
Stochastic Integral Equation Solver for Efficient
Variation-Aware Interconnect Extraction

Tarek El-Moselhy
Computational Prototyping Group

Research Laboratory in Electronics
Massachusetts Institute of Technology

Cambridge, MA 02139
tmoselhy@mit.edu

Luca Daniel
Computational Prototyping Group

Research Laboratory in Electronics
Massachusetts Institute of Technology

Cambridge, MA 02139
luca@mit.edu

ABSTRACT
In this paper we present an efficient algorithm for extracting the
complete statistical distribution of the input impedance of intercon-
nect structures in the presence of a large number of random geo-
metrical variations. The main contribution in this paper isthe de-
velopment of a new algorithm, which combines both Neumann ex-
pansion and Hermite expansion, to accurately and efficiently solve
stochastic linear system of equations. The second contribution is
a new theorem to efficiently obtain the coefficients of the Hermite
expansion while computing only low order integrals. We establish
the accuracy of the proposed algorithm by solving stochastic linear
systems resulting from the discretization of the stochastic volume
integral equation and comparing our results to those obtained from
other techniques available in the literature, such as MonteCarlo and
stochastic finite element analysis. We further prove the computa-
tional efficiency of our algorithm by solving large problemsthat are
not solvable using the current state of the art.

Categories and Subject Descriptors: G.1.9 [Integral Equations];
J.6 [Computer-Aided Engineering]: Computer-aided design(CAD)
General Terms: Algorithms, Theory, Design
Keywords: Stochastic field solvers, Polynomial chaos expansion,
Neumann expansion, surface roughness, variation-aware extraction

1. INTRODUCTION
On-chip and off-chip fabrication processes may typically gen-

erate interconnect structures of irregular geometries. Such irregu-
larities are not deterministic, and are produced by severaldifferent
manufacturing steps such as etching, chemical mechanical polish-
ing (CMP), electro-deposition, and photolithography. Theeffect
of the geometrical uncertainties on the electrical characteristics of
the interconnect structures has been widely ignored duringthe past
decade since it was not significant. However, as a result of technol-
ogy scaling, such manufacturing uncertainties are now beginning to
play a major roles in determining the electrical characteristics of the
interconnect structures. During the last few years severalattempts
have been proposed to develop efficient stochastic solvers [1, 2,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008,June 8–13, 2008, Anaheim, California, USA.
Copyright 2008 ACM 978-1-60558-115-6/08/0006...5.00.

3]. In [1] an algorithm has been proposed to obtain an approxima-
tion of the average and the standard deviation of the capacitance
of off-chip interconnect structures with surface roughness. How-
ever, the technique is computationally very expensiveO(N4), and
required the development of complex sparsification techniques [4].
Despite that effort such technique can only compute the average
and the standard deviation of the electrostatic capacitance, and can-
not be generalized to compute the complete distribution of the ca-
pacitance. In [2] a more general algorithm for extracting the com-
plete distribution of the electrostatic capacitance of on-chip inter-
connects is proposed. However, the algorithm is also computation-
ally very expensive and cannot handle large size problems. In [3]
another computationally expensiveO(N4) algorithm based on [1]
is presented to extract the input impedance of off-chip intercon-
nects with surface roughness under magneto-quasistatic assump-
tion. Similar to [1] the algorithm cannot be generalized to extract
complete distributions.

