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Abstract. We discuss synchronous and asynchronous iterations of the form

xk+1 = xk + γ(k)(h(xk) + wk),

where h is a suitable map and {wk} is a deterministic or stochastic sequence satisfying suitable
conditions. In particular, in the stochastic case, these are stochastic approximation iterations that can
be analyzed using the ODE approach based either on Kushner and Clark’s lemma for the synchronous
case or on Borkar’s theorem for the asynchronous case. However, the analysis requires that the
iterates {xk} be bounded, a fact which is usually hard to prove. We develop a novel framework for
proving boundedness in the deterministic framework, which is also applicable to the stochastic case
when the deterministic hypotheses can be verified in the almost sure sense. This is based on scaling
ideas and on the properties of Lyapunov functions. We then combine the boundedness property
with Borkar’s stability analysis of ODEs involving nonexpansive mappings to prove convergence
(with probability 1 in the stochastic case). We also apply our convergence analysis to Q-learning
algorithms for stochastic shortest path problems and are able to relax some of the assumptions of
the currently available results.
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1. Introduction. The motivation for this paper has been the analysis of Q-
learning algorithms, which have emerged as a powerful simulation tool for solving
dynamic programming problems when a model is not known and/or the problem
must be solved on-line as the data become available. Q-learning algorithms were first
formulated by Watkins (1989), who gave a partial convergence analysis that was later
amplified by Watkins and Dayan (1992). A more comprehensive analysis was given by
Tsitsiklis (1994) (also reproduced in Bertsekas and Tsitsiklis (1996)), which made the
connection between Q-learning and stochastic approximation. (A related treatment
of a class of algorithms that include Q-learning and TD(λ) also appeared around the
same time in Jaakola, Jordan, and Singh (1994). It may be recalled here that TD(λ)
is a learning scheme for estimating the value function of a policy based on an expo-
nentially weighted average (with weights λn for some λ ∈ (0, 1)) of the so-called n-step
truncated returns—see Bertsekas and Tsitsiklis (1996) for a detailed description.) In
particular, Q-learning algorithms for discounted cost problems or stochastic shortest
path (SSP) problems were viewed as asynchronous stochastic approximation versions
of well-known value iteration algorithms in dynamic programming. This connection
paved the way for a general analysis based on classic stochastic approximation tech-
niques and dynamic programming-related contraction and monotonicity properties.
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A weakness of the methodology developed so far is that it deals in an ad hoc way
with the question of boundedness of the Q-learning iterates. In particular, the analy-
sis of Tsitsiklis required a special argument for proving boundedness with probability
1 (w.p.1), and for the case of SSP problems it also required that the cost per stage
be nonnegative, unless boundedness is imposed as an assumption (see Bertsekas and
Tsitsiklis (1996), Prop. 5.6).

Our purpose in this paper is to provide a new and powerful general framework for
establishing boundedness and proving convergence in synchronous and asynchronous
stochastic approximation methods involving nonexpansive maps, including as a spe-
cial case Q-learning algorithms. Our framework relies strongly on nonexpansiveness
and combines ideas from several fields, including asynchronous stochastic approxima-
tion analysis via the limiting ODE technique and nonlinear analysis of ODEs. Our
method for dealing with boundedness bears a similarity to an idea from the paper by
Jaakola, Jordan, and Singh (1994), which addressed the convergence of TD(λ) using
stochastic approximation methods (see section 2). Also see Csibi (1975) and Gerencser
(1992) for work in a similar spirit. As a special case of our analysis, we improve on
Tsitsiklis’ convergence result by dispensing with the boundedness assumption for the
iterates of SSP Q-learning, in the case where the cost per stage may be negative.
The methodology developed in this paper also provides an essential foundation for a
convergence analysis of Q-learning algorithms for average cost dynamic programming
problems given in a companion paper (Abounadi, Bertsekas, and Borkar (2001)).

Our results, in fact, can be cast as a powerful deterministic principle, because
the conditions on the noise required to ensure its applicability can be cast in simple
deterministic terms. These can, in turn, be verified in the almost sure sense for the
stochastic approximation algorithms of interest here. The deterministic formulation
also requires weaker conditions on the stepsizes. Thus we shall initially state our
results in a deterministic framework, enlarging their scope beyond the applications to
stochastic approximation.

The general framework that we propose applies to synchronous and asynchronous
variants of algorithms of the form

xk+1 = xk + γ(k)
(
h(xk) + wk

)
.(1)

Here xk is a sequence in �n, wk is a deterministic noise sequence, h is Lipschitz, γ(k) is
a positive stepsize sequence, and the aim is to find a solution of the equation h(x) = 0.
This is the synchronous implementation in which all components are updated together
at each time with full information about past iterates. The asynchronous model that
we use is based on the formulation of Borkar (1998) and is of the form

xk+1
i = xki + γ

(
ν(k, i)

)(
hi(x

k) + wki
)
I(i ∈ Y k)(2)

for i = 1, . . . , n, where Y k is the subset of {1, 2, . . . , n} denoting components being
updated at time k, I(·) is the indicator function, and ν(k, i) is the number of times
the component xi of the vector x has been updated by time k.

For the synchronous algorithm (1), a powerful analysis technique is the ODE
method introduced by Ljung (1977), formally treated by Kushner and Clark (1978),
and Benveniste, Metivier, and Priouret (1990). For the asynchronous algorithm (2),
a similar technique has been developed by Borkar (1998). (See also Kushner and Yin
(1997) and references therein for related work.) The major idea behind these two
techniques is to find a limiting deterministic continuous-time ODE for the stochastic
discrete-time processes, using interpolation with the appropriate time scaling. The
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main result is that if the ODE has an asymptotically stable equilibrium point, then
under appropriate assumptions, which include boundedness of the generated iterates,
the discrete-time iteration converges to this point w.p.1. Thus, in ODE techniques,
boundedness must be independently verified.

This paper’s methodology for dealing with the boundedness issue involves three
steps:

1. obtaining a related scaled iteration and establishing its convergence,
2. showing that the sequence {xk} generated by the original iteration is bounded

as a consequence of the convergence of the scaled iteration,
3. showing that the boundedness of {xk} implies convergence by invoking a

standard ODE limiting argument.
For each of the steps above, we will impose appropriate sufficient conditions on the

mapping h, the stepsize, and the noise. A central assumption in our later applications
is that the mapping h is of the form h(x) = T (x)−x, where the map T is nonexpansive
with respect to some norm ‖ · ‖p with p ∈ (1,∞] for the synchronous case, and with
respect to the sup-norm ‖ · ‖∞ for the asynchronous case. To our knowledge, ours is
the first general method for dealing with the boundedness issues in the ODE approach
where the underlying mapping T is not a contraction. (See, however, the recent work
by Borkar and Meyn (2000), which is discussed later in this section.) Note that the
class of fixed-point problems which involve nonexpansive mappings arises in a number
of different applications (see the book by Bertsekas and Tsitsiklis (1989) and the
papers by Tseng, Bertsekas, and Tsitsiklis (1990), Borkar and Soumyanath (1997), and
Soumyanath and Borkar (1999)). In particular, it includes value iteration algorithms
for various dynamic programming formulations, including Q-learning algorithms.

Step 1 of the scheme described above is carried out by choosing the scaling based
on a Lyapunov function of an appropriate ODE. The scaling works like a projection
on an appropriate bounded set when the iterates lie outside a certain level set of the
Lyapunov function. Note that we do not need to know the Lyapunov function; all we
need to know is that such a function exists. For this we will use a general converse
Lyapunov theorem that guarantees the existence of a smooth Lyapunov function if the
ODE has a globally asymptotically stable equilibrium point (Wilson (1969)). Given
this scaling scheme, we will be able to show that the scaled iteration has the same
deterministic limiting ODE and hence converges. The argument is similar to the
standard limiting ODE argument of Kushner and Clark (1978). We need to consider
the Skorohod topology instead of the “uniform convergence on compacts” topology
on C([0,∞);�n). Step 2 involves the idea of comparing the original iteration and its
scaled counterpart and showing that the difference between the two is bounded due
to the nonexpansiveness of the mapping F. The idea of comparing the two iterations
appeared first in Jaakola, Jordan, and Singh (1994) in a more limited setting. Step 3
is an application of standard ODE limiting arguments since boundedness is already
established.

It is instructive to compare this approach with that of Borkar and Meyn (2000).
While both are motivated by the same class of algorithms, viz., Q-learning, they
exploit different features of the latter. While our approach is solely based on the
nonexpansivity of an associated map, Borkar and Meyn use a scaling limit of this map,
in the spirit of fluid models in queueing theory. To underscore the difference, note
that the stochastic gradient scheme can be viewed as a fixed-point seeking iteration
of an L2-nonexpansive map when the associated Hessian is uniformly bounded—see
section III.B of Soumyanath and Borkar (1999). Thus it comes under the purview of
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the present scheme, but not under that of Borkar and Meyn (2000) in the absence
of any specification of how the gradient in question behaves near infinity. On the
other hand, the requirement that a convenient scaling limit hold in their sense can
be met without the map being nonexpansive: the former concerns only the behavior
near infinity, but the latter is a global requirement. Thus the approach of Borkar
and Meyn and that of the present paper are quite distinct, and given the paucity of
general purpose criteria for the stability of stochastic recursions of this type, both are
of interest, despite the fact that currently they are aimed at broadly the same class of
problems. More generally, our scheme will work (under mild technical assumptions)
for the recursions wherein the distance between iterates for two instantiations of the
algorithm with the same random inputs, but with two different initial conditions,
remains bounded by a function of the initial conditions.

Finally, we note that for recursive algorithms the idea of using projection as a
way of forcing boundedness is not new. The difference in our approach is that the use
of scaling is only a method of proof, and the objective is to establish the boundedness
of the original iteration without altering the iterates by forcing them to be bounded.

2. Boundedness lemmas. The results in this paper will be divided into two
parts: the boundedness lemmas and the convergence analysis of appropriately scaled
synchronous and asynchronous iterations. The boundedness lemmas are given in the
present section, and rely on the nonexpansiveness property of the concerned map with
respect to some norm ‖ · ‖p, p ∈ (1,∞], for the synchronous case, and the sup-norm
for the asynchronous case. The convergence of the scaled iteration is analyzed in the
next section.

For a set A of �n, we denote by ∂A and Ā the boundary and closure of A,
respectively (i.e., Ā = A ∪ ∂A). We introduce via scaling a map that “projects” any
point onto a bounded and open set B that contains the origin. This is done each time
the point leaves a given set C that contains B. The map is defined as follows.

Definition 2.1. Let B be an open and bounded subset of �n containing the origin,
and let C be a subset of �n that contains B. We define the mapping ΠB,C : �n 
→ B̄
by

ΠB,C(x) = γB,C(x) · x,
where γB,C : R

n → (0, 1] is given by

γB,C(x) =
{
1 if x ∈ C,
max{β > 0 : βx ∈ B̄} if x /∈ C.

Since B̄ is compact, it can be seen that ΠB,C is well defined as a real-valued
function. If B is an open ball with respect to the Euclidean norm centered at the
origin, the map ΠB,C is like a projection on B, but the decision to project depends on
whether the point is outside the larger set C.

Our first result is inspired by a lemma of Jaakola, Jordan, and Singh (1994),
which guarantees convergence of an iteration as long as a scaled version converges.
Their lemma uses a strong homogeneity assumption, which is unnecessary for our
purposes.

Lemma 2.1. Let B be an open and bounded subset of �n containing the origin,
and let C be a subset of �n that contains B. Consider the algorithm

xk+1 = Gk(xk, ξk),(3)

where we assume the following:
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1. {ξk} is a sequence in a measurable space (Ω,F).
2. Gk is nonexpansive in x with respect to some norm ‖ · ‖ for every ξ ∈ Ω:

‖Gk(x, ξ)−Gk(y, ξ)‖ ≤ ‖x− y‖ ∀ x, y, ξ.
3. The sequence {x̃k} generated by the scaled iteration

x̃k+1 = Gk
(
ΠB,C(x̃k), ξk

)
, x̃0 = x0,

converges to some vector x∗ ∈ B.
Then {xk} is bounded.

Proof. Since B is open, there exists a large enough k such that x̃k ∈ B for k ≥ k.
In other words, there exists a large enough k such that

γB,C(x̃k) = 1 ∀ k ≥ k,(4)

and hence

x̃k+1 = Gk(x̃k, ξk) ∀ k ≥ k.(5)

Therefore, for k ≥ k,

‖xk+1 − x̃k+1‖ = ‖Gk(xk, ξk)−Gk(x̃k, ξk)‖ ≤ ‖xk − x̃k‖ ≤ · · · ≤ ‖xk − x̃k‖.
Since {x̃k} is bounded, it follows that {xk} is bounded.

3. Analysis of the scaled iteration. Our objective is to apply Lemma 2.1
to the synchronous and asynchronous algorithms given by (1) and (2). To this end,
we will first establish the convergence of scaled versions of iterations (1) and (2)
by using ODE-type arguments and conclude boundedness of the unscaled versions.
However, the scaling (i.e., the sets B and C in Lemma 2.1) must be chosen so that we
can find a limiting ODE that is easily analyzed. In particular, if the scaling is not
done appropriately, the scaled iteration might not converge. The iterates could, for
example, keep hitting the boundary of B infinitely often and thus never converge, or
the scaling could generate additional fixed points at the boundary that the iterates
might converge to.

Given an ODE ẋ = h(x) in �n with a global asymptotically stable equilibrium
point x∗, a smooth Lyapunov function V : �n 
→ � is a continuously differentiable
function satisfying V (x∗) = 0, V (x) > 0 for all x �= x∗, and such that the inner
product of its gradient ∇V (x) and h(x) is negative for all x �= x∗. A necessary and
sufficient condition for x∗ to be a global asymptotically stable equilibrium point is the
existence of a corresponding Lyapunov function (see Yoshizawa (1966)). Using some
smoothing techniques, Wilson showed that the Lyapunov function can be taken to
be smooth (in fact, infinitely differentiable; see Theorem 3.2 in Wilson (1969)). The
following lemma will be useful to us.

Lemma 3.1. Let ẋ = h(x) be an ODE with a global asymptotically stable equilib-
rium point x∗. Let V be a smooth Lyapunov function for the ODE. For any R > 0,
there is a C > 0 such that the closed ball B̄(x∗, R) of radius R centered at x∗ is in
the interior of the level set L = {x ∈ �n : V (x) ≤ C}.

Proof. Consider the closure B̄(x∗, R) of B(x∗, R). Since V is continuous and
B̄(x∗, R) is compact, the maximum of V over B̄(x∗, R) is attained. Let C =
maxx∈B̄(x∗,R) V (x). Any level set of the form L = {x ∈ �n : V (x) ≤ C}, where
C > C, contains B̄(x∗, R) in its interior.
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3.1. Analysis of the scaled iteration-synchronous case. The scaled version
of the synchronous algorithm of (1) is given by

x̃k+1 = xk + γ(k)
(
h(xk) + wk

)
,

xk+1 = ΠB,C(x̃k+1).
(6)

We first show, under appropriate conditions, that this iteration converges w.p.1 to
the unique equilibrium point of an appropriate ODE. The scaled iteration (6) can be
written as

xk+1 = xk + γ(k)
(
h(xk) + wk

)
+ gk,(7)

where

gk = ΠB,C
[
xk + γ(k)

(
h(xk) + wk

)]− [xk + γ(k)(h(xk) + wk)].(8)

We formally state our assumptions, which for completeness include some of our earlier
assertions on the existence of a global asymptotically stable equilibrium x∗, the choice
of the sets B and C, etc., as follows.

Assumption 3.1. The stepsizes γ(k) satisfy

0 < γ(k) → 0,

∞∑
k=0

γ(k) = ∞.

Assumption 3.2.
1. There exists D such that ‖wk‖ ≤ D for all k.

2. limk→∞
∑mT (k)
m=k γ(m)wm = 0 for all T, where

mT (k) = min

{
m ≥ k :

m∑
l=k

γ(l) ≥ T
}
.

3. h is Lipschitz continuous; i.e., for some L > 0,

‖h(x)− h(y)‖ ≤ L‖x− y‖.
4. The ODE ẋ = h(x) has a globally asymptotically stable equilibrium point x∗.
Remark 3.1. Note that the boundedness condition in Assumption 3.2 is for the

rescaled iterations, not for the original iterations. For the applications we have in
mind, ||wk|| will be bounded by an affine function of ||xk|| and therefore will be
bounded whenever the latter is. But the latter is bounded, by construction, for the
rescaled iterations, and thus Assumption 3.2.1 is satisfied. It is being neither assumed
nor implied a priori that the noise sequence {wk} in the original iterations is bounded;
this will, in fact, be a consequence of our stability result. More generally, it will suffice
to have ||wk|| bounded by a continuous function of xk.

Remark 3.2. This remark concerns Assumption 3.2. The important thing to note
here is that we are imposing this assumption on the projected algorithm, for which
the boundedness of iterates is true by construction, not for the original scheme, whose
stability we intend to prove.

In our analysis, we will use Lemma 2.1 with B = B(0, R) and C = {x ∈ �n :
V (x) < C}, where R > ‖x∗‖, V is a smooth Lyapunov function for the ODE ẋ = h(x),
and the constant C is large enough so that C contains B(0, R̄) for some R̄ > R. Note
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that the vector field of the ODE is transversal to the level sets of V , implying that
if x ∈ ∂C, then (x + ∆h(x)) ∈ C for small enough ∆ > 0. This motivates the choice
of the scaling sets B and C above. Intuitively, if the stepsize is small enough, we can
think of the algorithm as starting at the boundary of B and moving around initially
in C. As it approaches the boundary of C, it gets pushed back to the interior of C,
thanks to the fact that the vector field of the ODE on the boundary points inward
and in spite of the noise term.

In order to proceed with our convergence analysis, we need to define piecewise
linear or piecewise constant interpolated processes based on the iterates {xk}. Let

tk =

k−1∑
m=0

γ(m), k ≥ 1,

with t0 = 0. Let

x̃k+1 = xk + γ(k)
(
h(xk) + wk

)
, k ≥ 0,

Xl(t) =

{
xk for t = tk,(
1− t−tk

γ(k)

)
xk + t−tk

γ(k) x̃
k+1 for t ∈ [tk, tk+1),

Xc(t) = x
k, k ≥ 0, for t ∈ [tk, tk+1),

Gc(t) =

k−1∑
m=0

gm for t ∈ [tk, tk+1),

Wl(t) =

{∑k−1
m=0 γ(m)wm for t = tk,(

1− t−tk
γ(k)

)
Wl(tk) +

t−tk
γ(k)Wl(tk+1) for t ∈ [tk, tk+1).

Thus Xl(·) is right-continuous with left limits (r.c.l.l., for short); that is, Xl(t
+) =

limδ↓0Xl(t+ δ) and Xl(t−) = limδ↓0Xl(t− δ) are well defined, with Xl(t) = Xl(t
+).

In fact, Xl(·) is piecewise linear and continuous everywhere, except at times tk for
which gk �= 0, where it has a jump discontinuity. Define the left-shifted versions of
these processes as follows, for t ≥ 0:

Xkl (t) = Xl(t+ tk),

W k
l (t) =Wl(t+ tk)−Wl(tk),

Xkc (t) = Xc(t+ tk),

Gkc (t) = Gc(t+ tk)−Gc(tk).
Then it is easy to see that for t ≥ −tk

Xkl (t) = X
k
l (0) +

∫ t

0

h
(
Xkc (τ)

)
dτ +W k

l (t) +G
k
c (t)

= Xkl (0) +

∫ t

0

h
(
Xkl (τ)

)
dτ +W k

l (t) +G
k
c (t) + e

k(t),
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where

ek(t) =

∫ t

0

h
(
Xkc (τ)

)
dτ −

∫ t

0

h
(
Xkl (τ)

)
dτ.

By Assumption 3.2, {W k
l (·)} converges to zero uniformly on finite intervals as k → ∞.

We show next that {ek(·)} and {Gkc (·)} behave analogously.
Lemma 3.2. For any T > 0, supt∈[0,T ] ‖ek(t)‖ → 0 as k → ∞.
Proof. By Assumptions 3.2,

‖ek(t)‖ ≤
∫ t

0

∥∥h(Xkc (τ))− h(Xkl (τ))∥∥dτ ≤ L
∫ t

0

∥∥Xkc (τ)−Xkl (τ)∥∥dτ.
Letting

mT (k) = min

{
m ≥ k :

m∑
l=k

γ(m) ≥ T
}
,

we have

sup
t∈[0,T ]

‖ek(t)‖ ≤ L
∫ T

0

∥∥Xkc (τ)−Xkl (τ)∥∥dτ
≤
mT (k)∑
m=k

γ(m)L sup
τ∈[tm,tm+1)

∥∥Xkc (τ)−Xkl (τ)∥∥

≤
mT (k)∑
m=k

γ(m)L(tm+1 − tm)
∥∥h(xm) + wm∥∥

≤
mT (k)∑
m=k

γ2(m)LD′,

where

D′ = D + sup
x∈C

‖h(x)‖,

and the second inequality is a consequence of the definitions of Xkl (·) and Xkc (·). By
Assumption 3.1, we have

∑mT (k)
m=k γ2(m) → 0 as k → ∞, implying the result.

To analyze the r.c.l.l. processes Xkl (·), Gkc (·), we recall from Billingsley (1968) the
space D([0, T ];�n) of r.c.l.l. functions from [0, T ] to �n (where T > 0), equipped with
the Skorohod topology. This topology is defined so that fk(·) → f(·) in D([0, T ];�n)
if and only if there exist continuous, nondecreasing, onto functions λk : [0, T ] →
[0, T ] such that fk(λk(t)) → f(t) and λk(t) → t, uniformly on [0, T ]. We denote
by D([0,∞);�n) the space of r.c.l.l. functions from [0,∞) to �n, defined such that
fk(·) → f(·) in D([0,∞);�n) if and only if their respective restrictions to [0, T ]
converge in D([0, T ];�n) for every T > 0. Both D([0, T ];�n) and D([0,∞);�n) are
separable and metrizable with a complete metric.

We recall from Billingsley (1968, p. 118) the following characterization of relative
compactness in D([0, T ];�n): a set A ⊂ D([0, T ];�n) is relatively compact if and only
if

sup
x(·)∈A

sup
t∈[0,T ]

‖x(t)‖ <∞(9)
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and

lim
δ→0

sup
x(·)∈A

sup
t1≤t≤t2, t2−t1≤δ

min
{‖x(t)− x(t1)‖, ‖x(t2)− x(t)‖} = 0,(10a)

lim
δ→0

sup
x(·)∈A

sup
t1,t2∈[0,δ)

‖x(t2)− x(t1)‖ = 0,(10b)

lim
δ→0

sup
x(·)∈A

sup
t1,t2∈[T−δ,T )

‖x(t2)− x(t1)‖ = 0.(10c)

This generalizes the well-known Arzelà–Ascoli theorem for C([0, T ];�n), the space of
continuous functions from [0, T ] to �n with the sup-norm.

Lemma 3.3. The sequences {Xkl (·)} and {Gkc (·)} are relatively compact in
D([0,∞);�n).

Proof. It suffices to check the relative compactness of their restrictions to [0, T ] in
D([0, T ];�n) for arbitrary T > 0. Let us fix T > 0. Since {xk} and {gk} are bounded,
so are the sequences {Xkl (·)} and {Gkc (·)}. Thus (9) above holds. It is easy to see
that (10a)–(10c) will follow if any two discontinuity points of x(·) ∈ A are separated
by at least some ∆ > 0. For the processes under consideration, discontinuities occur
at some of the tk’s. Let there be a discontinuity at tk for some k. Then gk−1 �= 0 and
xk ∈ ∂B. Let

d = min
x∈∂B, y∈∂C

‖x− y‖ > 0,

and define

m(k) = max

{
j :

j∑
i=0

γ(k + i) ≤ d

D′

}
,

where D′ is as before. We claim that xk+1, xk+2, . . . , xk+m(k) are in the interior of C.
To see this, notice that if

γ(k) <
d

D′ ,

then

‖x̃k+1 − xk‖ < d,
implying that x̃k+1 is in the interior of C and thus xk+1 = x̃k+1. Therefore, gk = 0,
implying no discontinuity at tk+1. Similarly, if

j−1∑
i=0

γ(k + i) <
d

D′ ,

then xk+i is in the interior of C for i = 1, . . . , j. This implies the claim that there are
no discontinuities in the interval [tk, tk + d/D

′). Let ∆ = d/2D′.
Let K = {k : gk = 0}. Let {Xkl (·)} and {Gkc (·)} converge in D([0, T ];�n) to

some X(·) and G(·), respectively, along a subsequence of K. (From the above proof,
it is easy to see that K will be infinite: once k is large enough so that γ(k) < d

D′ ,
each k with gk �= 0 will lead to gk+1 = 0.) Then the limits must satisfy

X(t) = X(0) +

∫ t

0

h
(
X(τ)

)
dτ +G(t).
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Furthermore, from the nature of our notion of convergence in D([0, T ];�n), it is clear
that G(·) is piecewise constant r.c.l.l. with G(0) = 0 and that any two discontinuities
of G(·) (hence of X(·)) are separated by at least ∆ on the time axis. Recall that for
x(·) ∈ D([0, T ];�n), x(t+) = limt<s→t x(s) and x(t−) = limt>s→t x(s).

Lemma 3.4. We have G(·) ≡ 0, implying Ẋ(t) = h(X(t)).
Proof. Let

τ = inf
{
t > 0 : X(t+) �= X(t−)

}
.

By the right continuity at 0 and the fact that any two discontinuity points are sepa-
rated by at least ∆ > 0, it follows that τ > 0. Let ‖X(τ+)−X(τ−)‖ = δ > 0. Then,
by our notion of convergence, we can find τk < τ

′
k, k ≥ 0, such that τ ′k − τk → 0 and∥∥Xn(k)l (τ ′k)−X(τ+)
∥∥→ 0,(11)

∥∥Xn(k)l (τk)−X(τ−)
∥∥→ 0.(12)

Recall that ‖h(·)‖ is bounded on C and that ek(·) and W k
l (·) converge to 0 uniformly

on compact sets. Also, any two discontinuities of Xnl (·) must be at least ∆ apart.
Thus, for sufficiently large k, there must exist a τ̂k ∈ [τk, τ

′
k] such that

∥∥Xn(k)l (τ̂k)−Xn(k)l (τ̂−k )
∥∥ ≥ δ

2
.

But then X
n(k)
l (τ̂+

k ) ∈ ∂B, and Xn(k)l (τ̂−k ) is not in the interior of C. Once again,
using (11) and (12) and the fact that two discontinuities of Xnl (·) must be at least
∆ apart, we conclude that X(τ+) ∈ ∂B and X(τ−) ∈ ∂C. But then X(·) satisfies
Ẋ(t) = h(X(t)) on [0, τ) (since G(·) ≡ 0 on [0, τ)), and therefore an interior trajectory
of this ODE in C hits ∂C, a contradiction of our choice of C. (Since C is a level set
of the Lyapunov function V (·), h(·) is transversal to ∂C everywhere and is directed
towards the interior.) This contradiction proves that G(·) ≡ 0.

The preceding lemma allows us to prove the following proposition, the proof of
which proceeds along standard lines; see, e.g., Kushner and Clark (1978), Benveniste,
Metivier, and Priouret (1990).

Proposition 3.1. Let Assumptions 3.1 and 3.2 hold. The scaled synchronous
algorithm (6) converges to x∗.

3.2. Analysis of the scaled iteration-asynchronous case. The scaled ver-
sion of the asynchronous algorithm of (2) is given by

x̃k+1
i = xki + γ

(
ν(k, i)

) (
hi(x

k) + wki
)
I(i ∈ Y k),

xk+1 = ΠB,C(x̃k+1).
(13)

We confine ourselves to nonexpansive mappings with respect to the sup-norm. We also
impose a further assumption on the stepsize. In particular, we will use the following
assumptions in place of Assumption 3.1. We use [a] to denote the integer part of a
real number a.

Assumption 3.3. The stepsizes γ(k) are eventually nonincreasing and satisfy

0 < γ(k) → 0,

∞∑
k=0

γ(k) = ∞.
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In addition, for all β ∈ (0, 1),

sup
k

γ([kβ])

γ(k)
<∞

and

lim
k→∞

∑[kβ]
m=0 γ(m)∑k
m=0 γ(m)

= 1, uniformly in β ∈ [β, 1].

Assumption 3.4. There exists a Γ > 0 such that for all i

lim inf
k→∞

1

k + 1
ν(k, i) ≥ Γ.

Furthermore, for all T > 0, the limit

lim
n→∞

∑ν(mT (n),i)
k=ν(n,i) γ(k)∑ν(mT (n),j)
k=ν(n,j) γ(k)

exists for all i, j.
Theorem 3.2 of Borkar (1998) implies that the above limit will in fact be 1, a fact

we use later. In addition, we change Assumption 3.2 to the following.
ASSUMPTION 3.2′. For T,mT (k) as before,

lim
k→∞

mT (k)∑
m=k

γ(m)wl(m) = 0,

where {l(m)} is any increasing sequence of nonnegative integers satisfying l(m) ≥ m
for all m.

Examples of stepsizes that satisfy Assumption 3.3 include γ(k) = 1/k, γ(k) =
1/(k log k), etc., for k ≥ 2, with suitable modifications for k = 0, 1. The essential
meaning of Assumption 3.4 is that all components are updated comparably often.

Under Assumptions 3.2′, 3.3, and 3.4, the analysis closely mimics that of the syn-
chronous case, except that the ODE-based convergence analysis of Kushner and Clark
(1978) and Benveniste, Metivier, and Priouret (1990) is replaced by the corresponding
analysis of Borkar (1998). In order to avoid undue repetition, we shall provide only a
brief sketch. The key result of Borkar (1998) that is used here is briefly described in
the appendix.

The first simplifying assumption that we make is that Y k is a singleton for all k;
i.e., only one component is updated at a time. This is justified as in Borkar (1998), the
idea being that one unfolds a single iteration that updates d components, d ≥ 2, into
d iterations, in which each iteration updates a single component. There is, however,
a complication in that this artificially introduces bounded delays; that is, the update
of the ith component at time k + 1 may use the value of the jth component updated
not at time k, but at time k−m for some m ≤ n. These delays can be handled as in
Borkar (1998). For simplicity of exposition, we ignore the delays here.

Thus we have Y k = {φk}, where φk is the index of the component updated at
time k, and the iteration (13) is written as

xk+1 = xk +Dk(h(xk) + wk) + gk,
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where

Dk = diag
[
γ(ν(k, 1))I(φk = 1), . . . , γ(ν(k, n))I(φk = n)

]
and

gk = ΠB,C
[
xk +Dk(h(xk) + wk)

]− [xk +Dk(h(xk) + wk)].
Let us denote

µ̄k =
[
I(φk = 1), . . . , I(φk = n)

]
and set γ̄(m, j) = γ(ν(m, j)), γ̂(m) = γ̄(m,φm), t0 = 0, and tk =

∑k−1
m=0 γ̂(m), k ≥ 1.

Let us define piecewise linear and piecewise constant processes as follows:

µ(t) = µ̄k for t ∈ [tk, tk+1),

Xc(t) = x
k for t ∈ [tk, tk+1),

Gc(t) =

k−1∑
m=0

gm for t ∈ [tk, tk+1),

Xl(t) =

{
xk for t = tk,(
1− t−tk

γ(k)

)
xk + t−tk

γ(k) x̃
k+1 for t ∈ [tk, tk+1),

where

x̃k+1 = xk +Dk
(
h(xk) + wk

)
,

Wl(t) =

{∑k−1
m=0D

mwm for t = tk,(
1− t−tk

γ(ν(k,φk))

)
Wl(tk) +

t−tk
γ(ν(k,φk))

Wl(tk+1) for t ∈ [tk, tk+1).

Define the corresponding left-shifted processes as follows, for t ≥ 0:

Xkl (t) = Xl(t+ tk),

Xkc (t) = X
k
c (t+ tk),

W k
l (t) =Wl(t+ tk)−Wl(tk),

Gkc (t) = Gc(t+ tk)−Gc(tk),

µk(t) = µ(t+ tk).

For an n-dimensional probability vector p = [p1, . . . , pn], let diag(p) denote the
diagonal matrix whose ith diagonal entry is pi. Then, letting µ∗ denote the uniform
probability vector [1/n, . . . , 1/n], we have, for t ≥ 0,

Xkl (t) = X
k
l (0) +

∫ t

0

diag(µ∗)h
(
Xkl (τ)

)
dτ +W k

l (t) +G
k
c (t) + e

k(t) + ηk(t),
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ηk(t) =

∫ t

0

(
diag(µk(τ))− diag(µ∗)

)
h
(
Xkl (τ)

)
dτ,

ek(t) =

∫ t

0

diag
(
µk(τ)

)(
h
(
Xkc (τ)

)− h(Xkl (τ)))dτ.
The convergence of {W k

l (·)} to 0 follows from Assumption 3.2′. Convergence of
{ek(·)} to 0 follows along the lines of the preceding subsection. The proof of Lemma
3.3 now goes through as before, with D′ = supz∈C maxi |hi(z)|+D. We also have the
following.

Lemma 3.5. For each T > 0,

lim
k→∞

supt∈[0,T ]||ηk(t)|| = 0.

Proof. As before, one verifies that the set {{Xkl (t), t ∈ [0, T ]}, k ≥ 1} is relatively
compact in D([0, T ];�n). Thus one may drop to a subsequence of {k}, denoted by
{k} again by abuse of notation, such that Xkl (·) → Z(·) for some Z(·) ∈ D([0, T ];�n).
Since the map x(·) ∈ D([0, T ];�n) → x(t) ∈ �n for any t ∈ [0, T ] is continuous at
z(·) if z(·) is continuous at t (see Billingsley (1968, p. 121)), and also any x(·) ∈
D([0, T ];�n) has at most countably many points of discontinuity (see Borkar (1998,
p. 119)), it follows that Xkl (t) → Z(t) for almost every t ∈ [0, T ]. By the dominated
convergence theorem, one then has

lim
k→∞

∫ t

0

(
diag(µk(τ))− diag(µ∗)

)(
h(Xkl (τ))− h(Z(τ))

)
dτ = 0.

Since the left-hand side (L.H.S.) has a bounded derivative in t, it is equicontinuous. It
is clearly bounded for each fixed t. Thus a straightforward application of the Arzelà–
Ascoli theorem shows that the above convergence is uniform in t ∈ [0, T ]. Therefore
the claim would follow if we show that

lim
k→∞

∫ t

0

(
diag(µk(τ))− diag(µ∗)

)
h(Z(τ))dτ = 0,

uniformly in [0, T ]. The uniformity of convergence over [0, T ] will follow as before
from the Arzelà–Ascoli theorem if we prove pointwise convergence on [0, T ]. In turn,
the latter follows if we show that for each t

lim
k→∞

∫ t

0

(
diag(µk(τ))− diag(µ∗)

)
f(τ)dτ = 0

for any f ∈ L2([0, T ];�n). Consider µk(·), k ≥ 1, as elements of the space U of
measurable maps from [0,∞) to the space of probability vectors in �n, with the

coarsest topology that renders continuous the maps µ(·) ∈ U → ∫ t
0
〈µ(s), f(s)〉ds for

all t > 0 and f as above. It is easy to deduce from the Banach–Alaoglu theorem that
U is compact metrizable. Let µ̄(·) be any limit point of {µk(·)} in U as k → ∞. It
follows from Theorem 3.2 of Borkar (1998) that µ̄ = µ∗. The claim follows.

The proof of Lemma 3.4 now goes through as before. Thus the asynchronous
iterates, suitably interpolated, track the ODE ẋ(t) = (1/n)h(x(t)), which has the
same qualitative behavior as ẋ(t) = h(x(t))—the difference is a mere time scaling. As
in Borkar (1998), we then obtain the following proposition.
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Proposition 3.2. Let Assumptions 3.2′, 3.3, and 3.4 hold. The scaled asyn-
chronous algorithm (6) converges to x∗.

The only difference with Borkar (1998) will be that we are dealing with the
projected algorithm here; therefore we have to allow for discontinuous trajectories.
But this can be dealt with exactly as in the synchronous case.

4. Convergence theorems for stochastic approximation. Now we consider
the situation in which {wk} is a random noise sequence. Specifically, we assume that
it is adapted to a family of increasing σ-fields {Fk+1} to which {xk+1} is also adapted
and satisfies

E[wk/Fk] = 0

for k ≥ 1. We strengthen Assumption 3.1 to include

∞∑
0

γ(k)2 <∞,

which is a standard assumption in stochastic approximation theory. We further as-
sume, in place of Assumptions 3.1 and 3.2′, that

E[||wk||2/Fk] ≤ H(xk)

for some continuous H(·). Assumptions 3.3, 3.4 remain as before. We shall refer to
the modified Assumptions 3.1, 3.2 as Assumptions 3.1(m), 3.2(m), respectively.

Note that the only use of Assumption 3.2 has been to ensure that there exists a
∆ > 0 such that consecutive jump times of Xl(·) are at least ∆ apart. However, this
∆ can depend on sample path in the present case without affecting the proof in any
way. Since we are seeking almost sure convergence, it suffices to show the following.

Lemma 4.1. There exists w.p.1 a (possibly sample path dependent) ∆ with the
above property.

Proof. Suppose that the claim is not true for some sample path. Let {tm(k)}
denote the successive jump times, with +∞ being a possible value for these. (In
particular, tm(k) = ∞ for k > k0 if there are only k0 jumps.) Then for the sample
path under consideration, these are all finite, and moreover, there exist consecutive
jump times tm(k(l)+1) > tm(k(l)) such that tm(k(l)+1) − tm(k(l)) → 0 as l → ∞. Let
K = supx∈C ||h(x)||. Since the iterates move from ∂B to ∂C between (tm(k(l)))+ and
(tm(k(l)+1))−, we must have∥∥∥∥∥∥

m(k(l)+1)−1∑
i=m(k(l))

γ(i)wi

∥∥∥∥∥∥ ≥ d−
(
tm(k(l)+1) − tm(k(l))

)
K ≥ d

2

for l sufficiently large. Letting Ψl denote the L.H.S. above, it then follows that Ψl ≥ d
2

infinitely often (i.o.). We shall prove that

P

(
Ψl ≥ d

2
, i.o.

)
= 0,

which will imply the desired claim. By the Chebyshev inequality, we have

∑
k

P

(
ψk ≥ d

2

)
≤
∑
k

4E[||∑m(k+1)−1
i=m(k) γ(i)wi||2I(tm(k) <∞)]

d2
.
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Summing over k, the R.H.S. sums to a quantity bounded by

4
∑
i γ(i)

2E[||wi||2]
d2

≤ 4(
∑
i γ(i)

2)supx∈C |H(x)|
d2

<∞,

in view of our hypotheses on {wk}. The claim follows from the Borel–Cantelli
lemma.

Our hypotheses also ensure that Assumption 3.2 holds a.s. To see this, let Mk =∑k
i=0 γ(i)w

i for i ≥ 0. Then (Mk,Fk+1) is a square-integrable martingale. Its
quadratic variation process is

k∑
i=0

γ(i)2

(
E

[ ||wi||2
F i−1

]
−
∥∥∥∥E
[
wi

F i−1

]∥∥∥∥
2
)
,

which is bounded by the finite quantity 2supx∈C |H(x)|∑i γ(i)
2. By Theorem 3.3.4,

p. 53, of Borkar (1995), {Mk} converges a.s. It then follows that Assumption 3.2
holds a.s. Hence we have the following counterpart of Proposition 3.1.

Lemma 4.2. Under the above hypotheses, the scaled synchronous algorithm (5)
converges to x∗ a.s.

For the asynchronous case, note that (
∑k
m=0 γ(ν(m, i))w

m
i ,Fk) is a (square-

integrable) martingale for each i. Considerations similar to those above then lead
to the following stochastic counterpart of Proposition 3.2.

Lemma 4.3. Under the above hypotheses, the scaled asynchronous algorithm
converges to x∗ a.s.

We now specialize to algorithms of the form

xk+1 = xk + γ(k)(F (xk, ξk)− xk)
in synchronous form and

xk+1
i = xki + γ(ν(k, i))(Fi(x

k, ξk)− xki )I(i ∈ Y k)
in asynchronous form, where {ξk} is an independently and identically distributed
(i.i.d.) stochastic noise sequence taking values in some measurable space, and the
function F (·, ·) is assumed to satisfy the nonexpansivity property:

||F (x, u)− F (y, u)||p ≤ ||x− y||p
for some p ∈ (0,∞] and all x, y, u. Let T (x) = E[F (x, ξk)]. Then

||T (x)− T (y)||p ≤ ||x− y||p.
The aim is to find a fixed point x∗ of T (·), i.e., a point x∗ satisfying x∗ = T (x∗), which
we assume to exist uniquely. Define h(x) = T (x) − x and wk = F (xk, ξk) − T (xk),
which casts this algorithm into the form analyzed above. Note, in particular, that
in view of our hypotheses on F , E[||wk||2/Fk] ≤ c(||xk||2 + 1) for some c > 0. The
foregoing then leads to the following.

Proposition 4.1. Let {xk} be generated by the synchronous stochastic approx-
imation algorithm (1). Let Assumptions 3.1(m) and 3.2(m) hold. Then the sequence
{xk} converges to x∗ w.p.1.

Proof. The theorem is an application of Lemmas 2.1 and 4.2, the global asymp-
totic stability of the equilibrium x∗ for the ODE ẋ(t) = T (x(t)) − x(t) being proved
in Borkar and Soumyanath (1997).
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Proposition 4.2. Let {xk} be generated by the asynchronous version of the above
algorithm. Let Assumptions 3.1(m), 3.2(m), 3.3, and 3.4 hold with the modifications
stated above. Then the sequence {xk} converges to x∗ w.p.1.

Proof. The theorem is an application of Lemmas 2.1 and 4.3, the global asymp-
totic stability of the ODE ẋ(t) = (1/n)(T (x(t)) − x(t)) being ensured as before by
observing that the scalar 1/n on its R.H.S. represents a mere time scaling.

5. Analysis of Q-learning algorithms. The convergence theorems above are
directly applicable to the analysis of Q-learning algorithms for discounted and SSP
dynamic programming problems. As discussed in Bertsekas (2001, Vol. 1), discounted
cost problems can be formulated as SSP problems. We will therefore restrict ourselves
to SSP problems. Here we have a controlled discrete-time dynamic system where at
state i the use of a control u specifies the transition probability pij(u) to the next
state j. There are a finite number of states. At state i, the control u is constrained
to take values from a given finite control set U(i). The cost of using u at state i and
moving to state j is denoted by g(i, u, j). We assume that there is a special cost-free
termination state 0. Once the system reaches that state, it remains there at no further
cost; that is, p00(u) = 1 for all u. We denote by 1, . . . , n the states other than the
termination state 0.

The total expected cost associated with an initial state i and a policy π =
{µ0, µ1, . . .}, where each µk maps states i into controls µk(i) ∈ U(i), is

Jπ(i) = lim
N→∞

E

{
N∑
k=0

g
(
xk, µk(xk), xk+1

) ∣∣∣ x0 = i

}
.

Note that the discounted cost problem with discount factor α ∈ (0, 1) and states
i = 1, . . . , n is obtained as the special case of an SSP problem, where pi0(u) = 1− α
and g(i, u, 0) = 0 for all i = 1, . . . , n and u ∈ U(i).

A stationary policy is a policy of the form π = {µ, µ, . . .}, and its corresponding
cost function is denoted by Jµ(i). We call a stationary policy π proper if there exists
an integer m such that

max
i=1,...,n

P{xm �= 0 | x0 = i, π} < 1,

and call π improper otherwise. We assume the following.
Assumption 5.1. There exists at least one proper policy.
Assumption 5.2. Every improper policy results in infinite expected cost from at

least one initial state.
These assumptions, introduced by Bertsekas and Tsitsiklis (1991), have become

standard in the analysis of SSP problems and are sufficient to show the validity of
the major types of dynamic programming results. For example, the value iteration
method converges to the optimal cost function J∗, which is the unique solution of
Bellman’s equation

J∗(i) = min
u∈U(i)

n∑
j=0

pij(u)
(
g(i, u, j) + J∗(j)

)
, i = 1, . . . , n,

J∗(0) = 0.
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Q-learning algorithms update estimates of the Q-factors, defined for all pairs (i, u)
by

Q∗(i, u) =
n∑
j=0

pij(u)
(
g(i, u, j) + J∗(j)

)
.

From this definition and Bellman’s equation, we see that the Q-factors are the unique
solution of the following system of equations:

Q(i, u) =

n∑
j=0

pij(u)

(
g(i, u, j) + min

v∈U(j)
Q(j, v)

)
, i = 1, . . . , n, u ∈ U(i),

Q(0, u) = 0,

which may be viewed as Bellman’s equation for Q-factors.
Let us generically denote by Q the vector of Q-factors. The synchronous version

of Q-learning is given by

Qk+1 = Qk + γ(k)
(
F (Qk, ξk)−Qk),(14)

where {ξk} is a sequence of independent vector-valued random variables taking the
values 0, 1, . . . , n, with probabilities Prob (ξkiu = j) = pij(u) for all k,

F (Q, ξ)(i, u) = g(i, u, ξiu) + min
v∈U(ξiu)

Q(ξiu, v).

The initial condition is assumed to satisfy Q0(0, u) = 0, which ensures that Qk(0, u) =
0 for all k. Also, for i = 0, ξiu = 0 w.p.1. Thus g(i, u, ξiu) = g(0, u, 0) = 0 (because 0
is a cost-free state) and Q(ξiu, u) = Q(0, u) = 0 for all u. Thus F (Q, ξ)(0, u) = 0 for
all u. In fact, this permits us to consider the iteration of Qk(i, u) for 1 ≤ i ≤ n alone,
which we denote again by Qk by abuse of notation. Define

T (Q)(i, u) =
n∑
j=1

pij(u)F (Q, j)

and

wk = F (Qk, ξk)− T (Qk).
Assumption 3.2 applies to the stepsize γ(k) and the noise wk for the rescaled iterates.

The following two properties of the mapping T are significant for our purposes:
1. T is nonexpansive with respect to the sup-norm.
2. The unique fixed point Q∗ of the mapping T is a global asymptotically stable

equilibrium of the ODE Q̇ = T (Q)−Q.
Property 1 follows from the nonexpansiveness of F , which can be verified by

noting that for all Q1, Q2 ∈ R
n+m we have

F (Q1, ξ)(i, u)− F (Q2, ξ)(i, u) = min
u′
Q1(ξiu, u

′)−min
u′
Q2(ξiu, u

′)

≤ Q1(ξiu, u2)−Q2(ξiu, u2)

≤ max
(i,u)

|Q1(i, u)−Q2(i, u)|

≤ ‖Q1 −Q2‖∞,
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where u2 achieves the minimum in minu′ Q2(ξiu, u
′). A symmetric argument shows

that

F (Q2, ξ)(i, u)− F (Q1, ξ)(i, u) ≤ ‖Q1 −Q2‖∞.
Property 2 follows from the analysis of Bellman’s equation for SSP problems

(see e.g., Bertsekas (2001, Vol. 2)), and from the analysis of ODE maps involving
nonexpansive mappings in Borkar and Soumyanath (1997). Using the facts that Q∗

is the unique fixed point of T and that T is nonexpansive, it follows that any solution
trajectory Q(t) converges to Q∗. Moreover, the analysis in Borkar and Soumyanath
(1997) implies that ‖Q(t) − Q∗‖∞ is nonincreasing, establishing that Q∗ is a global
asymptotically stable equilibrium point for the ODE.

The mapping F , in addition to being nonexpansive, satisfies

E
[
F (Qk, ξk) | Fk] = T (Qk),

where

Fk = σ(xk, . . . , x0, ξk−1, . . . , ξ0).

The properties above are sufficient to show that all of the assumptions of Propo-
sition 4.1 are satisfied, thus implying the following convergence result.

Proposition 5.1. The sequence {Qk} generated by the synchronous Q-learning
iteration (14) converges to Q∗ w.p.1.

5.1. Analysis of the SSP asynchronous Q-learning. The asynchronous ver-
sion of (14) is what is usually referred to as the Q-learning algorithm. It is written
as

Qk+1(i, u) = Qk(i, u) + γ
(
ν(k, φk)

)(
F (Qk, ξk)(i, u)−Qk(i, u))I((i, u) = φk),(15)

where {ξk} is as defined above and {φk} is a random process. Again we impose
Assumption 3.2′ on the stepsize, and we assume in addition that

1.

lim inf
k→∞

1

k + 1
ν(k, i, a) ≥ ∆ for some ∆ > 0.

Furthermore, for all T > 0, the limit

lim
n→∞

∑ν(mT (n),i,a)
k=ν(n,i,a) γ(k)∑ν(mT (n),j,b)
k=ν(n,j,b) γ(k)

exists w.p.1 for all i, j, a, b.
2. {γ(k)} is as in Assumption 3.3.

Again the mapping F satisfies

E
[
F (Qk, ξk) | Fk] = T (Qk),

with

Fk = σ(xk, . . . , x0, ξk−1, . . . , ξ0, φk, . . . , φ0).

Similarly, the assumptions of Proposition 4.2 are satisfied, and we have the following.
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Proposition 5.2. The sequence {Qk} generated by the asynchronous Q-learning
iteration (15) converges to Q∗ w.p.1.

As already mentioned, the case in which more than one component is updated
at a time can be reduced to the one above, modulo bounded delays, which can be
separately taken care of as in Borkar (1998).

Remark 5.1. The usual formalism for Q-learning algorithms (see, e.g., Bertsekas
and Tsitsiklis (1996)) presupposes the availability of a simulation device that generates
independent random variables {ξk} as above. Alternatively, one may consider it as
an on-line scheme where the samples are generated by a single simulation or actual
run {Xk} of the controlled Markov chain with the control process {Zk}. Then it is
asynchronous, with φk = (Xk, Zk). The above framework still applies if we use the
representation Xk+1 = f(Xk, Zk, ξk), where {ξk} are i.i.d. and f is a suitable map.
Such a representation is always possible (albeit on a possibly augmented probability
space) by the stochastic realization theoretic results of Borkar (1993). See Kifer (1986)
for the uncontrolled case.

6. Some extensions. This section points out some important extensions of the
preceding analysis. The first is an extension of Lemma 2.1. It is possible to replace
the assumption of nonexpansivity with respect to a norm there by nonexpansivity
with respect to the span seminorm || · ||s, defined by

||x||s = max
i=1,...,n

xi − min
i=1,...,n

xi,

where x1, . . . , xn are the components of x. In this case, however, a weaker boundedness
result is obtained, which is the subject of the following lemma. This lemma is used
crucially in our companion paper on Q-learning in average cost control (Abounadi,
Bertsekas, and Borkar (2001)).

Lemma 6.1. Let B be an open and bounded subset of �n containing the origin,
and let C be a subset of �n that contains B. Consider the algorithm

xk+1 = Gk(xk, ξk),

where we assume the following:
1. {ξk} is a sequence in a measurable space (Ω,F).
2. Gk is nonexpansive in x with respect to the span seminorm; i.e., for every
ξ ∈ Ω,

||Gk(x, ξ)−Gk(y, ξ)||s ≤ ||x− y||s ∀ x, y, ξ.

3. The sequence {x̃k} generated by the scaled iteration

x̃k+1 = Gk(ΠB,C(x̃k), ξk), x̃0 = x0,

converges to some vector x∗ ∈ B.
Then {||xk||s} remain bounded.

Proof. The proof is identical to that of Lemma 2.1.
The second extension relates to the Q-learning schemes described above. One

can also allow for random costs under mild technical conditions. Thus, let a real or
simulated transition from i to j under control u at time k lead to a random cost ζk+1

iuj .

We suppose that E[ζk+1
iuj | Fk+1] = g(i, u, j) and E[(ζk+1

iuj )2 | Fk+1] ≤ M w.p.1 for
some constant M < ∞. (Compare with Remark 3.2.) Then the foregoing analysis
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goes through exactly as before with one modification: the “martingale difference”
sequence wk gets replaced by ŵk, defined as follows: its (iu)th component is ŵkiu =
wkiu + ζ

k+1
iuξk

iu

− g(i, u, ξkiu), where wkiu is the (iu)th component of wk. Note that {ŵk}
is also a martingale difference sequence. An example is the case in which ζk+1

iuj =

g(i, u, j)+ψk+1
iuj , where {ψniuj} are i.i.d. zero mean, bounded variance random variables

representing additive noise.

7. Conclusions. In this paper we have studied the convergence of synchronous
and asynchronous algorithms involving nonexpansive maps and additive deterministic
or stochastic noise. We have used the ODE approach, but we have dispensed with
the restrictive boundedness assumption on the generated iterates that this approach
requires. The nonexpansiveness property ensures that the distance between the it-
erates of two instantiations of the algorithm, driven by the same noise sequence and
differing only in the initial conditions, remains bounded. In fact, our arguments will
work for any algorithm for which this is true, and the associated ODE has a glob-
ally asymptotically stable equilibrium, under mild technical conditions on noise as
above. As a special case of our analysis, we have discussed Q-learning algorithms
for SSP problems, and we have refined the assumptions under which convergence can
be proved. Our results used Lemma 2.1 for the boundedness argument. We can
likewise use Lemma 6.1 to prove boundedness for certain Q-learning algorithms for
the average cost dynamic programming problem. The analysis of these algorithms
requires considerable additional machinery and is given separately in a companion
paper (Abounadi, Bertsekas, and Borkar (2001)).

Appendix. Here we briefly recall the main results of Borkar (1998) that are used
in the paper. Let F (·, ·) = [F1(·, ·), . . . , Fd(·, ·)]T : Rd × Rm → Rd be Lipschitz in
its first argument uniformly w.r.t. the second. Consider the stochastic approximation
algorithm of the form

xk+1 = xk + γ(k)F (xk, ξk), k ≥ 0,

for xk = [xk1 , . . . , x
k
d]. Let h(x) = E[F (x, ξ1)]. We assume that the ODE ẋ(t) =

h(x(t)) has a globally asymptotically stable equilibrium x∗. The asynchronous version
of this algorithm is given by

xk+1
i = xki + γ

(
ν(k, i)

)
I(i ∈ Y k)Fi(xk−τ1i(k)1 , . . . , x

k−τdi(k)
d , ξk), 1 ≤ i ≤ d,

for k ≥ 0, where
(1) {Y k} is a set-valued random process taking values in the subsets of the set

{1, . . . , d}, representing the components that do get updated at time k.
(2) {τij(k), 1 ≤ i, j ≤ d, k ≥ 0} are bounded random delays. One usually takes

τii(k) = 0 for all i, though this is not necessary. (Borkar (1998) also relaxes
the boundedness condition on delays to a conditional moment bound.)

(3) ν(k, i) =
∑k
m=0 I(i ∈ Y m) denotes the number of times component i gets

updated until time k.
Let Assumptions 3.1–3.4 hold. The main result of Borkar (1998) is the following.

THEOREM A.1. If {xk} remain w.p.1 bounded, they converge to x∗ w.p.1.
We shall briefly describe what the proof entails, using the notation of section 3.2

above. The intuition behind why the bounded delays don’t affect the asymptotics
is simple. Recall that the passage from the discrete iteration to an interpolated
“approximation to ODE” involves the time scaling k → tk. This scaling shrinks the
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time axis more and more as k increases, because tk+1 − tk → 0. If K denotes a bound
on the delays, the intervals [k, k+1, . . . , k+K] map to [tk, tk+

∑k+K−1
m=k γ(m)], which

become smaller and smaller as k increases, because of which the delays as seen by
the ODE approximation on the rescaled time become smaller and smaller, becoming
asymptotically negligible. This intuition can be made precise quite easily. In fact,
it simply contributes one additional asymptotically negligible error term to the usual
ODE analysis of stochastic approximations. See Lemma 3.3 of Borkar (1998) for
details.

The harder problem is to deal with the Y k’s, i.e., with the fact that not all
components are getting updated at each step. As in section 3.2 above, one hasXkl (t) =

Xkl (0) +
∫ t
0
diag(µk(τ))h(Xkl (τ))dτ + error terms, the latter going to zero w.p.1 as

k → ∞. View µk(·) as elements of the space of measurable maps [0,∞) → {d-
dimensional probability vectors}, with the coarsest topology that renders continuous

the maps µ(·) → ∫ T
0
〈µ(t), g(t)〉dt for any T > 0 and any g : [0, T ] → Rd that

satisfies
∫ T
0
||g(t)||2dt <∞. (Recall Lemma 3.5 above.) This is a compact metrizable

topology. Let µk(·) converge along a subsequence to some µ̂(·) in this topology. Then
the limiting trajectory of Xkl (·) along this subsequence will satisfy the nonautonomous
ODE

ẋ(t) = diag(µ̂(t))h(x(t)).

The additional conditions on γ(k) stipulated in Assumptions 3.3 and 3.4 are required
to further ensure that µ̂(t) in fact equals µ∗ for almost every t. See Borkar (1998) for
details.

One can, in fact, work with the nonautonomous ODE itself to draw the same
conclusions by using Lemma 2.4 of Borkar (1998), the only requirement being that
the components of µ̂(t) remain uniformly bounded away from zero from below for
almost every t. This is a weaker version of the statement “all components get updated
comparably often.” Unfortunately, no simple transparent sufficient condition to ensure
this (short of Assumptions 3.3, 3.4) seems available.

Acknowledgment. Thanks are due to John Tsitsiklis, whose suggestions re-
sulted in important simplifications of the lemmas in section 2.
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