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ABSTRACT

In this paper we present an efficient algorithm for extragtine
complete statistical distribution of the input impedantmtercon-

nect structures in the presence of a large number of randaem ge

metrical variations. The main contribution in this papethie de-

velopment of a new algorithm, which combines both Neumann ex

pansion and Hermite expansion, to accurately and effigisotve
stochastic linear system of equations. The second cotitiibis
a new theorem to efficiently obtain the coefficients of therhits
expansion while computing only low order integrals. We etish
the accuracy of the proposed algorithm by solving stocbéistear
systems resulting from the discretization of the stochasilume
integral equation and comparing our results to those oédairom
other techniques available in the literature, such as MGaté and
stochastic finite element analysis. We further prove themdat
tional efficiency of our algorithm by solving large problethat are
not solvable using the current state of the art.

Categories and Subject Descriptors: G.1.9 [Integral Equations];
J.6 [Computer-Aided Engineering]: Computer-aided de@iykD)
General Terms: Algorithms, Theory, Design

Keywords: Stochastic field solvers, Polynomial chaos expansion,

Neumann expansion, surface roughness, variation-awtaeecggn

1. INTRODUCTION

On-chip and off-chip fabrication processes may typicakng
erate interconnect structures of irregular geometriesh Suegu-
larities are not deterministic, and are produced by sewdifarent
manufacturing steps such as etching, chemical mecharodiahp
ing (CMP), electro-deposition, and photolithography. Hifect
of the geometrical uncertainties on the electrical charéstics of
the interconnect structures has been widely ignored diniegast
decade since it was not significant. However, as a resulcbohta-
ogy scaling, such manufacturing uncertainties are nownnégg to
play a major roles in determining the electrical charast&s of the
interconnect structures. During the last few years sewataimpts
have been proposed to develop efficient stochastic sohterg, [
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3]. In [1] an algorithm has been proposed to obtain an appraxi
tion of the average and the standard deviation of the cagrast
of off-chip interconnect structures with surface rouglsnesiow-
ever, the technique is computationally very expen€ydl*), and
required the development of complex sparsification tearesd4].
Despite that effort such technique can only compute theageer
and the standard deviation of the electrostatic capa@tard can-
not be generalized to compute the complete distributiomefca-
pacitance. In [2] a more general algorithm for extracting ¢om-
plete distribution of the electrostatic capacitance ofchip inter-
connects is proposed. However, the algorithm is also coatipat
ally very expensive and cannot handle large size problem§3]I
another computationally expensi@{N“) algorithm based on [1]
is presented to extract the input impedance of off-chipraue-
nects with surface roughness under magneto-quasistaticras
tion. Similar to [1] the algorithm cannot be generalized xtract
complete distributions.

The inherent difficulties facing the above algorithms igdyatin-
derstood if we abstract the problem of extracting the inpytedance
of interconnect structures with a large number of correlatn-
dom variations to one of solving a large linear system of tirenf
A()x(n) = b(n), wheren is a large vector of random variables.
Several techniques have been proposed before to addregsdhi
lem, such as Monte-Carlo or Monte-Carlo-like methods [SN&u-
mann expansion [1, 3], and stochastic finite element siioulat
(SFE) [6]. However, none of these techniques is practicdkige
size problems, typically encountered when the ratio of tgsp
cal geometrical domain bounding the irregularities of thtericon-
nect structure is large compared to the correlation len@tthe

random processes. In such case the number of independent ran

dom variables required to simulate the random processttiesfg
n) becomes very large and all of the above techniques become in
efficient. Nevertheless, the challenges facing each tgaenare
different. For Monte Carlo based methods [2] the convergdoee
comes very slow and therefore accurate results requireydamgye
number of system solves, making the problem computatipnafi
feasible for any practical interconnect structure. ForiNaon ex-
pansion based algorithms [1, 3] calculating the statisti¢be high
order terms becomes computationally very expensive. litiadd
calculating the complete distribution is not possible. B&iE [6]
the linear system size becomes very large and therefordwinso
able. Another computational difficulty, which in generab&soci-
ated with algorithms that rely on expanding the random fionst
in terms of orthogonal basis functions, such as [5, 2, 6hesteed
to compute integrals of very large dimension. Such requérm
is limiting the usability of such algorithms in electricatteaction
problems of large size.

In this paper we present a methodology that combines thegihe
of the above approaches and avoids their weaknesses tewetfjci



extract the complete statistical distribution of the inpupedance
of interconnect structures with geometrical variations:. the sake
of clarity we will restrict our discussion to volume integegua-
tions with surface roughness, which is the most difficulyésprob-
lem, since the interconnect surface typically spans skheraired
or thousand correlation lengths. However, our algorithm @iso
be applied to simulating on-chip geometrical variations.

In the next section we will summarize the mathematical dpscr
tion of the problem. In section 3 we develop a new theorem to
efficiently compute the coefficients of the expansion of alcan
function in terms of a set of orthogonal polynomials withoam-
puting any high dimensional integrals. In section 4 we prese
new simulation method in which the new expansion technigue i
integrated with the Neumann expansion to compute the cdmple
stochastic characteristics of the unknown vector. Finatlysec-
tion 5 we establish the accuracy and computational effigiexic
such stochastic simulation methodology.

2. BACKGROUND

2.1 Formulation

We use the standard mixed potential integral equation terites
the relation between the volumetric current dendity) inside the
conductor, the surface charge distributfa(n), and the electric po-
tentiaI(p(r) [7 :

—+J /Grr - Opr) (@)
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A-J(r) = jop(r), 4

whereG(r,r’) is the free space Green'’s function, Sare the con-
ductors volume and rough surface area, respectigglis the con-
ductor conductivityg is the complex dielectric constant including
dielectric lossesy is the magnetic permeability is the angular
frequency in radians.

2.2 Rough Surface Model

The volume of the conductohs is bounded by rough surfaces
Sthat we assume described by a stochastic Gaussian prockas an
Gaussian correlation function:

exp(—0.5HT5(R)*H)

(20°/E(R)

whereH (R) € R™1 is a vector of surface heights at locations given
by vectorR € R™1, i.e. H(ry) is the surface height at location.
% € R™"is the correlation matrix.

2.3 Linear System Assembly

A standard procedure for solving (1) involves discretizthg
current densityJ(r) and the charge density(r) using some basis
functions. Then a Galerkin technique is used to obtain tkes+e
tance, partial inductance, and potential matrised. and P [7].
The current conservation constraint in (3) can be imposétgus
mesh analysis to obtain a linear system:

MZM I A, (5)

whereM is the mesh incidence matrid®y, is the known RHS
vector of branch voltages$;, is the unknown mesh current, add
is the known branch impedance matrix:

R+jwoL O
S|

Jw

P(H(R)) = s Z(R)” = O'Zexp<7w>

The matrix elements of the matrkare given by:

Ri=[axd®, L= [S&ldrd, R =[S d?rdr,
= AR ij ff d Sfjsf*a*a—

whereV;, A are the volume and cross sectional area of filament
respectively, an& is the panel surface area of panel

The most important observation at this point is that thegrae
tion domain is described by the rough surfaces and that tegrials
are therefore stochastic functions of the random proceesent-
phasize this dependence we will re-write (SM&(H) MT Iy(H) =
Adp, whereH is the random process describing the rough surface.
Note that we have dropped tfedependence to simplify the no-
tation. Consequently, we have formed the stochastic liggstem
equivalent to that of the abstract probléin)x(n) = b. The objec-
tive is to obtain the complete distribution of the mesh coirkector
Im(H).

2.4 Solving the Stochastic Linear System (5)

In this section we summarize the three standard technigques p
posed in literature for solving the stochastic linear sys{g)

2.4.1 Monte Carlo

The system (5) is solvelyc times for different realization of
the random proceds to obtain the set of solutiodm(H1), Im(Hz2),

, Im(Hnye)}. The complete statistical distribution &fi(H) is
then constructed from the obtained solution set. Howekercon-
vergence is very slovd( ﬁ) and therefore requires a very large

number of system solves.