The inherent difficulties facing the above algorithms is better un-
derstood if we abstract the problem of extracting the input impedance
of interconnect structures with a large number of correlated ran-
dom variations to one of solving a large linear system of the form
A(η)x(η) = b(η), whereη is a large vector of random variables.
Several techniques have been proposed before to address this prob-
lem, such as Monte-Carlo or Monte-Carlo-like methods [5, 2], Neu-
mann expansion [1, 3], and stochastic finite element simulation
(SFE) [6]. However, none of these techniques is practical for large
size problems, typically encountered when the ratio of the physi-
cal geometrical domain bounding the irregularities of the intercon-
nect structure is large compared to the correlation length of the
random processes. In such case the number of independent ran-
dom variables required to simulate the random process (length of
η) becomes very large and all of the above techniques become in-
efficient. Nevertheless, the challenges facing each technique are
different. For Monte Carlo based methods [2] the convergence be-
comes very slow and therefore accurate results require a very large
number of system solves, making the problem computationally not
feasible for any practical interconnect structure. For Neumann ex-
pansion based algorithms [1, 3] calculating the statisticsof the high
order terms becomes computationally very expensive. In addition,
calculating the complete distribution is not possible. ForSFE [6]
the linear system size becomes very large and therefore unsolv-
able. Another computational difficulty, which in general isassoci-
ated with algorithms that rely on expanding the random functions
in terms of orthogonal basis functions, such as [5, 2, 6], is the need
to compute integrals of very large dimension. Such requirement
is limiting the usability of such algorithms in electrical extraction
problems of large size.

In this paper we present a methodology that combines the strengths
of the above approaches and avoids their weaknesses to efficiently



extract the complete statistical distribution of the inputimpedance
of interconnect structures with geometrical variations. For the sake
of clarity we will restrict our discussion to volume integral equa-
tions with surface roughness, which is the most difficult large prob-
lem, since the interconnect surface typically spans several hundred
or thousand correlation lengths. However, our algorithm can also
be applied to simulating on-chip geometrical variations.

In the next section we will summarize the mathematical descrip-
tion of the problem. In section 3 we develop a new theorem to
efficiently compute the coefficients of the expansion of a random
function in terms of a set of orthogonal polynomials withoutcom-
puting any high dimensional integrals. In section 4 we present a
new simulation method in which the new expansion technique is
integrated with the Neumann expansion to compute the complete
stochastic characteristics of the unknown vector. Finally, in sec-
tion 5 we establish the accuracy and computational efficiency of
such stochastic simulation methodology.

2. BACKGROUND

2.1 Formulation
We use the standard mixed potential integral equation to describe

the relation between the volumetric current densityJ(r) inside the
conductor, the surface charge distributionρ(r), and the electric po-
tentialφ(r) [7]:

J(r)
σc

+ jω
µ

4π

∫

V
G(r, r ′)J(r ′)dr′ = −∇φ(r) (1)

1
4πε

∫

S
G(r, r ′)ρ(r ′)dr′ = φ(r) (2)

∇ ·J(r) = 0 (3)

n̂ ·J(r) = jωρ(r), (4)

whereG(r, r ′) is the free space Green’s function,V, Sare the con-
ductors volume and rough surface area, respectively,σc is the con-
ductor conductivity,ε is the complex dielectric constant including
dielectric losses,µ is the magnetic permeability,ω is the angular
frequency in radians.

2.2 Rough Surface Model
The volume of the conductorsV is bounded by rough surfaces

S that we assume described by a stochastic Gaussian process and a
Gaussian correlation function:

P(H(R)) =
exp(−0.5HT Σ(R)−1H)

(2π)0.5n
√

|Σ(R)| , Σ(R)i j = σ2exp
(

− ||r i−r j ||2
L2

c

)

whereH(R)∈R
n×1 is a vector of surface heights at locations given

by vectorR∈ R
n×1, i.e. H(r1) is the surface height at locationr1.

Σ ∈ R
n×n is the correlation matrix.

2.3 Linear System Assembly
A standard procedure for solving (1) involves discretizingthe

current densityJ(r) and the charge densityρ(r) using some basis
functions. Then a Galerkin technique is used to obtain the resis-
tance, partial inductance, and potential matricesR, L and P [7].
The current conservation constraint in (3) can be imposed using
mesh analysis to obtain a linear system:

MZMT Im = ∆Φm, (5)

whereM is the mesh incidence matrix,∆Φm is the known RHS
vector of branch voltages,Im is the unknown mesh current, andZ
is the known branch impedance matrix:

Z =

[

R+ jωL 0
0 P

jω

]

,

The matrix elements of the matrixZ are given by:

Rii =
∫

Vi

ρ
AiAi

d3r, Li j =
∫

Vj

∫

Vi

G(r,r ′)
AiA j

d3r ′d3r, Pi j =
∫

Sj

∫

Si

G(r,r ′)
SiSj

d2r ′d2r,

whereVi , Ai are the volume and cross sectional area of filamenti,
respectively, andSi is the panel surface area of paneli.

The most important observation at this point is that the integra-
tion domain is described by the rough surfaces and that the integrals
are therefore stochastic functions of the random process. To em-
phasize this dependence we will re-write (5) asM Z(H) MT Im(H) =
∆Φm, whereH is the random process describing the rough surface.
Note that we have dropped theR dependence to simplify the no-
tation. Consequently, we have formed the stochastic linearsystem
equivalent to that of the abstract problemA(η)x(η) = b. The objec-
tive is to obtain the complete distribution of the mesh current vector
Im(H).

2.4 Solving the Stochastic Linear System (5)
In this section we summarize the three standard techniques pro-

posed in literature for solving the stochastic linear system (5)

2.4.1 Monte Carlo
The system (5) is solvedNMC times for different realization of

the random processH to obtain the set of solutions{Im(H1), Im(H2),
· · · , Im(HNMC)}. The complete statistical distribution ofIm(H) is
then constructed from the obtained solution set. However, the con-
vergence is very slowO( 1√

NMC
) and therefore requires a very large

number of system solves.

2.4.2 Neumann Expansion
The known stochastic system matrixZm(H) = MZ(H)MT is first

written asZm(H) = Zm0+∆Zm(H), a sum of a deterministic expec-
tation matrixZm0 = E(Zm(H)) and a stochastic matrix∆Zm(H).
The next step is to substitute the two terms expression forZm(H)
in the linear system (5) and expand the inverse using the Neumann
expansion to obtain:

Im(H) = Im0−Z−1
m0∆Zm(H)Im0

+ Z−1
m0∆Zm(H)Z−1

m0∆Zm(H)Im0 + . . . (6)

where Im0 = Z−1
m0∆Φm. All of the statistics of the unknown cur-

rent vectorIm(H) can then be obtained from (6). The fundamental
difficulty in this algorithm is that calculating the statistics (or even
just the average) of high order terms is computationally very ex-
pensive [1, 3].

2.4.3 Stochastic Finite Element Simulation
The stochastic finite element simulation [6] can be used to obtain

the complete distribution of the mesh current in (5). The process
can be summarized in three steps. First, a Karhunen Loeve ex-
pansion is used to expand the random process as a summation of
independent random variables [8],

H(r) =
M

∑
m=0

αmφm(r)ηm,

where in our particular problemH(r) is the rough surface height
at the locationr, andηm is the set of independent Gaussian ran-
dom variables. Symbolsαm, φ(r) are the square roots of the eigen-
values, and the eigenfunctions of the correlation kernelC(r, r ′) =

σ2 exp(− ||r−r ′||2
L2

c
), respectively. The elements of the matrixZ(H)

in (5) are then expressed as a function of the expanded randompro-



cess:

Zi j (H) = Zi j

(

M

∑
m=0

αmφm(r)ηm

)

. (7)

As a second step, a polynomial chaos expansion is used to ex-
pand (7) as a series of orthogonal basis polynomialsΨk(η). A
complete Askey scheme has been developed [9] to choose the set
of orthogonal polynomials in such a way to be compatible withthe
set of independent random variablesηm. For the particular case
of Gaussian random variables the set of Hermite polynomialsis
the standard choice. The multivariate polynomial expansion step
is computationally very expensive and involves integrals of large
dimensions.

Zi j (H) =
K

∑
k=0

Zk
i j Ψk(η)

Zk
i j = < Zi j (H),Ψk(η) > (8)

=
∫

η

Zi j

(

M

∑
m=0

αmφm(r)ηm

)

Ψk(η)
exp(−ηT η

2 )

(2π)
M
2

dMη.

