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Abstract

We consider linear least squares problems of very large dimension,
such as those arising for example in inverse problems. We introduce
an associated approximate problem, within a subspace spanned by
a relatively small number of basis functions, and solution methods
that use simulation, importance sampling, and low-dimensional cal-
culations. The main components of this methodology are a regres-
sion/regularization approach that can deal with nearly singular prob-
lems, and an importance sampling design approach that exploits ex-
isting continuity structures in the underlying models, and allows the
solution of very large problems.

1 Introduction
We consider linear least squares problems of the form

in |Az — b||? 1
min || Az — b2, (1)

where A is an m X n matrix, b is a vector in R, { is a known probability
distribution vector with positive components, and || - || denotes the corre-
sponding weighted Euclidean norm (throughout the paper, all vectors are
viewed as column vectors, a prime denotes transposition, and || - || denotes
the standard unweighted Euclidean norm). We focus on the case where n is
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very large, and we consider an approximation to problem (1), defined over
a subspace
S ={®r|reR’},

where ® is an n X s matrix whose columns can be viewed as basis functions.
A companion paper [PWB09] discusses a similar methodology for the case
of overdetermined problems, where m is very large, and n is comparatively
small; in this case S is the entire space R" (® = I). An important special
case where n is large is the solution of a square linear system Ax = b
resulting from fine discretization of a continuous operator equation such as
a partial differential or integral equation. There is effectively no limit on the
dimension of such a system, so the solution by conventional methods may
not be possible. Problems of this type are often additionally complicated
by near-singularity of the matrix A, which in turn implies near singularity
of the corresponding least squares problem (1).

Our approach is based on Monte Carlo simulation. We note that there is
a large body of work on the solution of linear systems of equations by using
Monte Carlo methods, starting with a suggestion by von Neumann and
Ulam, as recounted by Forsythe and Leibler [FL50], and Wasow [Was52]
(see also Curtiss [Curb3|, [Curb4], and the survey by Halton [Hal70]). We
also note recent work on simulation methods that use low-order calculations
for solving overdetermined least squares problems [SV09].

Our work differs from the works just mentioned in that it involves not
only simulation, but also approximation of the solution within a low-dimensi-
onal subspace, in the spirit of Galerkin approximation and the Petrov-
Galerkin method (see e.g., [KZ72]). Our approach is also related to the
approximate dynamic programming methodology that aims to solve forms
of Bellman’s equation of very large dimension by using simulation (see the
books by Bertsekas and Tsitsiklis [BT96], and by Sutton and Barto [SB9S§]).
This methodology was recently extended to apply to general square systems
of linear equations and regression problems in a paper by Bertsekas and Yu
[BY09], which served as a starting point for the present paper.

The first step in our approach is to substitute ®r in place of x in problem
(1) and consider the problem

in || A®r — b||2. 2
min [|A®r — blf¢ (2)

If the solution is unique, it is given by

=G e, (3)



where

G=dAZAD,  c=dAZb, (4)

Z is the diagonal m x m matrix having the components of { along the
diagonal. The vector ®r* is viewed as an approximation to an exact solution
x* of the least squares problem (1). The paper by Yu and Bertsekas [YBO0S]
and the report by Bertsekas and Yu [BY07] provide bounds on the error
&r* — x*, which involve the weighted Euclidean distance of x* from S.
The expressions in Eq. (4) involve the formation of sums of a large num-
ber of terms (multiple summations of inner products of dimension n), so
when n is very large, the direct calculation of G and c¢ is prohibitively ex-
pensive. This motivates a simulation-based approach, analogous to Monte
Carlo integration, which aims at a running time that is independent of n,
but instead depends on the variance of the simulated random variables. The
idea is that by using any positive probabilities &;, a sum of a large number
of terms ) , v; can be written as the expected value ), &(v;/&;), which can
be estimated by sampling the values v;/¢; according to the probabilities &;.
In particular, to estimate the entries of G and ¢ by simulation, we write