2.4.2 Neumann Expansion

The known stochastic system matfix(H) = MZ(H)MT is first
written asZm(H) = Zmo +AZm(H), a sum of a deterministic expec-
tation matrixZyp = E(Zm(H)) and a stochastic matri&Zmn(H).
The next step is to substitute the two terms expressioZfgH )
in the linear system (5) and expand the inverse using the l[deom
expansion to obtain:

Im(H)

= o — Zr3AZm(H) o

+ ZmAZm(H)ZmAZm(H)Im+... 6)
wherelng = ZmOAGJm All of the statistics of the unknown cur-
rent vectorly(H) can then be obtained from (6). The fundamental
difficulty in this algorithm is that calculating the statcst (or even
just the average) of high order terms is computationallyy et
pensive [1, 3].

2.4.3 Stochastic Finite Element Simulation

The stochastic finite element simulation [6] can be used tainb
the complete distribution of the mesh current in (5). Thecpes
can be summarized in three steps. First, a Karhunen Loeve ex-
pansion is used to expand the random process as a summation of
independent random variables [8],

M
=Y am@n(r)Nm,
m=0

where in our particular problerd (r) is the rough surface height
at the locatiorr, andnn, is the set of independent Gaussian ran-
dom variables. Symbols,, ¢(r) are the square roots of the eigen-
values, and the eigenfunctions of the correlation ke@{glr’) =

o? exp(f”rT_igHz), respectively. The elements of the matrifH)

in (5) are then expressed as a function of the expanded rapdom



cess:

M
ZjH) = 2z (ZOGm(Pm(r)r]m>- ()

As a second step, a polynomial chaos expansion is used to ex-

pand (7) as a series of orthogonal basis polynormtialén). A

complete Askey scheme has been developed [9] to choosetthe se

of orthogonal polynomials in such a way to be compatible with
set of independent random variablgg. For the particular case
of Gaussian random variables the set of Hermite polynonisals
the standard choice. The multivariate polynomial expansiep
is computationally very expensive and involves integrdlame

dimensions.
Zij(H) = éozik,-q’k(n)
Zk = <Zj(H),W(n) > ®)
- [z ( %_Oam(ﬂn(r)ﬂm> wkm)exp(_?)d“”n-
n m=

Despite the fact that the exponential function in (8) is sapie, the
fact thatz;; (H) in (7) is dependent on all the random variables used
to expand the random process results in an integral (8) cfiul&ion

M independent ok. Such large dimensional integrals are computa-
tionally very challenging to evaluate. Several technicheege been
proposed to avoid this inherent complexity such as MontdoCar
integration (not to be confused with Monte Carlo simulatiand
sparse grid integrations [10]. Nevertheless, the problieraloulat-

ing a large number of such integrals in a computationallycieffit
framework remains one of the bottlenecks of stochasticefielie-
ment simulation. In section 3 we propose a new theorem to- over
come this inherent difficulty.

In the third and final step the expansion of the individual ma-
trix element are assembled together to yield an expansiothé
mesh impedance matridZ(H)MT = 5X ,ZW;(n) and the un-
known mesh current is written as an expansion of the samegprth
onal polynomialdm(H) = Zlf:o I;W;(n). Both are then substituted
in (5) and a Galerkin testing, i.e. projection on the spath®fame
set of orthogonal polynomials, is applied to obtain a liregtem
of equations.

(A®m, Wy (n))

{1,~~~,K} (9)

Equation (9) is equivalent to a linear system of the fokm= b,
where

K K
ijo<wi<n)%(n>,w(n>>zin
=0]=
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x=(1lo It k)", b=(APy 0 0)'
whereyij, = (Wi(n)¥j(n),¥,(n)). The size of this linear system
is O(NK), i.e. the original system sizdé timesK the total number
of multivariate orthogonal polynomials used to expand tredom
function. K is actually a function of bott®, the order of the or-

thogonal polynomial expansion, amd, the number of dominant

eigenfunctions obtained from the Karhunen Loeve expar{dibh

K:1+i§( i“\?*l).

There are two main computational challenges involved with t
standard stochastic finite element simulation techniquenathe
number of independent random variabMsrequired to represent
the random process, is larger than a few variables:

(10)

1. The impractical large dimension of the integral in (8).
2. The impractical large size of the linear system in (9).

In section 3 we solve the first problem. In section 4 we preaent
new methodology that overcomes the second challenge.

3. MODIFIED HERMITE EXPANSION

To overcome the main computational difficulty associatethwi
applying polynomial chaos expansion, (namely the needItuea
late integrals of very high dimensionality), we present @& tigeo-
rem summarizing a novel technique to implement the polyabmi
chaos expansion.

THEOREM 1. Let He RP*! be a Gaussian correlated random
vector,n € RM*1 a vector of M Gaussian independent random
variables, and¥(n) the set of orthogonal Hermite polynomials.
Assume that the correlation matrix between H arid known, then
the modified Hermite expansion of the functigitlj : RP*1 — R
in terms of¥(n) is:

K
f(H)='Z)< f(H),Wi(&) > Wi(Gi) (11)
where
exp(—0.5vTC, v
<fH)L,W(G)> = //f(H)wi(Zi) (gn)%‘ |Cch >dezi
H C <H{ >
V:(Zi)’ CV:(<Zi.,I|jIT> C )

whereZ; € R*! is an at most i element subvectormpfon which
the " order Hermite polynomiaW;(¢;) = Wi(n) depends, § is
the correlation matrix associated with the random vectoiQ,is
the diagonal correlation matrix associated wighand |Cy | is the
determinant of the correlation matrix,C

PrROOF The main step of the proof is to demonstrate that using
exp(—0.5V7C, V)
(22

ity of the Hermite polynomials is still preserved. In thiggtwe
rely on the interpretation of the weighting function as alyadoil-

ity density function and on the fact that the integral of theltin
variate probability density function with respect to anyset of

its random variables is the probability density function tiee re-
maining subset of random variables. The second step is @ sho
that if f(H) = 5 fi%¥i(¢) then fi =< f(H),W; () >, i.e. satis-
fies (11). This is done by multiplying the expansion fdH) by
Wi(¢;) and making use of the orthogonality of the Hermite poly-
nomials to compute the required inner product. We also make u
of the probability density function interpretation of thesighting
function and the fact that by definitid#(n) = W;(¢). An alter-
native proof is to show that (11) is equivalent to (8), whieim te
established via a variable transformation. The detail®ti broofs
are omitted due to the lack of spacd.]

the weighting functiorP(H,n) = the orthogonal-



An alternative proof is to show that (11) is equivalent to, (8)
which can be established via a variable transformation.details
of the alternative proofs are omitted due to the lack of space

COROLLARY 1. The maximum dimension of the integrals re-
quired to obtain the modified Hermite expansion i B, where D
is the length of vector H and P is the order of the Hermite polyn
mial. In other words, the dimension of the integral is indegent of
the number of orthogonal random variables M used for expaodi
the random process.

PrRoOOF The proof follows directly from the application of The-
orem 1, however, it remains to be shown that the correlatiatrir
<H,Zg> is known. The calculation of this correlation matrix de-
pends on the particular technique used to generate the basis
random variableg, however, for any KL-based expansion we can
write component of vectorH asH; = zmzoam(gﬂ(ri)nm. Conse-
quently, the matrix eIemen{H,ZE) (,j):

(H.Z5) )

M
Zoam(Prn(ri)<nm,Zp(j)>

Oz, (1) Py () (M) )

where{p(j) is thejth element of the random vectgp andazpm,

@, (j)(r) andag, ;) are the eigenvalue, eigenfunction and variance
associated with the random varialdlg( j), respectively. The exis-
tence of these quantities is a direct consequence of théhaid,

is a subvector of). [

(12)

The main computational advantage of using Theorem 1 to com-

pute the coefficients of the Hermite chaos expansion steoms fr
the fact thatM, the total length of the vectar, is typically 100,
whereasD, the length of the height vector, is 2 (since the height
vector contains only two components, one for the source &fdm
and one for the observation filament), &hdhe order of the expan-
sion, is typically 2 (since a second order expansion is sefftdor
most applications). Consequently, using Theorem 1 the miioa

of the integral for a second order polynomial expansiondsiced
from 100 to 4. In terms of required computation time Theorem 1
accelerates the evaluation of the coefficients as compareiet
standard tensor rule of a Q-point quadrature scheme by arfatct
Q% (for Q=8 this corresponds to%10°6), and as compared to
Monte Carlo integration or sparse grid integrations by acfaof

% (for M=100, Q=8 this corresponds to5lx 1019).

4. COMBINED NEUMANN - HERMITE
CHAOSEXPANSION

Despite resolving the computational difficulties ass@tdatwith
finding the coefficients of the expansion using Theorem Istibehas-
tic finite element simulation still requires solving a limesystem
which isK times larger than the original system, where the number
of orthogonal polynomial& can be as large as 5000 for a typical
large application. The complexity of solving the syster tl K 2
more expensive for an iterative solver alié more expensive for
a direct solver. Such an increase in complexity will resalan
inefficient algorithm, possibly even worse that Monte Cailou-
lation. On the other hand, we know that the complexity withuNe
mann expansion is not associated with the system size therrat
with calculating the statistics of the high order terms of #x-
pansion. We therefore propose to use Neumann expansion (6) t
remove the complexity of solving a large linear system argdthe
modified polynomial chaos expansion to simplify the caltata

of the statistics of the RHS vector. This is implemented st &x-
pandingAZ(H) in terms of Hermite polynomials using Theorem 1
AZ(H) = ziK:]_Zqui(n) and then substituting this expansion in (6):

K
Im() = Z3APm —Z3 (Zzwim)) Zo iy
i=

+ Zuo (iziwim)) Zuy (,iziwi(rn) ZygA®m+.(13)

From (13) we observe that the complexity is transformed fsofa-

ing a large system into doing a large number of matrix mut#p!
tions. This characteristic is very appreciable in such enfdation
also due to the inherent parallelizability of such an altponi. Be-
fore proceeding with the time and memory complexity analitss
worth mentioning that in general we are not interested irettiee
current vectoly(n), but rather just in the current at the ports. For
a single port excitation (13) is simplified to:

io(N) =imo— Y IneQWi)+ 5 ¥ QM Z5QiWi(n)W;(n), (14)
1 (]

wherelyp = Z 5APn, imp = AD}Imo andQ = Zlmp. Note that
we have used the symmetry of the projection coefficient wesri
Zi = ZiT in deriving the last expression.

4.1 Complexity analysis
4.1.1 Memory

Theoretically, we would need to store the LU factors of nxatri
Zmo in addition to all the matriceg;. This means that the to-
tal memory requirement should KN2) + O(KN2). However, a
careful investigation of (14) reveals that the only way tregnices
Z; appear in such equation is implicitly as a matrix vector piaid
Qi. Furthermore, th& vectorsQ; can be stored offline and be indi-
vidually recalled during the system assembly without afferthe
performance. Hence, only tI@(NZ) part is required to reside in
memory at a certain point of time. In other words, our aldonit
has the same memory complex@®yN?) as Monte Carlo based ap-
proaches and is very memory efficient if compared to(ﬁ@hl“)
complexity of the standard Neumann expansion, orCDhlézNz)
complexity of the standard stochastic finite element sitinra

41.2 Time

We will base our analysis on the fact that the mesh impedance
matrix is symmetric and the fact that we employ a direct matri
solver since this will enable us to recycle the LU factoiizat We
first factor the nominal system for a complexity @(N3). We
then computé& unique matrix-vector produc®(KN?2), K vector-
vector product®©(KN), K system solves (recycling the LU factor-
ization) O(KN?) andK? vector-vector product®(NK?). The final
complexity is therefored(N®) + O(N2K) + O(NK2) = O(N®) +
O(NK2). This means that our algorithm is very time efficient if
compared to th©(N*) complexity of the standard Neumann ex-
pansion, theD(N3K3) complexity of the standard stochastic finite
element simulation, or th®(NycN®) complexity of the Monte-
Carlo like algorithms, wherd&lyc is the number of independent
simulations.

4.1.3 Parallelizability

One of the main advantages of the proposed algorithm is-ts in
herent parallelizability as is evident from (14). Sincerthis practi-
cally no communication required between the different pssors,
the computational time required to do the different matéxctor
and vector-vector products can be reduced\py the number of
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Figurel: Comparison between theprobability density function
of themicrostrip line obtained from our new algorithm and the
reference Monte Carlo simulation.

available processors. Consequently, the final time contpléx
2
O(N3)+O(N{).

5. RESULTS
5.1 Accuracy Validation

In the first example we verify the accuracy of the proposedouet
using a single 50mwide, 05mmlong and 1pmthick microstrip
line. The upper surface of the line is highly irregular andiés
scribed with a Gaussian random process of standard deviatio
3umand correlation length. = 50um We use a total of 200 un-
knowns to model the current density inside of the microdtrip,
and a total of 19 independent random variables to model tinghro
surface. The number of orthogonal polynomials for a secaddro
(P = 2), 19-variablesNI = 19) Hermite expansion of the system
matrix is computed from (10), and is equal€o= 210. This struc-
ture is simple enough to be accurately discretized and sitedl
using 10,000 Monte Carlo simulations, and to be simulatéagus
the stochastic finite element method (SFE), provided we hs®-T
rem 1 to compute the coefficients of the expansion. A comparis
of the complete statistical distributions of the DC inpugiséance of
the microstrip line as obtained from our full new algorithvipnte

Carlo analysis, and the SFE method with Theorem 1 is demon-

strated in Figure 1. Specifically, by full new algorithm we ane
using Theorem 1 to obtain the coefficients of the Hermite expa
sion and the combined Neumann-Hermite algorithm in seetitm
solve the linear system. We observe very good agreemenebatw
all techniques. The mean of all three distributions is iy
equal to 00122. The standard deviation for both Monte Carlo and
SFE isidentically equal to 0.001, while our technique cotepthe
standard deviation 0.00097, which corresponds to a 3%.error

We further simulate a similar but longer (1mm) microstripelj
with roughness described by correlation length= 25um The
total number of random variables required to model such ghou
surface is 96. We fail to simulate such a structure using fig,S
since the required matrix size is91x 10°, which cannot be effi-
ciently stored using current state of the art. However, gisiar
technique we can efficiently compute the input resistancguoh
an interconnect structure. The average input resistantzeneh
from our algorithm is 0.0243 as compared to 0.02@1obtained
from 10000 Monte Carlo simulations. The standard deviaison
8.64x 104 as compared t0.83 x 104, demonstrating less than
1% error. Such results clearly indicate the accuracy of aar p
posed technique. The computational requirement of botimpbes
are summarized in the first two rows of Table 1.

Table 1. Time and Memory Performance Comparison of
Monte Carlo, Stochastic Finite Element (SFE) and the New Al-

gorithm
Example | Technique & Properties fof Memory Time
5% accuracy
Short Monte Carlo, 10,000 0.32 MB 24 min.
Microstrip SFE, M=19 58 MB (12 days)
Line SFE+Theorem 1, M=19 | 58 MB 120 min.
DC only New Algorithm, M=19 0.32 MB 1.8 min.
Long Monte Carlo, 10,000 1.2MB 2.4 hours
Microstrip SFE, M=96 (72 GB) -
Line New Algorithm, M=96 1.2 MB 0.5 hours
Transm. Monte Carlo, 10,000 10 MB 16 hours
Line SFE, M=105 (300 TB) -
10 freq. New Algorithm, M=105 10 MB 7 hours
Two-trun Monte Carlo, 10,000 121 MB | (150 hoursy
Inductor SFE, M=400 (800 PB) -
10 freq. New Algorithm, M=400 | 121 MB 8 hours™

5.2 Computational Complexity Comparison

In this subsection we compare the computational performahc
Monte Carlo based algorithms, SFE simulation and our new-alg
rithm on four different interconnect structures, namelyierostrip
line (200 unknownsl,.¢c = 50um), a microstrip line (400 unknowns,
Lc = 25um), a two-wire transmission line (800 unknowrls; =
50um) and a 2 turn square inductor (2750 unknowns= 50um).

The comparison results (memory and time requirementsyiane s
marized in Table 1. We do not include the Neumann expansion in
our comparison since it does not generate complete ditityiizl
and is computationally much more inferior even for compuytin
only the average. All the simulations have been run in MATLAB
on Intel Xeon, CPU 3.4GHz, 4-processor, 4GB RAM. Parameter
M in Table 1 indicates the number of independent random vari-
ables used to expand the random process, and it correspotias t
dimension of the integrals required for calculating thefiicients
of the Hermite expansion when not employing our new Theorem 1
However, using Theorem 1 the dimension of the integral isié-in
pendent of the number of random variables M. The number éesid
the Monte Carlo simulations indicates the total number ofusi
lation runs. The notion 10 freq. indicates results of a 1poi
frequency sweep. The frequency band of interest is froft@0
10° Hz. Any number in brackets indicates estimated values.The
superscript indicates running the simulation on the 4 corgsr-
allel. It can be immediately inferred from the table that tfesv
proposed algorithm is the only possible alternative if thebpem
size is large.

5.3 Effect of Surface Roughnesson High Fre-
guency Input Impedance

In this example we show how the proposed technique can be
used to simulate surface roughness effects on the currstnitodi
tion inside of a two turn inductor. The inductor has a sidegten
of 100Qum and cross sectional dimensions ofué®x 15um The
frequency band of interest is fronMHz to 1GHz The inductor
is discretized using,Z50 non-uniform segments such that the skin
depth at the highest frequenc(ﬁ/wuc = 2umis accurately cap-
tured. We will compare the results obtained from differeaiu&
sian rough surface realizations, i.e. different standasdadionso
and different correlation lengths: (o = 3umL¢ = 50um), (o =
3umLc = 5um) and against a completely smooth and determinis-
tic surface. We have observed that the imaginary part ofrtpeti
impedance divided byw (inductance) typically decreases by less
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Figure 2: Probability density function of the real part of the
input impedance at 1GHz for correlation length L = 5um The
resistance of the non-rough surface structureis0.22Q, which is
9.8% smaller than the mean of the obtained distribution.

14

120

=
@ @ S
3 3 3

Probabilty Density Function

IS
S

20

0.245
Re(Impedance)

Figure 3: Probability density function of thereal part of thein-
put impedance at 1GHz for correlation length L = 50um The
resistance of the non-rough surface is 11.3% smaller than the
mean of the obtained distribution.

than 5% as a consequence of the surface roughness. On the othe

hand, the real part of the input impedance (resistancegases by
about 10% to 20% as a consequence of the roughness. In additio
we have observed that the standard deviation of the impedéine
tribution is proportional to the correlation length.

In Figure 2 and Figure 3 the complete probability densitycfun
tions of the real part of the input impedance at 1GHz are shown
for both smallL. = 5umand largeLc = 50um correlation length,
respectively. We observe that the standard deviation afdilepart
of the input impedance is increased by a factor of 5 when the co
relation length increases from = 5umto L = 50umfor the same
standard deviation. The fact that the standard deviaticnedses
with the decrease of correlation length (increase of senfandom-
ness) is a consequence of the cancellation effects regfitim the
distributed nature of the surface.

6. CONCLUSION

In this paper we have presented a new methodology to solve (8]

large stochastic linear systems. We have developed a new the
rem to compute the coefficients of the multivariate Hermite e
pansion using only low dimensional integrals, resultingitime
complexity that is independent of the number of variables@my
dependent on the order of the expansion. Practically spgafor

a typical large multivariate expansion the new theoremipies/an
improvement in the computation time by 86 orders of mageitud

as compared to the standard tensor product rule or by 10soofier
magnitude as compared to the state of the art (Monte Cadgriat

tion or sparse grid integration). Such a theorem is not osbful

for our methodology but it can also be applied to any algarithat
relies on expanding a random process, such as the stocfiaiséic
element method. We have also provided a new stochasticaimul
tion technique by merging both the Neumann expansion and the
polynomial chaos expansion. The main advantages of thét+esu
ing technique are the compact size of the system at any time (u
like SFE) and the ease of calculating the statistics of thh brder
terms (unlike Neumann expansion). In addition, the new Eitian
algorithm is parallelizable and can therefore take adegentd the
state of the art in processor design. We have demonstragexbth-
putational efficiency of the new methodology by solving peoits

that were completely untractable before. We have demdsstra
that our algorithm can be used to compute the complete pildipab
density function of the input impedance of very large praid€up

to 400 random variables) in less then 8 hours using Matlab on a
standard 4-core machine and using only 121MB RAM.
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