Despite the fact that the exponential function in (8) is separable, the
fact thatZi j (H) in (7) is dependent on all the random variables used
to expand the random process results in an integral (8) of dimension
M independent ofk. Such large dimensional integrals are computa-
tionally very challenging to evaluate. Several techniqueshave been
proposed to avoid this inherent complexity such as Monte Carlo
integration (not to be confused with Monte Carlo simulation) and
sparse grid integrations [10]. Nevertheless, the problem of calculat-
ing a large number of such integrals in a computationally efficient
framework remains one of the bottlenecks of stochastic finite ele-
ment simulation. In section 3 we propose a new theorem to over-
come this inherent difficulty.

In the third and final step the expansion of the individual ma-
trix element are assembled together to yield an expansion for the
mesh impedance matrixMZ(H)MT = ∑K

i=0 ZiΨi(η) and the un-
known mesh current is written as an expansion of the same orthog-
onal polynomialsIm(H) = ∑K

j=0 I jΨ j (η). Both are then substituted
in (5) and a Galerkin testing, i.e. projection on the space ofthe same
set of orthogonal polynomials, is applied to obtain a linearsystem
of equations.

K

∑
i=0

K

∑
j=0

〈

Ψi(η)Ψ j (η),Ψ`(η)
〉

ZiI j = 〈∆Φm,Ψ`(η)〉

∀` ∈ {1, · · · ,K} (9)

Equation (9) is equivalent to a linear system of the formAx = b,
where

A =
K

∑
i=0





















γi00 γi10 · · · γiK0
γi01 γi11 · · · γiK1

. . .
γi0K γi1K · · · γiKK











⊗Zi











x =
(

I0 I1 · · · IK
)T

, b =
(

∆Φm 0 · · · 0
)T

whereγi j ` =
〈

Ψi(η)Ψ j (η),Ψ`(η)
〉

. The size of this linear system
is O(NK), i.e. the original system sizeN timesK the total number
of multivariate orthogonal polynomials used to expand the random
function. K is actually a function of bothP, the order of the or-
thogonal polynomial expansion, andM, the number of dominant

eigenfunctions obtained from the Karhunen Loeve expansion[11]:

K = 1+
P

∑
i=1

(

i +M−1
i

)

. (10)

There are two main computational challenges involved with the
standard stochastic finite element simulation technique when the
number of independent random variablesM, required to represent
the random process, is larger than a few variables:

1. The impractical large dimension of the integral in (8).

2. The impractical large size of the linear system in (9).

In section 3 we solve the first problem. In section 4 we presenta
new methodology that overcomes the second challenge.

3. MODIFIED HERMITE EXPANSION
To overcome the main computational difficulty associated with

applying polynomial chaos expansion, (namely the need to calcu-
late integrals of very high dimensionality), we present a new theo-
rem summarizing a novel technique to implement the polynomial
chaos expansion.

THEOREM 1. Let H∈ R
D×1 be a Gaussian correlated random

vector, η ∈ R
M×1 a vector of M Gaussian independent random

variables, andΨ(η) the set of orthogonal Hermite polynomials.
Assume that the correlation matrix between H andη is known, then
the modified Hermite expansion of the function f(H) : R

D×1 7→ R

in terms ofΨ(η) is:

f (H) =
K

∑
i=0

< f (H),Ψi(ζi) > Ψi(ζi) (11)

where

< f (H),Ψi(ζi) > =
∫∫

f (H)Ψi(ζi)
exp
(

−0.5VTC−1
V V

)

(2π)
D+i

2
√

|CV |
dHdζi

V =

(

H
ζi

)

, CV =

(

CH < H,ζT
i >

< ζi ,HT > Cζi

)

whereζi ∈ R
i×1 is an at most i element subvector ofη on which

the ith order Hermite polynomialΨi(ζi) = Ψi(η) depends, CH is
the correlation matrix associated with the random vector H,Cζi

is
the diagonal correlation matrix associated withζi and |CV | is the
determinant of the correlation matrix CV .

PROOF. The main step of the proof is to demonstrate that using

the weighting functionP(H,η) =
exp(−0.5VTC−1

V V)

(2π)
D+M

2
√

|CV |
the orthogonal-

ity of the Hermite polynomials is still preserved. In this step we
rely on the interpretation of the weighting function as a probabil-
ity density function and on the fact that the integral of the multi-
variate probability density function with respect to any subset of
its random variables is the probability density function for the re-
maining subset of random variables. The second step is to show
that if f (H) = ∑i fiΨi(ζi) then fi =< f (H),Ψi(ζi) >, i.e. satis-
fies (11). This is done by multiplying the expansion forf (H) by
Ψi(ζi) and making use of the orthogonality of the Hermite poly-
nomials to compute the required inner product. We also make use
of the probability density function interpretation of the weighting
function and the fact that by definitionΨi(η) = Ψi(ζi). An alter-
native proof is to show that (11) is equivalent to (8), which can be
established via a variable transformation. The details of both proofs
are omitted due to the lack of space.



An alternative proof is to show that (11) is equivalent to (8),
which can be established via a variable transformation. Thedetails
of the alternative proofs are omitted due to the lack of space.

COROLLARY 1. The maximum dimension of the integrals re-
quired to obtain the modified Hermite expansion is D+P, where D
is the length of vector H and P is the order of the Hermite polyno-
mial. In other words, the dimension of the integral is independent of
the number of orthogonal random variables M used for expanding
the random process.

PROOF. The proof follows directly from the application of The-
orem 1, however, it remains to be shown that the correlation matrix
〈

H,ζT
p
〉

is known. The calculation of this correlation matrix de-
pends on the particular technique used to generate the set ofbasis
random variablesη, however, for any KL-based expansion we can
write componenti of vectorH asHi = ∑M

m=0 αmφm(r i)ηm. Conse-
quently, the matrix element

〈

H,ζT
p
〉

(i, j):

〈

H,ζT
p

〉

(i, j) =
M

∑
m=0

αmφm(r i)
〈

ηm,ζp( j)
〉

= αζp( j)φζp( j)(r i)σζp( j), (12)

whereζp( j) is the j th element of the random vectorζp andαζp( j),
φζp( j)(r) andσζp( j) are the eigenvalue, eigenfunction and variance
associated with the random variableζp( j), respectively. The exis-
tence of these quantities is a direct consequence of the factthatζp
is a subvector ofη.

The main computational advantage of using Theorem 1 to com-
pute the coefficients of the Hermite chaos expansion stems from
the fact thatM, the total length of the vectorη, is typically 100,
whereasD, the length of the height vector, is 2 (since the height
vector contains only two components, one for the source filament
and one for the observation filament), andP, the order of the expan-
sion, is typically 2 (since a second order expansion is sufficient for
most applications). Consequently, using Theorem 1 the dimension
of the integral for a second order polynomial expansion is reduced
from 100 to 4. In terms of required computation time Theorem 1
accelerates the evaluation of the coefficients as compared to the
standard tensor rule of a Q-point quadrature scheme by a factor of
Q96 (for Q=8 this corresponds to 5× 1086), and as compared to
Monte Carlo integration or sparse grid integrations by a factor of
(2M)Q

Q!Q4 (for M=100, Q=8 this corresponds to 1.5×1010).

4. COMBINED NEUMANN - HERMITE
CHAOS EXPANSION

Despite resolving the computational difficulties associated with
finding the coefficients of the expansion using Theorem 1, thestochas-
tic finite element simulation still requires solving a linear system
which isK times larger than the original system, where the number
of orthogonal polynomialsK can be as large as 5000 for a typical
large application. The complexity of solving the system will be K2

more expensive for an iterative solver andK3 more expensive for
a direct solver. Such an increase in complexity will result in an
inefficient algorithm, possibly even worse that Monte Carlosimu-
lation. On the other hand, we know that the complexity with Neu-
mann expansion is not associated with the system size but rather
with calculating the statistics of the high order terms of the ex-
pansion. We therefore propose to use Neumann expansion (6) to
remove the complexity of solving a large linear system and use the
modified polynomial chaos expansion to simplify the calculation

of the statistics of the RHS vector. This is implemented by first ex-
panding∆Z(H) in terms of Hermite polynomials using Theorem 1
∆Z(H) = ∑K

i=1 ZiΨi(η) and then substituting this expansion in (6):

Im(η) = Z−1
m0∆Φm−Z−1

m0

(

K

∑
i=1

ZiΨi(η)

)

Z−1
m0∆Φm

+ Z−1
m0

(

K

∑
i=1

ZiΨi(η)

)

Z−1
m0

(

K

∑
i=1

ZiΨi(η)

)

Z−1
m0∆Φm+ . . .(13)

From (13) we observe that the complexity is transformed fromsolv-
ing a large system into doing a large number of matrix multiplica-
tions. This characteristic is very appreciable in such a formulation
also due to the inherent parallelizability of such an algorithm. Be-
fore proceeding with the time and memory complexity analysis it is
worth mentioning that in general we are not interested in theentire
current vectorIm(η), but rather just in the current at the ports. For
a single port excitation (13) is simplified to:

io(η) = im0−∑
i

IT
m0QiΨi(η)+∑

i
∑

j
QT

i Z−1
m0Q jΨi(η)Ψ j (η), (14)

whereIm0 = Z−1
m0∆Φm, im0 = ∆ΦT

mIm0 andQi = Zi Im0. Note that
we have used the symmetry of the projection coefficient matrices
Zi = ZT

i in deriving the last expression.

4.1 Complexity analysis

4.1.1 Memory
Theoretically, we would need to store the LU factors of matrix

Zm0 in addition to all the matricesZi . This means that the to-
tal memory requirement should beO(N2)+ O(KN2). However, a
careful investigation of (14) reveals that the only way the matrices
Zi appear in such equation is implicitly as a matrix vector product
Qi . Furthermore, theK vectorsQi can be stored offline and be indi-
vidually recalled during the system assembly without affecting the
performance. Hence, only theO(N2) part is required to reside in
memory at a certain point of time. In other words, our algorithm
has the same memory complexityO(N2) as Monte Carlo based ap-
proaches and is very memory efficient if compared to theO(N4)
complexity of the standard Neumann expansion, or theO(K2N2)
complexity of the standard stochastic finite element simulation.

4.1.2 Time
We will base our analysis on the fact that the mesh impedance

matrix is symmetric and the fact that we employ a direct matrix
solver since this will enable us to recycle the LU factorization. We
first factor the nominal system for a complexity ofO(N3). We
then computeK unique matrix-vector productsO(KN2), K vector-
vector productsO(KN), K system solves (recycling the LU factor-
ization)O(KN2) andK2 vector-vector productsO(NK2). The final
complexity is thereforeO(N3) + O(N2K) + O(NK2) = O(N3) +
O(NK2). This means that our algorithm is very time efficient if
compared to theO(N4) complexity of the standard Neumann ex-
pansion, theO(N3K3) complexity of the standard stochastic finite
element simulation, or theO(NMCN3) complexity of the Monte-
Carlo like algorithms, whereNMC is the number of independent
simulations.

4.1.3 Parallelizability
One of the main advantages of the proposed algorithm is its in-

herent parallelizability as is evident from (14). Since there is practi-
cally no communication required between the different processors,
the computational time required to do the different matrix-vector
and vector-vector products can be reduced byNP, the number of
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Figure 1: Comparison between the probability density function
of the microstrip line obtained from our new algorithm and the
reference Monte Carlo simulation.

available processors. Consequently, the final time complexity is
O(N3)+O(N K2

NP
).