G= > > Gayazd(i)e(),  c=)_ Y Gaybie(i),  (5)

i=1 j=1 j=1 i=1 j=1

where (; are the diagonal components of Z, a;; are the components of A,
and ¢(j)" is the jth s-dimensional row of ®:

o) = (Pj1--- D)

where ®;, are the corresponding scalar components of ®. As suggested
n [BY09], to estimate a single scalar component of G, we may generate
a sequence of index triples {(i1,741,751),---, (i, j1,jr)} by independently
sampling according to some distribution £ from the set of triples of indices
(i,4,7) € {1,...,n}>. We may then estimate the £th-row-qth-column com-

ponent of G,
Geg =Y > Giagja;0500;, (6)

i=1 j=1j=1

[cf. Eq. (5)], with Gy, given by

G Czt iy ji Qi iy jtfq)]tq 7
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where &; ;5 denotes the probability of the index triple (i,4,7). Similarly, to
estimate a single scalar entry of ¢, we may generate a sequence of index
pairs {(i1,71),..., (ir,jr)} by independently sampling according to some
distribution ¢ from the set of pairs of indices (i,j) € {1,...,n}?, and then
estimate the /th component of ¢ with ¢, given by

-1y Gt ®
gltv]t ’

where & ,j denotes the probablhty of the index pair (4, 7). We then approxi-
mate 7* by # = G~1¢, where G and ¢é are the matrix and vector with compo-
nents Ggq and ¢,. Note that all the above calculations are low-dimensional.
Furthermore, a comparison of Eq. (5) and Egs. (7)-(8), and a simple law
of large numbers argument shows that G — G, ¢ — ¢, and G~1é — r* as
t — oo, with probability 1.

Note that there are several options for estimation of components of G
and c. At one extreme we may generate a single sequence of index triples
{(i1,41,71)s- - - (i7, j7, jT)}, which can be used to simultaneously estimate
all components of G and ¢, by using Eqgs. (7) and (8). At the opposite
extreme we may generate a special sequence of index triples to estimate
each component of G and ¢ separately, by using Eqs. (7) and (8). There
are also intermediate possibilities whereby blocks of components of G are ¢
are simultaneously estimated with a single sequence of index triples. The
tradeoff involved is that grouping components into small blocks costs more
in simulation overhead, but may result in variance reduction (and smaller
number of required samples for a given degree of accuracy) by tailoring the
sampling distribution to the structure of the block and the sparsity structure
of @, based on importance sampling principles (see Section 3). For example,
when estimating a component Gy, using Eq. (7), it is inefficient to generate
sample triples (i, 7, ) for which P;®5, = 0.

The preceding approach must contend with two main difficulties:

(a) The approximation error associated with restricting the solution to
lie in the subspace S. This has to do with the choice of the matrix ®, and
is an important, likely problem-dependent issue, which however we do not
discuss in this paper.

(b) The simulation error associated with replacing G and ¢ with sampling
approximations G and é. For an accurate solution, the amount of sampling
required may be excessive, and this difficulty is exacerbated in the common
case where G is nearly singular.



We focus on the second difficulty, and we address it in two ways. First,
rather than approximating r* with # = G~1¢, we use a regression /regulari-
zation approach. We write the equation ¢ = Gr as

¢=Gr+e, 9)

where e is the vector
e=(G—-G)r+¢—c, (10)

which we view as “simulation noise.” We then estimate the solution r* based
on Eq. (9) by using regression, and an approximate sample covariance for
e, which is available at essentially no cost as a by-product of the simulation
used to obtain G and ¢.! This methodology is discussed in Section 2.

Second, to reduce the effect of the components (G'—G) and (¢ — &) of the
simulation noise e [cf. Eq. (10)], we employ variance reduction techniques,
based on importance sampling ideas. We discuss the corresponding methods
and analysis in Sections 3, and in Section 4 we derive confidence regions that
quantify the effect of near-singularity of G, and the sample covariances of G
and c.

In summary, the contributions of Sections 2-4 are three-fold:

e The development of the necessary ingredients for a simulation-based
solution methodology that can address very large least squares prob-
lems. These include:

— A regression/regularization approach that can reduce the solution
error (r* — ) by reducing the effect of the simulation noises (G —

() and (c—¢) through the use of the sample covariances of G and
¢, and by reducing the effect of near singularity of G (Section 2).

— Nearly optimal importance sampling schemes that can effectively
reduce the variances of the components of G and ¢ (Section 3).

e The development of analytical tools that motivate efficient sampling
schemes. In particular, we propose a normalized measure of quality of
a sampling distribution, called divergence factor, which is used for the
design of near-optimal distributions (Section 3).

LGiven independent samples v, . .., vr of a random variable v, by “sample variance of

v” we mean the scalar
T
1 N2
el Z('Ut - U) )
T 1

t=
where © is the sample mean ¢ = (1/7) 3"/~
is defined analogously.

1 v¢. The sample covariance of a random vector



e The derivation of confidence regions that quantify the effect of near-
singularity of G on the variance of the error (7 — r*) (Section 4).

The regression and variance reduction ideas of Sections 2-4 are brought
together in an algorithmic methodology that is successfully applied in Sec-
tion 5 to some standard examples of inverse problems of very large dimension
(n > 10%). The regression approach of Section 2 and the confidence region
analysis of Section 4 also apply to the more general system Gr = é, where
¢ and G are simulation-based approximations to a vector ¢ and an s X s
matrix GG that is not necessarily positive definite or symmetric.

2 Regression Methodology

Let us consider the estimation of r* using the model
¢=Gr+ e,

[cf. Eq. (9)], where )
e=(G-GQ)r+¢é¢—c

[cf. Eq. (10)]. The standard least squares/regression approach yields the
estimate

7 = arg mrin {(Gr _ é)IE_l(@r — &)+ (r— F)T_l(r . f)}’

where 7 is an a priori estimate (for example some simple least squares-based
approximation of a solution of Gr = ¢), and ¥ and I' are some positive
definite symmetric matrices. Equivalently,

F=(GSTIG+ T HY Y@ e+ T ). (11)

We propose to use as Y an estimate of the covariance of e, which we
can obtain as a byproduct of the simulation. In particular, at the end of
the simulation, we have the samples {(Gt,ct) | t = 1,...,T}, where the
components of the matrix G; and the vector ¢; are the terms appearing in
the summations of Eqs. (7) and (8), respectively:

Gyoo = Citaitjtaitjtq)jtéq)ﬂq oo = Citaitjtbitq)jtf
*q ) N — .
! git,jtJt gitJf
We make a choice 7 of a fixed nominal value/guess of r (for example 7 =
G~'é) and we view the vectors

et:(Gt—G)f—i-(é—ct), t:L...,T,



as samples of e, with sample mean equal to 0 (by the definition of G and
¢), and we use as estimate of the covariance of e the corresponding sample
covariance matrix

R 1 & R R
X=7 > e = T > ((Gi=G)i+ (6= ) (G — Q)i+ (e —ar)) . (12)
t=1

t=1

In our experiments we have estimated all the components of G and all
the components of ¢ independently. For this case, we view samples of G as
vectors in R that are independent of the samples of ¢, since G and c¢ are
estimated separately. We then calculate ¥ using the sample covariances of
G and ¢, and a nominal value of r. In particular, we have

T 0 0 T 0 0
/
Sy, 4+ 0 r 0 S 0 T 0
0 0 r’ sx 82 0 0 s2xs
(13)

2

where ¥ is the sample covariance of ¢, and X is the s2 x s sample covari-

ance of G, given by

cov(gi. 1) cov(gr,ga) ... cov(gi,gs)
sg = | ©V@201) cov(@rgh) .. cov(dnge) | (14)
cov (g, 91)  cov(gs,ga) .- cov(gy, g)

where cov(g;, §;) is the sample covariance between the i and j* rows of G.
Note that the sample covariances Y. and Y are available as a byproduct
of the simulation used to calculate G and é. Moreover, the size of these
covariances can be controlled and can be made arbitrarily small by taking
a sufficiently large number of samples.

An alternative to using a guess 7 of r and calculating ¥ according to Eq.
(12), is to use an iterative regression approach: iterate using Eq. (11), and
estimate r repeatedly with intermediate correction of the matrix X. This is
the iteration

ris1 = (G'S(ry) G +T7Y) -1 (G'S(ry) e+ T7F), (15)

where for any r, the matrix X(r) is given by
1 T
A ~ A ~ /
(r) = ; (Ge= @)+ (=) (G = G)r + (¢ — )

7



[cf. Eq. (12)].

It can be shown that this iteration converges locally in the following
sense: given any initial estimate g, it generates a sequence {ry} that con-
verges to a fixed point 7 satisfying

P=(GS@) G +TY) HESE) e+ T

provided that the sample covariances of the entries of G and ¢ are below a
sufficiently small threshold.

A precise statement and a detailed proof of this local convergence prop-
erty is outside our scope, so we just provide a heuristic argument. If n > 0
is an upper bound to the sample covariances of the components of GG, then
from Eq. (13), ¥(r) is written as

Ec + \I’r,n,

where U, is a matrix satisfying ||¥,.,|| < q||7|*n for some constant g. When
n =0, 3(r) is the constant X, [cf. Eq. (13)], so the mapping of Eq. (15),

rie (G G+ T Y TGS (r) e+ T,

is a constant mapping (independent of r), and hence it is a contraction of
modulus 0. It follows that for small 7, this mapping is also a contraction
for r within a given bounded region. This essentially guarantees the local
convergence property stated earlier.

Our regression approach was used successfully in large-scale practical
inverse problems, some of which are given in Section 5 and some others
are discussed in the companion paper [PWB09]. The analysis of Section 4
provides an analytical justification. It shows that the error (r* — G‘lé) is
strongly affected by the norm of G~!, so if G is near-singular the error can be
very large even when the number of samples used is large; this is consistent
with long-standing experience in solving linear equations. In this case, by
using a regularization term, we can greatly reduce the error variance at the
expense of a relatively small bias in the estimates G and é. While the choice
of the regularization matrix I" is not clear a priori, this should typically not
be a major problem, because trial-and-error experimentation with different
values of I' involves low-dimensional linear algebra calculations once G and
¢ become available.

Also, using the sample covariances of G and ¢ in place of some other pos-
itive definite matrices makes sense on intuitive grounds, and has resulted in
substantial benefits in terms of solution error variance. This was empirically



verified with the examples of Section 5, as well as with small test problems.
Let us also note that in our tests, the iterative regression scheme (15), when
it converged, gave on the average a small improvement in the quality of the
estimate 7. However, the scheme is not guaranteed to converge, and indeed
it diverged in many instances where the simulation noise was substantial.
It may be argued that divergence of the iterative regression scheme is an
indication that the number of samples used is insufficient for a high qual-
ity estimate, and that more sampling is required. However, this is only a
conjecture at this point, and further experimentation is needed to arrive at
a reliable conclusion regarding the potential advantages of iterating within
our regression scheme.

We finally note that the ability of our regularization approach to deal
with near-singular problems suggests that it should be successful in dealing
with general square linear systems of the form Gr = ¢, where G is not
necessarily symmetric and positive definite, but may be nearly singular.
If the components of G and ¢ are computed by simulation together with
corresponding sample covariances, reliable estimates of » may be obtained
using the regression/regularization formula (11).

3 Importance Sampling, Design of Sampling Dis-
tribution, and Error Variance Bounds

The simulation that generates the estimates (¢ and ¢ using Eqs. (7)-(8) can
be carried out in several ways. For example, we may generate a single se-
quence of independent index triples {(i1,j1,j1),---, (i1, i1, jr)} according
to a distribution &, and estimate all entries of G and ¢ simultaneously; or
at the other extreme, we may generate a separate sequence of independent
index triples (or pairs) with a separate sampling distribution for each scalar
component of G (or ¢). The motivation for this is that we may tailor the
sampling distribution to the component with the aim of reducing the vari-
ance of the corresponding estimation error, based on ideas from importance
sampling. In general, we may specify a partition of G and ¢ into blocks of
components, and generate a separate sequence of index triples per block.
Importance sampling (IS) is a basic simulation technique for estimating
multidimensional sums or integrals [Hal70], [ES00]. Recent developments on
IS have focused on changing the sampling distribution adaptively, in order
to obtain estimates with nice asymptotic behavior [OB92], [LC98], [DWO05].
We will next provide a variance analysis of a nonadaptive type of IS that
we have used. In particular, we will derive estimates of the covariances of



the estimation errors G and ¢, and a normalized measure of quality of the
sampling distribution &, called divergence factor, which will in turn motivate
various suboptimal but practically implementable choices of &.

3.1 Variance Analysis for Importance Sampling

The estimation of components of G (or ¢) using Eqs. (7) [or (8)] amounts to
estimation of a sum of a large number of terms (as many as n3 for compo-
nents of G and as many as n? for components of ¢). When a single component
of G or ¢ is estimated, this is a sum of scalars [cf. Eq. (6)]. When a block of
components of G or ¢ is estimated, this is a sum of multidimensional vectors.
To cover all cases, we will consider the problem of estimating sums of the

more abstract form
z= Z v(w), (16)
weN

where Q is a finite set and v : Q — R is a function of w. In the case of
estimation of components of G (or ¢), w is a triple (i,4,7) [or pair (7,7),
respectively].

According to the IS technique, we introduce a distribution £ that assigns
positive probability &(w) to every nonzero element w € ), and we generate
a sequence

{wi,...,wr}

of independent samples from () according to £&. We estimate z with

.1 ) v(wy)
z= ;g(wt)‘ (17)

M|

Clearly 2 is unbiased:

B =23 S e - 3 ) - -
T () |

t=1 weN we

Furthermore, by using the independence of the samples, the covariance of 2
is given by

)= 13 3ot (22 ) (22 -

which can be written as

cov(z) =

M=

vwh(w)
(Z o) ) : (18)

weN

10



A natural question is to find the sampling distribution £ that minimizes
a measure of this error covariance for a fixed number of samples 7. We will
consider separately the two cases where z is one-dimensional (d = 1), and
where z is multi-dimensional (d > 1).

(i) d =1: Then Eq. (18) becomes

22 ( (v(w)/z)2 )
var(2) = — [ >~ =1 (19)
T\& ¢W
Assuming that v(w) > 0 for all w € Q,% the optimal distribution is £* = v/z

and the corresponding minimum variance value is 0. However, £* cannot be
computed without knowledge of z.

(ii) d > 1: In this case, the covariance for Z [cf. Eq. (18)] is a matrix that
cannot be minimized directly. One possibility is to minimize instead an
estimate of a norm of the matrix > ., (v(w)v(w)'/&(w)). We have

3 v(w)v(w)

(w)

Minimizing this upper bound yields a near-optimal sampling distribution:

|lv(@)v(w)||
<2 e

weN weN

w)y=0C- Hv(w)v(u))'H%, w e Q, (20)

where C' is a normalizing constant.
If we are only interested in the uncertainty of Z along a particular direc-
tion d, we may minimize d’cov(2)d, which is determined by the term

= v@r@)) | — (dvw)?
d(% ) )dj% )

In this way, we map the uncertainty of Z to a one-dimensional subspace.
Under the assumption that d'v(w) > 0 for all w € Q, the corresponding
“optimal” sampling distribution is

=T

2This may be assumed without loss of generality. When v takes negative values, we
may decompose v as

w e . (21)

v=0v"—v7,

so that both v and v~ are positive functions, and then estimate separately z; =
Yocav (W) and 2o =3 v (w).

11



Note that calculating exactly £* is impractical with both formulas (20) and
(21).

In both cases (i) and (ii), we see that £ should be designed to fit some
function, which we generically denote by v. In the one-dimensional case,
v = v. In the multi-dimensional case, v = |Jvo/||'/2
the upper bound for some norm of cov{Z}, or v = d’v if we are interested in
the uncertainty of Z along a specific direction d. The probability distribution
&* minimizes the cost function

R=X 40

we

, if we want to minimize

(22)

over all distributions &, and is of the form £*(w) = C - |v(w)|, where C is
a positive normalization constant [C~1 = 3" _,v(w)]. In our subsequent
analysis, we assume without loss of generality that v(w) > 0 for all w € Q,
SO we may write

& (w)=C v(w), w e Q, (23)
with
c= Z v(w).
weN

Since computing £* is impractical (C' is as hard to compute as the sum
z that we wish to estimate), we are motivated to use a suboptimal sampling
distribution. One possibility is to introduce a restricted class of distributions
E, and try to optimize the cost F¢ of Eq. (22) over all £ € Z. For example,
= may be a class of piecewise constant or piecewise linear distributions over
Q). We have adopted a related approach, whereby instead of £* = C - v, we
use a suboptimal distribution é of the form

((w)=C"p(w), w e, (24)

with

é_l = Z ﬁ(w%

we

such that for all w € , we have P(w) > 0 if v(w) > 0. We select v by
“fitting” v from some restricted class of functions, using the values of v at
a relatively small subset of “trial” points.

The overall estimation procedure is as follows:

(i) Choose the target/desired function v.

12



(ii) Generate trial pairs {(@1,v(@1)), (@2, v(@2)), ... }.

(iii) Approximate v with a function © from a restricted class, based on
the trial pairs, and obtain the corresponding sampling distribution
E=0C-7.

(iv) Generate the sample sequence {(wi,v(w1)),...,(wr,v(wr))} accord-

ing to é and compute the estimate Z using Eq. (17).

For further insight into the preceding procedure, it is useful to introduce
the following normalized version of the cost function Fg of Eq. (22):

D¢ = 25
‘ (ijeQ ( 22% § ( )

which we call the divergence factor. The minimization of F¢ can equivalently
be written as

minimize D¢
st D Ew) =1, £€>0. (26)
weN
Using Eqs. (24)-(25), we can express DA as

/\

D; = Z s
¢ (zweg v(w)’ S P
We have ()
A—1 N VW
= <
C Zy(w) Zy(w rur;leas%(y(w)’
we weN
and

ax )

) v(w)

>

weN

)

(

so by combining the preceding relations, we obtain the following bound:

weQ

Dﬁ<maxﬁ(w) -m XM

€7 weQ v(w) et v(w) (27)

This provides an intuitive interpretation of our approach: by fitting v with
U, we keep the ratios /v and v/ near the unit function. This keeps the
upper bound (27) to D¢ small, and hence also the cost function F; small. We
will next focus on how to approximate v. We will consider a few methods,
such as piecewise constant and piecewise linear approximations, and analyze
the resulting divergence factor.

13



3.2 Designing the Sampling Distribution by Piecewise Ap-
proximation

Let us consider approximation of the optimal sampling distribution ¢* = C-v
[cf. Eq. (23)] by piecewise approximation of v. Given a partition {Q4}5
for €2, we approximate separately v on each 0; with some function ;. Then
we approximate v and £* by

K
ﬁ:Zﬁk-IQk, é(w):(f’-ﬁ(w), YweQQ,
k=1

where 1, denotes the function that is equal to 1 within 2 and 0 otherwise,
and C is the normalizing constant.

We select a special point wy within each set 0, at which the approxi-
mation is “anchored” in the sense that 7 (wy) = v(wg). We assume that €2
is a subset of a Euclidean space, and we introduce the scalar

p= max sup |w— wil,
k=1,..., weQ
which is a measure of how fine the partition is. In the following analysis, we
will view v(w), w € §, as the values of a continuous function (also denoted
v for convenience), which is defined over the convex hull of Q. From the
estimate of Eq. (27), we see that under reasonable assumptions on v, the
deviation of 7/v from the unit function decreases as p decreases. As a result
we can control D; and thus the corresponding simulation error covariance,
and make them as small as desired by using a sufficiently fine partition.

We will now discuss the cases of piecewise constant and piecewise linear
approximation, as examples of the broader class of polynomial approxima-
tion methods. Other types of approximating functions may be used, such as
Fourier series up to some order, and weighted sums of Gaussian functions.
Their analysis may follow a similar line, based on the bound of Eq. (27) for
the divergence factor Dg.

3.2.1 Piecewise constant approximation

Given a partition {Qk}kK:1 of Q and the point wy € € for each k, consider
the piecewise constant approximation

ﬁk(w) = l/(wk), Y w e Q.
Then

K
D= viw)-1a,, (28)

k=1

14



and the corresponding sampling distribution is

= Z )+ 1o,
where
K
= Z ng V(wk)’
k=1

and ny is the number of points in the set .
The following propositions provide upper bounds for the divergence fac-
tor Dé based on Eq. (27), under some reasonable smoothness conditions.

Proposition 1 If logv exists and is Lipschitz continuous with Lipschitz
constant 1, then
Dé S 6277/’_

Proof. By the Lipschitz continuity assumption we have |log v(x)—log v(y)| <
n||z — y|| for any z,y € Q, which implies that

max {(—x; (—xy;} < ehmaxeyeay 2=yl < o200
(2

This together with Eq. (27), yields the desired result. |

Proposition 2 If v is Lipschitz continuous with Lipschitz constant n > 0,
and for some (3 > 0 we have v(w) > B for all w € Q, then

2
np

Proof. For any w € €, by the Lipschitz continuity of v we have

v (wi) = v(w)| < nllw —wll < np.

Using the assumption v > 3, we obtain

v(w) <14 v(w) — v(wg)| <147

v(w) v(w) g8
and by symmetry, the same bound holds for v(w)/v(wy). This together with
Eq. (27), yields the desired result. [ |

15



3.2.2 Piecewise linear approximation

Let us assume that v is differentiable, with gradient at w denoted by Vv (w).
Given a partition {Qk}le of €2 and the point wy, € . for each k, we consider
a piecewise linear approximation whereby the function v is approximated
within € by the linear function

A~

Dp(w) = v(wg) + