of geometrically
complex components and subcircuits, eventually enabling their
synthesis and optimization.

Several Parameterized Model Order Reduction techniques
have been introduced in literature in the past few years. Some
are based on statistical performance evaluation [1], [2], [3],
[4], others are based on moment matching techniques [5],
[6], [7], [8], [9], [10], or on Truncated Balance Realization
(TBR) techniques [11], and on quasi-convex optimization tech-
niques [12]. However, to our knowledge, almost all existing
PMOR techniques apply only to linear systems. Very few, such
as [4], also apply to non-linear systems.

Several non-parameterized Model Order Reduction (MOR)
approaches are available for non-linear systems. For instance,
the reduction of weakly non-linear systems has been shown
using Volterra series and moment matching techniques [13],
[14], [15], [16], [17], [18]. The reduction of strongly non-
linear systems has been shown using Trajectory Piece-Wise
Linear (TPWL) with moment matching techniques [19], [20],
[21], [22], TPWL with TBR techniques [23], and trajectory
PieceWise Polynomial (PWP) with moment matching tech-
niques [24], [25], [26]. However, to our knowledge, all existing
model order reduction techniques for non-linear systems apply
only to non-parameterized systems.

The key contribution of this paper is the combination of an
existing non-parameterized trajectory piecewise linear method
for non-linear systems, with an existing moment matching

parameterized technique for linear systems, hence introducing
a parameterized reduction technique for non-linear systems.

The rest of the paper is organized as follows: In Sec-
tion II we briefly review non-parameterized and parameter-
ized reduction for linear systems using moment matching,
and the trajectory piecewise linear reduction for non-linear
non-parameterized systems. In Section III we introduce our
method combining the two approaches. Three alternatives are
presented. In Section IV we demonstrate and compare our
techniques modeling an analog circuit and a MEM switch.

II. BACKGROUND

A. Moment Matching MOR for Linear Systems

Consider a linear system

E
dx
dt

= Ax(t)+ bu(t), y(t) = cT x(t), (1)

where the state x has a very large order N. One approach
to reduce the order of the system is to use an orthonormal
projection matrix V such that x≈Vx̂, where x̂ is size q << N,
obtaining

Ê
dx̂
dt

= Âx̂(t)+ b̂u(t), ŷ(t) = ĉT x̂(t), (2)

where Ê = V T EV , Â = V T AV , b̂ = V T b, and ĉT = cTV [27].
The projection matrix is carefully constructed to preserve the
input/output relationship (e.g. transfer function) of the system.
For instance a projection matrix chosen such that

colspan(V )⊇ span{bM,MbM,M2bM, ...,Mq−1bM}, (3)

would produce a reduced system matching the first q moments
of the Taylor Series expansion in the Laplace variable s of the
large system transfer function [28],

x = [sI−M]−1bM u =
∞

∑
m=0

smMmbM u, (4)

where M = A−1E and bM =−A−1b.



B. Moment Matching PMOR for Linear Systems

Consider a linear system whose dynamical descriptor matri-
ces in Laplace domain are functions of the Laplace frequency
variable s, and of some other geometrical parameters, s1, ...,sµ,

E(s,s1, ...,sµ)x = bu, y = cT x. (5)

Using for instance a polynomial fitting technique,

E(s1, . . . ,sµ) = E0 +∑
i

siEi +∑
h,k

shskEh,k + . . .

and introducing additional parameters s̃ as shown in [8], [9],

Ẽi =




Ei i = 0, . . . ,µ
Eh,k h = 1, . . . ,µ; k = 1, . . . ,µ
. . .

s̃i =




si i = 1, . . . ,µ
shsk h = 1, . . . ,µ; k = 1, . . . ,µ
. . .

one can approximate the parameterized system as

[Ẽ0 + s̃1Ẽ1 + ...+ s̃pẼp]x = bu (6)

Next, from the moments of the multivariable Taylor series
expansion

x =
∞

∑
m=0

(s̃1M1 + ...+ s̃pMp)mbM u, (7)

a projection matrix, V , can be constructed such that

colspan(V )⊇ span




mq[
m=0

m−(kp+···+k3)[
k2=0

. . .
m[

kp=0

Fm
k2,...,kp

bM




(8)
where bM = Ẽ−1

0 b, Mi =−Ẽ−1
0 Ẽi, and

Fm
k2,...,kp

=




0 if ki �∈ {0,1, . . . ,m} i = 2, . . . , p
0 if k2 + · · ·+ kp �∈ {0,1, . . . ,m}
I if m = 0
M1Fm−1

k2,...,kp
+ · · ·+ MpFm−1

k2,...,kp−1 otherwise

In [8] it is shown that the reduced system

[V T Ẽ0V + s̃1V T Ẽ1V + · · ·+ s̃pV
T ẼpV ]x̂ = V T bu (9)

y = cTV x̂,

assembled using such a projection matrix with q total columns,
matches the first q moments (corresponding to the first mq

derivatives in each parameter) of the large system (6). In
the same article it is also noted that, for a large number of
parameters p, and a modest number of derivatives mq matched
for each parameter, this method generates systems of order
q = O(pmq).

C. TPWL for MOR of non-linear systems

Consider a non-linear system in the form

E
dx
dt

= A(x(t))+ bu(t), y = cT x(t). (10)

The Trajectory Piece-Wise Linear (TPWL) method [21] con-
structs a collection of local linearizations, Ai x+Ki, of the non-
linear function A(x(t)), around each of k linearization states
xi. The non-linear system is then approximated by weighted
combinations of the linear models,

E
dx
dt

=
k

∑
i=1

wi(x,X) [Aix + Ki]+ bu(t) (11)

where wi(x,X) are some weighting functions, which depend on
the state x, and on the k linearization points X = [x1,x2, ...,xk].
Since covering the entire state space with linear approxima-
tions would be extremely expensive, in the TPWL method the
non-linear system is simulated with some “typical” training
inputs, and only the trajectories of the state excited by those
inputs are populated by linearized models (Ai,Ki). One major
drawback of this method is that the accuracy of the reduced
model can be highly dependent on the “richness” of the inputs
chosen for training. Furthermore, exact training trajectories can
be in general expensive to generate since they involve simulat-
ing the full non-linear system. In [20], [21] it was noted that an
alternative less expensive option for generating approximate
training trajectories is to simulate only the partially created
reduced model, and to generate and add a new linearized and
reduced model Âi whenever the reduced state x̂(t) strays more
than some distance δ from all the reduced centers x̂i of the
previous linearizations, i.e. when

min
i
||x̂(t)− x̂i||> δ. (12)

In all our experiments, so far, we have verified that approxi-
mate training trajectory based approaches generate models as
accurate as exact training trajectory ones, hence we will adopt
this technique hereafter in this paper.

In the TPWL method, an orthonormal projection matrix V
is created by assembling all the column vectors produced by
applying (3) on each of the linearized models Ai. The final
reduced system is then

Ê
dx̂
dt

=
k

∑
i=1

ŵi(x̂, X̂)
[
Âix̂(t)+ K̂i

]
+ b̂u(t) (13)

where Âi =V T AiV , K̂i =V T Ki, b̂ =V T b, Ê =V T EV , x̂ =V T x,
X̂ = [x̂1, ..., x̂k], and x̂i = V T xi. The relative weights, ŵi(x̂, X̂),
of each linear model vary dynamically as the state evolves.
One example of possible weighting functions is the one used
in [21],

ŵi(x̂, X̂) =
exp

(−β ||x̂−x̂i||
m

)

∑k
i=1 exp

(−β ||x̂−x̂i||
m

) , (14)

where β is some constant (typically we used 25), and
m = mini ||x̂− x̂i||.



III. TPWL-PMOR

A system possessing a non-linear dependence on both the
state and some parameters may be of the form

E
dx
dt

= A(x(t),s1,s2, ...,sµ)+ bu(t) y(t) = cT x(t). (15)

Using a collection of local linearizations around different states
xi, as in II-C and [21], one obtains

E
dx
dt

=
k

∑
i=1

wi(x,X)[Ai(s1, ...,sµ)x(t)+ Ki(s1, ...,sµ)]+ bu(t).

(16)
Using then, for instance, polynomial fitting, and introducing
additional parameters s̃ j as in II-B and [8], [9] one obtains

E
dx
dt

=
k

∑
i=1

p

∑
j=1

wi(x,X)s̃ j[Ãi jx(t)+ K̃i j]+ bu(t) (17)

The resulting system is now described as a collection of k
linear systems linearly dependent on p parameters. Hence
one can use standard linear model order reduction techniques.
For instance, using an orthonormal projection matrix V , the
reduced system is

Ê
dx̂
dt

=
k

∑
i=1

p

∑
j=1

ŵi(x̂, X̂)s̃ j[Âi jx̂(t)+ K̂i j]+ b̂u(t) (18)

y = ĉT x̂(t)

where Ê = V T EV , Âi j = V T Ãi jV , K̂i j = V T K̃i j, b̂ = V T b, ĉT =
cTV , x̂(t) = V T x(t), X̂ = [x̂1, ..., x̂k], and x̂i = V T xi.

In order to complete the procedure, two algorithms remain
to be specified: how to choose the linearization points xi,
and how to construct the projection matrix V . Alternatives
for each of such two tasks will now be discussed in details
in Sections III-A and III-B. Combining different alternatives
will then produce in Section III-C our three proposed Non-
Linear Parameterized Model Order Reduction (NLPMOR)
algorithms.

A. Choosing Linearization Points

In the standard TPWL, the state linearization points are
chosen along the state trajectories generated by applying
typical training inputs. We can use here the same idea, and we
will refer to it as “training at a single point in the parameter
space”. However, one may notice that different trajectories
may be generated not only by varying the training inputs, but
also by training at different points in the parameter space. We
will consider this option as well, and denote it as “training at
multiple points in the parameter space”.

The additional training trajectories introduced by training at
multiple points in the parameter space will increase the total
number k of linearized models, however it will not affect the
order q of the reduced system. Since the weighting functions
in equation (18) are typically non-zero for just a few models
at any particular time, a larger set of linearized models is not
expected to significantly affect simulation time when using the
reduced model.

B. Constructing Projection Matrix V

When constructing the orthonormal projection Matrix V ,
one could simply ignore the dependency on geometrical pa-
rameters, and assemble the columns of V as in the original
TPWL method, using the MOR vectors produced by apply-
ing (3) on each of linearized models Ai. This procedure would
produced reduced models that match one single moment with
respect to each geometrical parameter. Hence we will denote
this procedure as a simple “MOR moment matching in V”.

However, as an alternative, one could also choose to use
a multivariable Taylor series expansion about the Laplace
variable s and each of the geometrical parameters s̃ j, and
assemble the columns of V using the PMOR expression in (8).
This procedure would produce reduced models that match
more than one moment with respect to each set of geometrical
parameter values. Hence we will denote this procedure as a
“PMOR moment matching in V”.

Matching multiple moments about multiple expansion
points in the parameter space, for every linearized model
may quickly increase the number of columns q of the pro-
jection matrix V , hence possibly affecting the reduced model
simulation cost. In order to contain the final order q of the
reduced model, one can use a Singular Value Decomposition
(SVD) on V , and select its first q most relevant singular
vectors, identified by its largest q singular values. Such SVD
is relatively inexpensive since, although V can be very tall, it
will be in most cases not very wide.

C. Proposed TPWL-PMOR Algorithms

Combining the parameterization options in sections III-A
and III-B gives rise to four different algorithms, shown in
Table I, for Trajectory PieceWise Linear Parameterized Model
Order Reduction (TPWL-PMOR) of a non-linear system.

TABLE I

FOUR OPTIONS FOR PARAMETERIZED REDUCTION OF NON-LINEAR

SYSTEMS.

Training at Training at
Single Point in Multiple Points in

Parameter Space Parameter Space
MOR

Moment Matching in V TPWL Algorithm 2
PMOR

Moment Matching in V Algorithm 1 Algorithm 3

TPWL. One can note that using a simple non-parameterized
“MOR moment matching in V”, while “training at a single
point in parameter space”, is equivalent to applying the already
available non-parameterized TPWL algorithm [21] on the pa-
rameterized system (17). Hence we will denote this algorithm
as “TPWL”, since it is just a very trivial extension of that well
known algorithm.



Algorithm 1 Trained at Single Parameter Point with PMOR
Moment Matching Projection Matrix V

1: i← 1
2: for all training inputs do
3: t← tinitial

4: while t < tfinal do
5: if mini ‖ x̂(t)− x̂i ‖> δ then
6: Linearize at current state x̂i← x̂(t)
7: Generate PMOR vectors (8)
8: Orthogonalize and add them to V
9: Update reduced model using (18)

10: i← i+ 1
11: end if
12: Simulate reduced model to next time step t
13: end while
14: end for
15: Perform SVD on projection matrix V
16: Update reduced model using (18)

Algorithm 2 Trained at Multiple Parameter Values with MOR
Moment Matching Projection Matrix V

1: i← 1
2: for all training points in the parameter space do
3: for all training inputs do
4: t← tinitial

5: while t < tfinal do
6: if mini ‖ x̂(t)− x̂i ‖> δ then
7: Linearize at current state x̂i← x̂(t)
8: Generate MOR vectors (3)
9: Orthogonalize and add them to V

10: Update reduced model using (18)
11: i← i+ 1
12: end if
13: Simulate reduced model to next time step t
14: end while
15: end for
16: end for
17: Perform SVD on projection matrix V
18: Update reduced model using (18)

Algorithm 1. A more interesting case from Table I, is
obtained by combining “PMOR moment matching in V”,
while still “training at a single point in parameter space”.
The resulting complete procedure is summarized in Algo-
rithm 1. Compared to the previous TPWL case, Algorithm 1
is potentially more expensive since many more vectors are
generated (each requiring a system solve) in order to match
several moments with respect to each geometrical parameter.
More precisely, O(kpmq) vectors need to be generated to match
mq moments with respect to each of the p parameters for k
linearized models Ai. An SVD is then performed on V to keep
the final order q of the reduced system small.

Algorithm 3 Trained at Multiple Parameter Values with
PMOR Moment Matching Projection Matrix V

1: i← 1
2: for all training points in the parameter space do
3: for all training inputs do
4: t← tinitial

5: while t < tfinal do
6: if mini ‖ x̂(t)− x̂i ‖> δ then
7: Linearize at current state x̂i← x̂(t)
8: Generate PMOR vectors (8)
9: Orthogonalize and add them to V

10: Update reduced model using (18)
11: i← i+ 1
12: end if
13: Simulate reduced model to next time step t
14: end while
15: end for
16: end for
17: Perform SVD on projection matrix V
18: Update reduced model using (18)

Algorithm 2. Another case of interest in Table I, trains the
system at multiple points in the parameter space. Reduction
is then performed with a non-parameterized MOR moment
matching projection matrix V . The complete procedure is
outlined in Algorithm 2. The final system is now a collection
of linear models corresponding to different sets of parameter
values. Compared to TPWL, the additional cost in Algorithm 2
lies in creating additional training trajectories. More specif-
ically, training the system for p different parameters at r
different values requires generating rp additional trajectories.
Constructing the projection matrix V now requires generating
O(kp) vectors (i.e. O(kp) system solves), although the number
k of linearized models Ai may be O(rp) times larger than in
TPWL or in Algorithm 1.

Algorithm 3. In the forth and final case described in Table I,
the system is trained at multiple points in the parameter
space, and the models are reduced with a PMOR moment
matching projection matrix V . The complete procedure is
summarized in Algorithm 3. Compared to all the previous
Algorithms, a model created by Algorithm 3 can potentially
cover the largest region of the parameter space, however it is
the most expensive to build. Specifically, as in Algorithm 2,
the number of additional training trajectories is O(rp). The
projection matrix requires generating O(pmq rp) vectors (i.e.
system solves), where pmq is the number of vectors created by
matching mq moments with respect to each parameter at each
of the rp sets of parameter values (i.e. training trajectories).



IV. EXAMPLES

Two examples were chosen to test the methods presented in
Sections III-C. Both examples are highly non-linear systems
and depend geometrically on several parameters.

A. Non-Linear Analog Circuit Example Description

The first example considered is a non-linear analog circuit
containing a chain of strongly non-linear diodes, together with
resistors and capacitors as shown in Fig. 1 This example
was first used by the authors in [21], [23] to illustrate the
non-parameterized TPWL-MOR method. By using the same
example here we will try to compare the advantages of our
parameterized algorithms.

Fig. 1. A non-linear analog circuit example [21], [23]

The state of the system contains the nodal voltages,
x(t) = [v1 v2 ... vN ]T , and the input is an ideal current source
u(t) = i(t). The system equations are derived using Kirchoff’s
current law and nodal analysis. An equation for interior node
j would be of the form,

C
dv j

dt
=

1
r

(
v j−1−v j

)− 1
r

(
v j−v j+1

)
+ Id

[
eα(v j−1−v j)−eα(v j−v j+1)

]

leading to a state space system of the form

E
dx
dt

= Gx + D(x)+ bu(t). (19)

Here G is the conductance matrix, E is the capacitance matrix,
D(x) is a vector valued non-linear function containing the
constitutive relations for the diodes, and b = [1 0 ...0]T is the
input vector. All resistors have value r = 1Ω, and all capacitors
are C = 10pF. The diodes have a constitutive relation

id(v) = Id(eαv−1), (20)

where α = 1/vt , and vT is the threshold voltage. Nominal val-
ues for this device were Id = 0.1nA, and α = 40 (corresponding
to vt = 25mV ).

The analog circuit was parameterized in both α and Id . We
approximated the non-linear dependency on such parameters
using

E
dx
dt

= Gx + D(x,α0, Id0)+
∂D(x,α0, Id0)

∂α
(α−α0)+

+
∂D(x,α0, Id0)

∂Id
(Id− Id0)+ bu(t)

The model then produced at each linearization state xi, is
linear both in the parameters and in the state, and has the
same frequency domain form as in (6):

sEx = Gx + Di + JDi · (x− xi)+
+Dαi · (α−α0)+ JDα · (α−α0) · (x− xi)+
+DId i · (Id− Id0)+ JDId · (Id− Id0) · (x− xi)+ bu(t),

where s is the Laplace variable, Di = D(xi,α0, Id0),
JDi is the Jacobian of D(x,α0, Id0) with respect to x,
Dαi = ∂D

∂α (xi,α0, Id0), JDα is the Jacobian of ∂D
∂α with respect

to x, DId i = ∂D
∂Id

(xi,α0, Id0), and JDId is the Jacobian of ∂D
∂Id

with
respect to x.

Training trajectories were created with a sinusoidal input,
u(t) = [cos(ωt)+ 1]/2, with ω = 2πGHz. When matching mo-
ments with respect to frequency, both in MOR and in PMOR
we used s0 = j2πGHz as a Taylor series expansion point.
When matching moments with a simple non-parameterized
MOR projection matrix V , or when training at a single point
in parameter space, we evaluated the system at the nominal
values α = 40, and Id = 0.1nA. When matching moments with
a PMOR procedure, or when training at multiple moments in
parameter space, we used α = 40, 50, and Id = 0.1nA, 0.3nA.

Results from this example are shown in Fig. 4, 5, 6, and
will be illustrated and discussed in details in the next Section.

B. MEM Switch Example

The second example tested is a micromachined switch [21],
[23]. The switch consists of a polysilicon fixed-fixed beam
suspended over a polysilicon pad on a silicon substrate as
shown in Fig. 2. When a voltage is applied between the beam
and the substrate, the electrostatic force generated pulls the
beam down toward the pad. If the force is great enough, the
beam will come into contact with the pad closing the circuit.
The unknowns of interest in this system have been chosen to
be the deflection of the beam, z, and the air pressure between
the beam and substrate, p.

x

Si substrate

2 um of poly Si

0.5 um of poly Si deflection

2.3 um gap

filled with air
0.5 um SiN

z

y

y(t) − center point

u=v(t)

Fig. 2. The MEMS switch is a polysilicon beam fixed at both ends and
suspended over a semiconducting pad and substrate [21], [23].

The system of equations was assembled by discretizing the
coupled 1D Euler’s Beam Equation (21), and the 2D Reynold’s
squeeze film damping equation (22), taken from [21]. A finite
difference scheme was used for the discretization, and since
the length of the beam is much greater than the width, the
vertical deflection was assumed to be uniform across the width
and only pressure was discretized in the width.



ÊI0h3w
∂4z
∂x4 −S0hw

∂2z
∂x2 = Felec +

Z w

0
(p− pa)dy−ρ0hw

∂2z
∂t2 (21)

∇ · [(1+6K)z3 p ∇p
]

= 12µ
∂(pz)

∂t
(22)

Here, Felec =−(ε0wv2)/(wz2) is the electrostatic force across
the plates resulting from the applied voltage v, while u = v2 is
the input to the system. The system output is the height of the
beam center point. The beam is 610µm in length, and has a
width of 40µm. The other constants are permittivity of free
space ε0 = 8.854 ∗ 10−6F/m, permeability µ = 4π ·10−7H/m,
moment of inertia I0 = 1/12, Young’s modulus Ê = 149GPa,
Knudsen number K = 0.064/z0, stress coefficient S0 =−3.7,
and density ρ0 = 2300 kg /m3. By setting the state-space vari-
ables to x1 = z, x2 = ∂z3

∂t , and x3 = p, the following dynamical
system results.

dx1

dt
=

x2

3x2
1

dx2

dt
=

2x2
2

3x3
1

+
3x2

1

ρ0hw

[Z w

0
(x3− pa)dy+S0hw

∂2x1

∂x2 −EIh3w
∂4x1

∂x4

]
− 3ε0

2ρ0h
v2

dx3

dt
= − x2x3

3x3
1

+
1

12µx1
∇

[(
1+6

λ
x1

)
x3

1x3∇x3

]

The beam is fixed at both ends and initially in equilibrium, so
the applied boundary conditions are

z(x,0) = z0, p(x,y,0) = pa, z(0,t) = z(l,t) = z0. (23)

Other constraints enforced are,

∂p(0,y, t)
∂x

=
∂p(l,y,t)

∂x
= 0, p(x,0,t) = p(x,w,t) = pa (24)

The initial height and pressure used were z0 = 2.3µm, and
pa = 1.103 ∗ 105Pa.

For this MEMS switch system, we are interested in produc-
ing a model as a function of the width w. The dependency on
the parameter is easily made linear in this case by introducing
variable β = 1/w, and parameterizing the system with respect
to β instead of w

dx
dt

= A0(x)+ βA1(x)+ bu(t) (25)

Training trajectories were created using a step input,
u(t) = v2 for t > 0, with v = 7. When matching moments
with a simple non-parameterized MOR projection matrix V ,
or when training at a single point in parameter space, we
evaluated the system at the nominal values β = 1/40. When
matching moments with a PMOR moment matching projection
matrix V , or when training at multiple moments in parameter
space, we used β = 1/40,1/44.4.

Results from this example are shown in Fig. 3 and will be
illustrated and discussed in details in the next Section.
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MEM Switch Example −− Algorithm 1 vs Algorithm 3

Full Nonlinear Solution
at β = 1/43.24

Algorithm 3
Algorithm 1

Fig. 3. Comparison of models created by Alg. 1 (trained at β = 1/40) vs. Alg.
3 (trained at β = 1/40,1/44.4). Both used a PMOR projection V matching
moments about β = 1/40. Both models were verified against the full nonlinear
system at β = 1/43.24, and a v=7 volts step input.

C. Results and Discussion

The algorithms from Table I were tested on the non-linear
analog circuit and on the MEM switch examples. Reduced
order models were built, and then simulated for some set
of parameter values which differ from the training values.
Comparisons in this Section are made to determine the effects
of the alternative options described in Sections III-A and III-
B, available when choosing linearization points, and when
constructing projection matrix V , respectively.

Benefits of training at multiple parameter points. In
order to examine the benefits of training at multiple points
in the parameter space as opposed to training at a single point
(as described in Section III-A), reduced order models for the
MEM switch example created by Algorithms 3 and 1 are
compared in Figure 3. Both models used a PMOR expansion
about β = 1/40 for the construction of V . Algorithm 3 was
trained at β = 1/40,1/44.4 creating 50 linearized models,
while Algorithm 1 was trained only at β = 1/40 creating
80 linearized models. Both models were then reduced from
an original size N = 150 to a final q = 40, and simulated
at β = 1/43.24. The figure clearly shows that Algorithm 3
produced a much more accurate model for this value of β
than Algorithm 1, even though it contains 30 fewer linearized
models.

Benefits of PMOR moment matching projection. In order
to examine the benefits of using a PMOR moment matching
projection V as opposed to a simple non-parameterized MOR
moment matching V , (as described in Section III-B), reduced
order models for the analog circuit example created by TPWL
and Algorithm 1 are compared in Fig. 4. The same benefits can
also be evaluated in Fig. 5, which compares models created
by Algorithm 2 and Algorithm 3.
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3 (PMOR projection) Both models were trained at Id = 0.1nA, 0.03nA. Both
models were compared against the full non-linar system at Id = 0.045nA.

Specifically, Figure 4 compares the error for increasing
order of the models, created by TPWL and by Algorithm 1.
Both models were trained at a single point Id = 0.1nA,
α = 40, and contain 107 linearized models. TPWL used a
simple non-parameterized MOR moment matching projection
V constructed at Id = 0.1nA, α = 40. Algorithm 1 used instead
a PMOR moment matching projection V parameterized in
Id with a Taylor series expanded about Id = 0.1nA. The
model errors were then measured against the full non-linear
system at Id = 0.045nA, α = 40. The figure clearly shows that
increasing the order by adding vectors with a simple non-
parameterized MOR projection (TPWL) does not appear to
improve the error. Instead, adding vectors to the projection
V with a PMOR moment matching procedure (Alg. 1) can
produce more accurate models for larger orders.
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Fig. 6. Comparison of models created by TPWL (trained at α = 40) and
Alg. 3 (trained and expanded about α = 40,50). Both models were verified
against the full non-linear system at α = 52. Our proposed Alg. 3 shows in
this example a maximum error of 2.5% compared to the 25% error of TPWL.

Figure 5 compares the errors of two reduced order models
created by Algorithm 2 and Algorithm 3 on the same circuit
example. Both models were trained at multiple points in the
parameter space (Id = 0.1nA, 0.03nA), resulting in 165 linear
models, and were reduced from N = 100 to q = 35. Algo-
rithm 3 used a PMOR moment matching projection matrix V
expanded about Id = 0.1nA, 0.03nA, while Algorithm 2 used a
simple non-parameterized MOR moment matching projection
matrix constructed at Id = 0.1nA. The reduced models were
then simulated and compared to the full non-linear system at
Id = 0.045nA. Although both reduced order models approxi-
mate the original system well, Algorithm 3 clearly shows the
additional advantage of using PMOR projection vs. the non-
parameterized MOR projection in Algorithm 2.

Benefits of combining PMOR projection with training
at multiple parameters values. Models of the analog circuit
example created by TPWL and by Algorithm 3 are compared
in Figure 6 in order to present the benefits of combining
both ideas: PMOR moment matching projection matrix V ,
and training at multiple parameter values. In this case the
circuit example was parameterized in α, while Id was kept
constant at 0.1nA. Algorithm 3 was trained at α = 40,50 and
expanded about α = 40,50 for the PMOR projection matrix.
In TPWL, the model was trained at α = 40 and the non-
parameterized MOR projection matrix was constructed at the
same parameter value α = 40. Both reduced order models were
then simulated and verified against the full non-linear model at
a parameter value of α = 52. Figure 6 shows a 25% maximum
error of TPWL versus a 2.5% maximum error of our proposed
Algorithm 3.



V. CONCLUSION

In this paper we have shown that it is possible to cre-
ate reduced order non-linear systems which can accurately
approximate large non-linear systems over a practical range
of geometrical parameter variations. Several approaches have
been tested on two examples: an analog non-linear circuit and
a MEM switch.

In our tests, we have observed that approximated training
trajectories can produce models with the same accuracy of
the models generated by much more expensive exact training
trajectories.

We have also observed that using multiple approximated
training trajectories corresponding to different values of the
parameters, together with a simple moment matching MOR
projection matrix (Algorithm 2) can produce models more
accurate than using a single exact training trajectory corre-
sponding to a nominal parameter value together with a moment
matching PMOR projection matrix (Algorithm 1).

Results could be in general application specific. However,
combining both ideas by using multiple approximated training
trajectories together with a moment matching PMOR projec-
tion matrix (Algorithm 3), can potentially provide enough
trade off to accommodate the needs of a large range of
applications.
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