5. RESULTS

5.1 Accuracy Validation
In the first example we verify the accuracy of the proposed method

using a single 50µmwide, 0.5mm long and 15µm thick microstrip
line. The upper surface of the line is highly irregular and isde-
scribed with a Gaussian random process of standard deviation σ =
3µmand correlation lengthLc = 50µm. We use a total of 200 un-
knowns to model the current density inside of the microstripline,
and a total of 19 independent random variables to model the rough
surface. The number of orthogonal polynomials for a second order
(P = 2), 19-variables (M = 19) Hermite expansion of the system
matrix is computed from (10), and is equal toK = 210. This struc-
ture is simple enough to be accurately discretized and simulated
using 10,000 Monte Carlo simulations, and to be simulated using
the stochastic finite element method (SFE), provided we use Theo-
rem 1 to compute the coefficients of the expansion. A comparison
of the complete statistical distributions of the DC input resistance of
the microstrip line as obtained from our full new algorithm,Monte
Carlo analysis, and the SFE method with Theorem 1 is demon-
strated in Figure 1. Specifically, by full new algorithm we mean
using Theorem 1 to obtain the coefficients of the Hermite expan-
sion and the combined Neumann-Hermite algorithm in section4 to
solve the linear system. We observe very good agreement between
all techniques. The mean of all three distributions is identically
equal to 0.0122. The standard deviation for both Monte Carlo and
SFE is identically equal to 0.001, while our technique computes the
standard deviation 0.00097, which corresponds to a 3% error.

We further simulate a similar but longer (1mm) microstrip line,
with roughness described by correlation lengthLc = 25µm. The
total number of random variables required to model such a rough
surface is 96. We fail to simulate such a structure using the SFE,
since the required matrix size is 1.9× 106, which cannot be effi-
ciently stored using current state of the art. However, using our
technique we can efficiently compute the input resistance ofsuch
an interconnect structure. The average input resistance obtained
from our algorithm is 0.0243Ω as compared to 0.0241Ω obtained
from 10000 Monte Carlo simulations. The standard deviationis
8.64×10−4 as compared to 8.73×10−4, demonstrating less than
1% error. Such results clearly indicate the accuracy of our pro-
posed technique. The computational requirement of both examples
are summarized in the first two rows of Table 1.

Table 1: Time and Memory Performance Comparison of
Monte Carlo, Stochastic Finite Element (SFE) and the New Al-
gorithm

Example Technique & Properties for Memory Time
5% accuracy

Short Monte Carlo, 10,000 0.32 MB 24 min.
Microstrip SFE, M=19 58 MB (12 days)

Line SFE+Theorem 1, M=19 58 MB 120 min.
DC only New Algorithm, M=19 0.32 MB 1.8 min.

Long Monte Carlo, 10,000 1.2 MB 2.4 hours
Microstrip SFE, M=96 (72 GB) -

Line New Algorithm, M=96 1.2 MB 0.5 hours
Transm. Monte Carlo, 10,000 10 MB 16 hours

Line SFE, M=105 (300 TB) -
10 freq. New Algorithm, M=105 10 MB 7 hours

Two-trun Monte Carlo, 10,000 121 MB (150 hours)+

Inductor SFE, M=400 (800 PB) -
10 freq. New Algorithm, M=400 121 MB 8 hours+

5.2 Computational Complexity Comparison
In this subsection we compare the computational performance of

Monte Carlo based algorithms, SFE simulation and our new algo-
rithm on four different interconnect structures, namely, amicrostrip
line (200 unknowns,Lc = 50µm), a microstrip line (400 unknowns,
Lc = 25µm), a two-wire transmission line (800 unknowns,Lc =
50µm) and a 2 turn square inductor (2750 unknowns,Lc = 50µm).

The comparison results (memory and time requirements) are sum-
marized in Table 1. We do not include the Neumann expansion in
our comparison since it does not generate complete distributions
and is computationally much more inferior even for computing
only the average. All the simulations have been run in MATLAB
on Intel Xeon, CPU 3.4GHz, 4-processor, 4GB RAM. Parameter
M in Table 1 indicates the number of independent random vari-
ables used to expand the random process, and it corresponds to the
dimension of the integrals required for calculating the coefficients
of the Hermite expansion when not employing our new Theorem 1.
However, using Theorem 1 the dimension of the integral is 4 inde-
pendent of the number of random variables M. The number beside
the Monte Carlo simulations indicates the total number of simu-
lation runs. The notion 10 freq. indicates results of a 10 point
frequency sweep. The frequency band of interest is from 106 to
109 Hz. Any number in brackets indicates estimated values. The+

superscript indicates running the simulation on the 4 coresin par-
allel. It can be immediately inferred from the table that thenew
proposed algorithm is the only possible alternative if the problem
size is large.

5.3 Effect of Surface Roughness on High Fre-
quency Input Impedance

In this example we show how the proposed technique can be
used to simulate surface roughness effects on the current distribu-
tion inside of a two turn inductor. The inductor has a side length
of 1000µm and cross sectional dimensions of 60µm×15µm. The
frequency band of interest is from 1MHz to 1GHz. The inductor
is discretized using 2,750 non-uniform segments such that the skin
depth at the highest frequency

√

2/ωµσ = 2µm is accurately cap-
tured. We will compare the results obtained from different Gaus-
sian rough surface realizations, i.e. different standard deviationsσ
and different correlation lengthsLc: (σ = 3µm,Lc = 50µm), (σ =
3µm,Lc = 5µm) and against a completely smooth and determinis-
tic surface. We have observed that the imaginary part of the input
impedance divided byjω (inductance) typically decreases by less
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Figure 2: Probability density function of the real part of the
input impedance at 1GHz for correlation length Lc = 5µm. The
resistance of the non-rough surface structure is 0.22Ω, which is
9.8% smaller than the mean of the obtained distribution.
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Figure 3: Probability density function of the real part of the in-
put impedance at 1GHz for correlation length Lc = 50µm. The
resistance of the non-rough surface is 11.3% smaller than the
mean of the obtained distribution.

than 5% as a consequence of the surface roughness. On the other
hand, the real part of the input impedance (resistance) increases by
about 10% to 20% as a consequence of the roughness. In addition,
we have observed that the standard deviation of the impedance dis-
tribution is proportional to the correlation length.

In Figure 2 and Figure 3 the complete probability density func-
tions of the real part of the input impedance at 1GHz are shown
for both smallLc = 5µm and largeLc = 50µm correlation length,
respectively. We observe that the standard deviation of thereal part
of the input impedance is increased by a factor of 5 when the cor-
relation length increases fromLc = 5µmto Lc = 50µmfor the same
standard deviation. The fact that the standard deviation decreases
with the decrease of correlation length (increase of surface random-
ness) is a consequence of the cancellation effects resulting from the
distributed nature of the surface.

6. CONCLUSION
In this paper we have presented a new methodology to solve

large stochastic linear systems. We have developed a new theo-
rem to compute the coefficients of the multivariate Hermite ex-
pansion using only low dimensional integrals, resulting ina time
complexity that is independent of the number of variables and only
dependent on the order of the expansion. Practically speaking, for
a typical large multivariate expansion the new theorem provides an
improvement in the computation time by 86 orders of magnitude

as compared to the standard tensor product rule or by 10 orders of
magnitude as compared to the state of the art (Monte Carlo integra-
tion or sparse grid integration). Such a theorem is not only useful
for our methodology but it can also be applied to any algorithm that
relies on expanding a random process, such as the stochasticfinite
element method. We have also provided a new stochastic simula-
tion technique by merging both the Neumann expansion and the
polynomial chaos expansion. The main advantages of the result-
ing technique are the compact size of the system at any time (un-
like SFE) and the ease of calculating the statistics of the high order
terms (unlike Neumann expansion). In addition, the new simulation
algorithm is parallelizable and can therefore take advantage of the
state of the art in processor design. We have demonstrated the com-
putational efficiency of the new methodology by solving problems
that were completely untractable before. We have demonstrated
that our algorithm can be used to compute the complete probability
density function of the input impedance of very large problems (up
to 400 random variables) in less then 8 hours using Matlab on a
standard 4-core machine and using only 121MB RAM.
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