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Abstract— In this paper, an input/output system identification
technique for the Wiener-Hammerstein model and its feedback
extension is proposed. In the proposed framework, the identifi-
cation of the nonlinearity is non-parametric. The identification
problem can be formulated as a non-convex quadratic program
(QP). A convex semidefinite programming (SDP) relaxation is
then formulated and solved to obtain a sub-optimal solution to
the original non-convex QP. The convex relaxation turns out to
be tight in most cases. Combined with the use of local search,
high quality solutions to the Wiener-Hammerstein identification
can frequently be found. As an application example, randomly
generated Wiener-Hammerstein models are identified. 1

I. INTRODUCTION

Classical treatments of the Wiener-Hammerstein system

identification problem can be found, for example, in [1],

[2], [3]. Many more recent treatments of the problem can

be found, for example, in [4], [5], [6]. In those references,

however, the identification of the nonlinearity is parametric

(i.e. the nonlinearity is assumed to be of some form such

as piecewise linear or polynomial functions). Therefore,

those previous results can be restrictive in application. Non-

parametric identification of block oriented models, on the

other hand, are more flexible in terms of modeling power.

Reference [7] proposed an algorithm for the non-parametric

identification of the Wiener system under the assumption that

the input is Gaussian noise. The authors of [8], assuming that

the LTI block is known, reduced the identification problem of

the Wiener system to a least squares problem. [9] proposed

an unbiased identification algorithm based on maximum

likelihood estimation.

In a sense, the idea of the system identification scheme

proposed in this paper has been explored under the banner

of model validation [10], [11], [12], [13], [14], [15], [16].

In this problem, a model with a given block diagram is to

be invalidated by proving that it is inconsistent with some

input/output measurement obtained from experiment. The in-

validation is typically performed through the finding of some

infeasibility certificate of some constraint set. Conversely, the

finding of a feasibility certificate will prove the consistency

of a model with the given input/output measurement data.

This forms the basis of the block diagram oriented system

identification schemes such as [17], [18], [19]. In particular,

[19] proposed a very general approach for the identification

of the Wiener system assuming only the monotonicity of the

1The first author is now affiliated with the Department of Automatic
Control, Lund Institute of Technology, Sweden. The rest of the authors
are affiliated with the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology. The research work was
completed before the first author’s transition from MIT to Lund.

nonlinearity. [19] sets up a convex QP based on the idea

of enforcing an input/output functional relationship of the

nonlinearity. The algorithm proposed in this paper can be

considered as an extension of the idea in [19]. In fact, the

formulation of the optimization problem in this paper also

centers around some sector bound property of the nonlin-

earity. However, because of the more complicated Wiener-

Hammerstein structure, the resultant optimization problem is

more involved. In fact, it is a non-convex QP. Nevertheless,

with the proposed SDP relaxation, it will be demonstrated

that the non-convex QP formulated in this paper is not

necessarily hard to solve.

A. Feedback Wiener-Hammerstein system

In this paper, the unknown system in the input/output

system identification problem is assumed to be from a

specific class – either of the Wiener-Hammerstein form, or

the Wiener-Hammerstein with feedback in Figure 1.

G* φ* (H*)
-1u y

s*

K*

-
n*

y0

Fig. 1. The Wiener-Hammerstein system with feedback. S∗ denotes the
unknown system. K ≡ 0 corresponds to the Wiener-Hammerstein system
without feedback. The output measurement y is assumed to be corrupted
by some noise n∗.

The following assumptions are made in Figure 1.

1) The signals u, y, y0 and n∗ are causal and of finite

length N .

2) G∗, H∗ and K∗ are assumed to be single-input-single-

output (SISO) FIR systems. In addition, H∗ and K∗

are assumed to be positive-real passive. That is,

Re
{

H∗
(

ejω
)}

> 0, ∀ω ∈ [0, 2π)
Re

{

K∗
(

ejω
)}

> 0, ∀ω ∈ [0, 2π)
(1)

3) Nonlinearity φ∗ is assumed to be scalar valued and

memoryless, and it is assumed to satisfy a certain

sector bound criterion in incremental sense. That is,

there exists a scalar 0 < β < ∞ such that for all

a, b ∈ R,
(

φ∗(b)−φ∗(a)
)(

φ∗(b)−φ∗(a)−βb+βa
)

≤ 0. (2)
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Condition (2) means that the nonlinearity φ∗ is mono-

tonically non-decreasing and its derivative has an upper

bound. Further details can be found in [20].

B. Organization of the paper

The rest of the paper is organized as follows: in The

main ideas of the problem formulation and solution pro-

cedure will be explained in Section II and Section III

respectively, through a special setup in which there is no

output measurement noise or feedback. Then in Section

IV the identification setup with output measurement noise

is considered. Differences in the analysis and algorithm

due to the noise will be highlighted. After that, the full

feedback Wiener-Hammerstein system identification problem

will be considered in Section V. Application examples will

be presented in Section VI.

II. IDENTIFICATION OF THE WIENER-HAMMERSTEIN

SYSTEM – NO MEASUREMENT NOISE

The first problem to be considered in this paper is the

identification of the Wiener-Hammerstein system without the

feedback or the output measurement noise. The identification

problem will be formulated as two equivalent optimization

problems in Subsections II-A and II-C respectively. The

solution technique for the optimization problems will be

described in Section III.

A. System identification problem formulation

Problem data. The problem data is the input signal u and

the output measurement signal y of the true (but unknown)

system S∗ in Figure 1. For ease of exposition, a signal will

also be denoted as the vector of its non-zero values (e.g.

vector u for the signal v).

System identification model and decision variables. It is

natural to choose a model with the same structure as the true

but unknown system (i.e. the Wiener-Hammerstein structure

in Figure 2). In Figure 2 the G and H are FIR systems,

and φ is a scalar memoryless nonlinearity (i.e. a nonlinear

function). Obviously, the model is specified when G, H and

φ are specified.

FIR systems G and H in Figure 2 are characterized by

their impulse responses of length Ng and Nh respectively.

That is,

g :=
[

g0 g1 . . . gNg−1

]′
,

h :=
[

h0 h1 . . . hNh−1

]′
.

(3)

The identification of the nonlinearity φ is non-parametric.

That is, φ is specified only by some samples of its in-

put/output pair. The values of φ other than those given by

the samples can be obtained using an interpolation scheme

(e.g. linear interpolation). In addition, the samples will be

restricted to those computable by the FIR impulse response g

and h. Therefore, g and h are the decision variables sufficient

to specify φ as well as the full model in Figure 2.

Treatment of the passivity constraint. A sufficient con-

dition for the stability of the identified model is that the

FIR system H in Figure 2 is positive real passive (see [21],

Chapter 3). Ideally the positive real constraint should be

enforced. However, it turns out to be inconsistent with the

solution technique proposed. Therefore, in all subsequent

sections the stability requirement will not be dealt with

explicitly. In Subsection III-C this issue will be revisited,

and a post-processing algorithm will be given to enforce the

passivity of H (and hence the stable of the final model).

System identification problem formulation – a feasi-

bility problem. Consider the Wiener-Hammerstein model in

Figure 2 in which the output and the input are constrained

to be the given data (u,y). Let’s investigate the possible

choices of the decision variables g and h so that there exist

signals v ∈ R
N and w ∈ R

N with the property that (u,v),
(v,w), (y,w) are valid input/output pairs of the blocks G,

φ and H respectively.

G φ H
-1u yv w

Fig. 2. A feasibility problem to determine the impulse responses of the
FIR systems G and H . Here u and y are the given input and output
measurements generated by the true (but unknown) system. The signals
v and w are the outputs of G and H , respectively. v and w are chosen so
that they define a function φ satisfying sector bound constraint eq. (6).

The pairs (u,v) and (y,w) satisfy the following convo-

lution relationship.
v = Ug,
w = Yh,

(4)

where U ∈ R
N×Ng and Y ∈ R

N×Nh are defined as

U :=

























u[0] 0 . . . 0

u[1] u[0]
. . .

...

. . . 0
...

... u[0]
...

u[N − 1] u[N − 2] . . . u[N − Ng]

























N×Ng

,

(5)

and Y is defined in a fashion analogous to eq. (5).

For the pair (v,w), in principle, the only constraint

imposed is that there exists some function φ such that

wi = φ (vi) , ∀ i = 0, 1, . . . , N − 1. However, to maximally

reduce the redundancy of the possible choices of (v,w), an

additional constraint is enforced: φ should satisfy the sector

bound of the form of eq. (2). That is,

(φ(b) − φ(a)) (φ(b) − φ(a) − βb + βa) ≤ 0, ∀ a, b ∈ R.
(6)

Constraint eq. (6) imposed on the function φ : R 7→ R is

equivalent to a constraint on the generating pair (v,w) as

(wi − wj) (wi − wj − βvi + βvj) ≤ 0, ∀ i > j. (7)

The equivalence of eq. (6) and eq. (7) is shown in [20].

In summary, the Wiener-Hammerstein system identifica-

tion problem in the noiseless case can be defined as

Definition 2.1: [Wiener-Hammerstein system identifi-

cation problem – noiseless case]
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Given the input/output measurement (u,y) ∈ R
N × R

N

of an unknown Wiener-Hammerstein system and positive

integers Ng and Nh, find decision vectors g ∈ R
Ng and

h ∈ R
Nh such that there exist signals v ∈ R

N and w ∈ R
N

satisfying eq. (4), eq. (7). ¥

Typically there are infinitely many solutions of the prob-

lem in Definition 2.1, the corresponding normalization issue

will be discussed in Subsection II-B.

Comparison with the model validation techniques. The

principles of the identification problem in Definition 2.1 and

that of the problem of model validation (e.g. [10]) are very

similar. Both problems call for satisfiability certificate of

the input/output relationships of the blocks in the model

structures. Definition 2.1 seeks a feasibility certificate while

model validation seeks an infeasibility certificate. However,

there are two major distinctions between the proposed

identification setup and the model validation setup. First,

for the model validation problem, proving the existence

of the infeasibility certificate is sufficient. For example, in

[10], [15] the question of whether an infeasibility certificate

exists is answered by a structured singular value bounding

problem. The Wiener-Hammerstein identification problem in

Definition 2.1, on the other hand, requires the computation

of all signals presented in the model. This computation

can potentially be expensive. The second distinction of

the proposed identification setup from the model validation

setup is that the feasibility problem in Definition 2.1 will

lead to a non-convex quadratic program, while most of the

previously considered model validation setups lead to the

formulation of convex problems. The convexity properties

of the optimization problems also lead to a distinction in the

solution approaches. The published model validation results

are mostly based on rigorous analysis, while the approach

adopted in this paper will be more experimental – some

observations will be substantiated by numerical experiments

only.

B. Non-uniqueness of solutions and normalization

The system identification problem in Definition 2.1 is

feasible with decision vectors g∗ and h∗ (i.e. the impulse

responses of the FIR systems in Figure 1). However, there are

actually infinitely many solutions. It can be verified that for

an infinite set of choices of c1 6= 1 and c2 6= 1, the impulse

responses g = g∗/c1 and h = h∗/c2 are also solutions of the

problem in Definition 2.1. The non-uniqueness of solutions

requires the normalization of g and h, and the details of

the normalization can be found in [20]. Here only the main

observations are summarized.

• Normalization of both g and h will generally lead to

excessive restriction. Therefore, only h will be normal-

ized in this paper. The particular choice of normalization

will be assumed:

h0 ≡ 1. (8)

While the choice of normalization in eq. (8) is

somewhat arbitrary, it is not unjustified because

h0 =
2π
∫

0

Re
{

H
(

ejω
)}

dω > 0.

• With the normalization, the constant β in sector bound

(7) can always be assumed to be one, otherwise it can

be absorbed in the part of the decision vector which

is not normalized. Therefore, throughout this paper, all

sector bound constraints assume values of β = 1.

C. Formulation of the system ID optimization problem

In this subsection the system identification problem de-

fined in Definition 2.1 will be simplified and put in a format

that would facilitate the study of its solution strategy. Some

properties of the optimization problem will also be discussed

in Subsection II-D.

Definition 2.1 defines a system identification feasibility

problem with three constraints given in eq. (4) and eq. (7).

The discussion in Subsection II-B concludes that a partial

normalization of h (i.e. eq. (8)) can be assumed. In addition,

with the partial normalization, β in eq. (7) can be assumed

to be one. Substituting the variables v and w using eq. (4),

the constraint set eq. (4) and eq. (7) reduces to

(∆Yijh)
2 − (∆Yijh) (∆Uijg) ≤ 0, ∀ i > j, (9)

where
∆Uij := Ui − Uj ,
∆Yij := Yi − Yj ,

(10)

and

Ui ∈ R
1×Ng , Ui :=

[

U (i, 1) · · · U (i,Ng)
]

,
Yi ∈ R

1×Nh , Yi :=
[

Y (i, 1) · · · Y (i,Nh)
]

,

with U and Y defined in eq. (5).

Conforming to the standard notation in the field of op-

timization, define the vector of decision variables x ∈
R

Ng+Nh as

x :=

[

g

h

]

, (11)

then corresponding to eq. (8), the partial normalization

constraint set will be denoted as

X :=

{

x =

[

g

h

]

∈ R
Ng+Nh h0 = 1

}

. (12)

In addition, define matrices Aij ∈ R
(Ng+Nh)×(Ng+Nh) as

Aij :=

[

(∆Yij)
′
(∆Yij) − 1

2 (∆Yij)
′
(∆Uij)

− 1
2 (∆Uij)

′
(∆Yij) 0

]

.

(13)

Then eq. (9) is the same as

x′Aijx ≤ 0, ∀N − 1 ≥ i > j ≥ 0. (14)

Using the notation Aij defined in eq. (13), the system

identification optimization problem can be formulated as

follows.

minimize
x∈X ,r∈R

r

subject to x′Aijx ≤ r, ∀ i > j
r ≥ 0,

(15)

where X is defined in eq. (12) and Aij are defined in eq. (13).

Program (15) and the feasibility problem in Definition 2.1 are

equivalent in the following sense: x̂ is an optimal of program
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(15) if and only if the corresponding ĝ and ĥ (see eq. (11))

is a feasible solution of the problem in Definition 2.1. The

equivalence can be explained in the following schematics

(with x̂ and ĝ and ĥ related by eq. (11)).

ĝ and ĥ is a solution according to Definition 2.1.

⇐⇒ ĝ and ĥ satisfies eq. (9).
⇐⇒ x̂ satisfies eq. (14)

⇐⇒ x̂ is an optimal solution of program (15).
(16)

All but the last equivalence have already been discussed. The

last equivalence is true only in the noiseless identification

case – the normalized FIR system coefficients g∗ and h∗ is

an optimal solution of program (15) with an optimal objec-

tive value of zero, hence any optimal solution of program

(15) satisfies eq. (14).

D. Properties of the system ID optimization problem

The matrices Aij in (13) can be written as

Aij = pij (pij)
′ − qij (qij)

′
,

where

pij =

[

(∆Yij)
′

− 1
2 (∆Uij)

′

]

and qij =

[

0

− 1
2 (∆Uij)

′

]

(17)

From (17), it can be seen that Aij are rank two matrices

with one positive and one negative eigenvalues. Therefore,

program (15) is a non-convex QP, which is NP hard.

On the other hand, it can be seen that the absolute value

of the positive eigenvalue is (much) greater than that of the

negative eigenvalue. This fact suggests that program (15)

might be an “easy” NP hard problem. This hypothesis

is indeed justified by the following numerical experiment.

Define a proximity function R : R
Ng+Nh 7→ R+ as

R(x) := max
N−1≥i>j≥0

{0, x′Aijx} . (18)

Then let d̃ ∈ R
Ng+Nh be such that d̃ (i) is a zero mean unit

variance Gaussian random variable for all i, and let x∗ be

the vector corresponding to g∗ and h∗. Then normalize d̃ to

d such that x∗ + sd ∈ X for all s ∈ R and ‖d‖ = 1.

Consider one dimensional function R̃ : R 7→ R+ such that

R̃ (s) := R (x∗ + sd). Plot this function for a range of s (e.g.

s ∈ [−0.1, 0.1]). Repeat the process with another randomly

generated d for many times and check the shape of the

function R̃ (for different d) around s = 0. The outcome of

the numerical experiment is shown in Figure 3. Such figure

suggests that program (15) is almost convex, substantiating

the previous notion that program (15) should not be a too

difficult problem to solve.

Finally, the following property of the proximity function R
defined in eq. (18) will be assumed but not formally proved.

∃K ∈ R+ : ∀x ∈ X , ∃x̂ ∈ argmin
x̃∈X

R(x̃) : ‖x − x̂‖ ≤ KR(x),

(19)

−0.1 −0.05 0 0.05 0.1
0

0.1

0.2

0.3

0.4
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s

\t
ild

e
{R

}(
s
)

Fig. 3. Plot of R̃ (s) in 200 (normalized) randomly generated directions.

Note that R̃ (s) is not a convex function, but it is almost convex.

III. SOLVING THE OPTIMIZATION PROBLEM

Subsection II-C concludes with the formulation of pro-

gram (15), which is a NP hard non-convex QP. The solution

procedure for solving optimization problem (15) can be

divided into three steps, which will be discussed in detail

in three subsections.

A. Semidefinite programming relaxation

SDP relaxation is a standard attempt to solve non-convex

QP’s (e.g. [22]). To understand the relaxation, it is noted that

in optimization problem (15) the following is true

x′Aijx = Tr (AijX) , X = X ′ ≥ 0, rank (X) = 1.
(20)

A standard procedure to obtain a SDP relaxation is to drop

the rank constraint in (20), which leads to

minimize
X∈Xs,r∈R

r

subject to Tr (AijX) ≤ r, ∀ i > j
r ≥ 0
X = X ′ ≥ 0,

(21)

where Xs is the normalization constraint set for X corre-

sponding to X for x. Once the relaxation (21) is solved, the

singular vector corresponding to the largest singular value of

the matrix solution is returned as the best suboptimal solution

to (15). It is obvious that the lower the rank of X is, the better

the quality of the suboptimal solution will be.

For the noiseless setup in this section, the minimum value

of r is actually zero, attainable by, for example, x∗ :=
[

(g∗)
′

(h∗)
′
]′

. Hence, the matrix solution X∗ ≡ x∗x∗′ is

an optimal solution to relaxation (21). Then by setting the

minimum value of r to be zero and instead minimizing the

trace of X (to obtain a low rank matrix solution, e.g. [23]),

the relaxation of (21) is reformulated as

minimize
X∈Xs

Tr (X)

Subject to Tr (AijX) ≤ 0
X = X ′ ≥ 0

(22)
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The tightness of the relaxation depends upon the nonlin-

earity in Figure 2, but not too much on the FIR systems G
and H . The above observation is made through the following

numerical experiment: 300 instances of program (22) were

solved. The input/output data was produced by driving

300 randomly generated Wiener-Hammerstein systems with

the block diagram in Figure 2. G and H were randomly

generated, but the nonlinearity φ were fixed. For the first

one hundred cases, φ was a hyperbolic tangent (i.e. φ(v) =
tanh (v)). For the next one hundred cases, φ was a saturated

linearity (i.e. φ(v) = sgn (v)max {| v| , 1}). For the last one

hundred cases, φ was a cubic nonlinearity (i.e. φ(v) = v3). It

is clear that the cubic nonlinearity does not have a derivative

bound, whereas the former two nonlinearities do have such

a bound. The results of the tests are shown in Table I. It can

be seen that for nonlinearities with strong saturation (i.e.

derivative bounds) the SDP relaxation is much tighter.

TABLE I

STATISTICS OF THE RATIO (%) BETWEEN THE SECOND AND THE FIRST

LARGEST SINGULAR VALUES OF THE SOLUTION MATRICES FOR THE

TEST CASES WITH THREE DIFFERENT PRE-SPECIFIED NONLINEARITIES.

hyperbolic tangent saturated linearity cubic

mean (%) 0.1860 5.842 × 10−10 1.526
std (%) 0.3223 2.844 × 10−9 3.501

While the relaxation (22) provides a reasonably good ap-

proximation to the true optimal solution of the original non-

convex problem (15), the approximation should always be

refined by some inexpensive procedure such as a linearized

local search described in the next subsection.

B. Local search

A local search is the following optimization procedure:

given an initial guess x0 ∈ R
Ng+Nh , generate a sequence

{x1, x2, . . . , xm} using the formula

xk+1 = xk + sk∆xk, k = 0, 1, . . . ,m − 1

where ∆xk ∈ R
Ng+Nh is the search direction and sk ∈ R is

the step length defined to minimize some objective function.

Given the current iterate xk, a search direction ∆xk should

also be admissible. That is,

∆xk ∈ X∆ (xk) :=
{

y ∈ R
Ng+Nh xk + sy ∈ X , ∀ s ∈ R

}

Then this paper seeks to find ∆xk ∈ X∆ (xk) such that

max
i>j

{

0, (xk + ∆xk)
′
Aij (xk + ∆xk)

}

→ min. (23)

Problem (23), however, is as difficult as (15). Nevertheless,

if the term (∆xk)
′
Aij∆xk is ignored, then it leads to

minimize
∆xk,r∈R

r

subject to x′
kAijxk + 2x′

kAij∆xk ≤ r, ∀ i > j
r ≥ 0
∆xk ∈ X∆ (xk) .

(24)

Optimization problem (24) is a linear program (LP) with

respect to decision variables r and ∆xk.

The treatment of the line search in this paper is standard,

see [24] for details.

C. Final optimizations

The main reason for the final optimization is the positive

real passivity enforcement of the final model of h. Recall

the definition of positive real passivity

Re
{

H
(

ejω
)}

= h0 + . . . + hNh−1 cos ((Nh − 1)ω) > 0.
(25)

It can be verified (see [25], for example) that eq. (25) is true

if and only if there exists Q = Q′ ∈ R
(Nh−1)×(Nh−1) such

that
[

Q 1
2 ȟ

1
2 ȟ

′ h0

]

−

[

0 0
0 Q

]

> 0, (26)

where

ȟ :=
[

hNh−1 hNh−2 · · · h1

]′
∈ R

Nh−1,

and inequality (26) means that the left side is a positive

definite matrix. Note that (26) is a linear matrix inequality

with variables Q, h0 and ȟ.

Now suppose ĥ is the identified FIR system impulse re-

sponse coefficients by the relaxation/local search procedure.

Then the passive refinement of ĥ can be found by solving

minimize
h

∥

∥

∥
h − ĥ

∥

∥

∥

2

subject to (26).
(27)

IV. IDENTIFICATION OF WIENER-HAMMERSTEIN

SYSTEM – WITH MEASUREMENT NOISE

The development of this section will be parallel to the

combination of Section II and Section III. Differences be-

tween the noiseless and the noisy cases will be highlighted.

A. System identification problem formulation

The model to be identified is still of the Wiener-

Hammerstein structure in Figure 2 with decision variables g

and h and φ being specified by a lookup table. Because of the

output measurement noise, however, the system identification

feasibility problem will be different. It is shown in Figure 4.

G φ H
-1u v w y

n

Fig. 4. A feasibility problem to determine the impulse responses of the FIR
systems G and H . Here u and y are the given input and output measurement
generated by the true (but unknown) system. The signals v and w are the
outputs of G and H , respectively. The signal n is the noise corrupting
the output measurement. In the feasibility problem, v, w and n are extra
variables chosen so that, together with g and h, they define a function φ
satisfying sector bound constraint eq. (6).

There is an extra signal n ∈ R
N to be determined in the

feasibility problem in Figure 4. Define the Toeplitz matrix
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N ∈ R
N×Nh : similar to U in eq. (5). Then the constraint

set defined in Figure 4 can be given as follows.

v = Ug, (28a)

w = (Y − N)h, (28b)

(wi − wj) (wi − wj − vi + vj) ≤ 0, ∀ i > j. (28c)

Then the Wiener-Hammerstein system identification problem

with output measurement noise can be defined as

Definition 4.1: [Wiener-Hammerstein system identifi-

cation problem – noisy case]

Given the input/output measurement (u,y) ∈ R
N × R

N

of an unknown Wiener-Hammerstein system and positive

integers Ng and Nh, find decision vectors g ∈ R
Ng and

h ∈ R
Nh such that there exist signals v ∈ R

N , w ∈ R
N

and n ∈ R
N satisfying eq. (28a, 28b, 28c). ¥

B. Formulation of the system ID optimization problem

Parallel to the development in Subsection II-C, the feasi-

bility problem in Definition 4.1 will be simplified. However,

instead of formulating and solving an equivalent optimization

problem as it was in Subsection II-C, a relaxation will be

formulated due to computation considerations.

Substituting eq. (28a) and eq. (28b) into eq. (28c) yields

(∆Yijh)
2 − (∆Yijh) (∆Uijg)

≤ (∆Nijh) (2∆Yijh − ∆Uijg) − (∆Nijh)
2
, ∀ i, j,

(29)

where

∆Nij := Ni − Nj (30)

and

Ni ∈ R
1×Nh , Ni :=

[

N (i, 1) · · · N (i,Nh)
]

.

Constraint (29) is difficult to handle because of the terms in

the right-hand side with the extra variables of n. Therefore, it

is proposed in this paper that the following relaxed constraint

should be imposed instead. That is,

(∆Yijh)
2 − (∆Yijh) (∆Uijg) ≤ rij , ∀ i > j, (31)

with variables g, h and r ∈ R
N(N−1)/2
+ . Constraint eq.

(31) is linear with respect to r, and therefore it is no

more difficult to handle than eq. (9) in Subsection II-C.

Based on the “robustness principle” that eq. (29) should be

satisfied by a noise vector n (and also r) with the minimum

norm (e.g. the infinity norm). Then, using the notations x
defined in eq. (11), X defined in eq. (12) and Aij in eq.

(13) in Subsection II-C. The relaxed system identification

optimization problems can be given as

minimize
x∈X ,r∈R

r

subject to x′Aijx ≤ r, ∀ i > j
r ≥ 0.

(32)

Note that program (32) has exactly the same form as program

(15), the noiseless case in Subsection II-C. However, in

general, the minimum objective value of program (32) will

not be zero. Accordingly, the solution procedure described

in Section III should be modified. This will be explained in

Subsection IV-C.

A question of great concern is how good the relaxed

optimization problem (32) is. The following statement, from

[20], gives a theoretical solution guideline.

Lemma 4.2: Denote n∗ as the vector of output measure-

ment noise. Let ĝ and ĥ be a solution of program (32) when

the matrices Aij are defined with input/output measurement

(u,y) with noise n∗. Let g∗ and h∗ be a solution of program

(15) when the matrices Aij are defined with input/output

measurement (u,y) without noise n∗. Then if the proximity

function property in eq. (19) (when Aij are defined with

noise) is satisfied, then for ‖n∗‖ small enough,
∥

∥

∥

(

ĝ, ĥ
)

− (g∗,h∗)
∥

∥

∥

2
= O (‖n∗‖2) . (33)

C. Reformulation of SDP relaxation

The relaxation of the feasibility problem in Definition 4.1

leads to the optimization problem (32), which has exactly

the same form as program (15) with only one exception –

the minimum of program (32) is not necessarily zero in the

presence of output measurement noise. Therefore, all of the

solution steps described in Section III apply to the noisy

problem (32) with the exception that the feasibility problem

(22) is infeasible, and hence it cannot be part of the solution

procedure. The following SDP will be solved in place of

program (22).

minimize
X∈Xs,r∈R

Tr (X) + λr

Subject to Tr (AijX) ≤ r
X = X ′ ≥ 0
r ≥ 0

(34)

In program (34) Xs is defined in (22), and Aij are defined

in eq. (13). λ > 0 is a tuning parameter. It turns out that

λ = 100 works pretty well in general.

V. IDENTIFICATION OF WIENER-HAMMERSTEIN SYSTEM

– WITH FEEDBACK AND NOISE

The setup of the identification feasibility problem is given

in Figure 5. In addition to the decision variables g ∈ R
Ng

G φ H
-1u

K*H

-

ywv

n

Fig. 5. A feasibility problem to determine the impulse responses of G,
H and K ∗ H . Here u and y are the given input and output measurement
generated by the true (but unknown) system. The signals v and w are the
input and output of the nonlinearity φ. The signal n is the noise corrupting
the output measurement. In the feasibility problem, v, w and n are extra
variables chosen so that, together with g, h and k∗h, they define a function
φ satisfying sector bound constraint eq. (6).

and h ∈ R
Nh seen in the previous sections, there are

decision variables associated with the FIR system K, which

is implicitly characterized by the impulse response of the
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product of K and H denoted as k ∗ h ∈ R
Nk+Nh−1 and

the impulse response of H denoted as h ∈ R
Nh . Once the

vectors k ∗ h and h have been determined, a deconvolution

can be applied to retrieve the impulse response of K.

The feasibility problem setup in Figure 5 leads to the

following set of constraints.

v = Ug − Y (k ∗ h) , (35a)

w = (Y − N)h, (35b)

(wi − wj) (wi − wj − vi + vj) ≤ 0, ∀ i > j, (35c)

with U, Y and N defined in eq. (5) or in some similar

fashions. Note that if the following notations are defined

Ũ :=
[

U −Y
]

and g̃ :=

[

g

k ∗ h

]

, (36)

then the constraint set eq. (35a,35b,35c) can be written as

v = Ũg̃, (37a)

w = (Y − N)h, (37b)

(wi − wj) (wi − wj − vi + vj) ≤ 0, ∀ i > j. (37c)

As far as the proposed system identification algorithm is

concerned, constraint set eq. (37a,37b,37c) has the same form

and properties as eq. (28a,28b,28c) in the no feedback case.

Therefore, the analysis and algorithm in Section IV can be

applied to the feedback Wiener-Hammerstein system identi-

fication simply by replacing constraint set eq. (28a,28b,28c)

with eq. (37a,37b,37c). Once the optimal values of the deci-

sion vectors g, h and k∗h have been found, a deconvolution

can be applied to obtain the value of k.

VI. APPLICATION EXAMPLES

A. Identification of randomly generated Wiener-

Hammerstein system with feedback

The example given here is the identification of the feed-

back setup. In this test case, G∗, H∗ and K∗ are randomly

generated positive real passive FIR filters of 4th order. The

nonlinearity is φ∗ = sgn (x) {4 |x |, 0.1|x | + (4 − 0.1)} .
The noise is such that n[t] is uniformly distributed and

n[t] ∈ [−0.01, 0.01] for all t.
For the identification, 86 samples of (u[t], y[t]) were used

to construct the matrices U and Y. The identification model

has the same structure as in Figure 5, and the orders of the

FIR filters are also four. Once the identification is completed,

the original test system and the identified model are driven

by some test signals (different from the training signals), and

the corresponding outputs are recorded. Figure 6 shows the

matching of the output of one of the test scenarios. Figure

7 shows the matching of the identified nonlinearity. The

identification took about 5 seconds on a PC with a 3GHz

CPU and 3GB of RAM.

VII. CONCLUSION

In this paper, the identification problems of the Wiener-

Hammerstein system with and without feedback have been

investigated. In the proposed algorithm, the identification
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Fig. 6. Matching of output signals by the original (unknown) system and
the identified model. y[k] denotes the output by the original system (star).
yi[k] denotes the output by the identified model (line). The plots of two
output signals almost overlap.

−15 −10 −5 0 5 10 15
−6

−4

−2

0

2

4

6

v

φ
(v

)

 

 

original

identified

Fig. 7. Matching of the original nonlinearity (star) and the identified
nonlinearity (line).

of the nonlinearity is non-parametric. The paper formu-

lates the system identification problem as a non-convex

QP. Nevertheless, it is demonstrated that the classical SDP

relaxation is able to provide very good suboptimal solution

to the formulated non-convex QP. Using a local search,

high quality solutions of identification problem can often be

found. Finally, a numerical example is given to show that

the proposed relaxation framework provides an interesting

new way to solve the identification problem of the Wiener-

Hammerstein system with feedback.
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LiTH-ISY-R-2787, 2007.

[20] K.C. Sou, “Convex Optimization Methods for Model Reduction,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2008.

[21] S. Sastry, Nonlinear Systems. Springer, 1999.
[22] M. Goemans and D. Williamson, “Improved Approximation Algo-

rithms for Maximum Cut and Satisfiability Problems Using Semidef-
inite Programming,” Journal of ACM, vol. 42, pp. 1115–1145, 1995.

[23] M. Fazel, H. Hindi, and S. Boyd, “Rank Minimization and Ap-
plications in System Theory,” in Proceedings of American Control

Conference, Boston, Massachusetts, June 2004, pp. 3273–3278.
[24] D. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
[25] B. Alkire and L. Vandenberghe, “Convex optimization problems in-

volving finite autocorrelation sequences,” Mathematical Programming,

Series A, vol. 93, no. 3, pp. 331–359, 2002.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC04.3

1382


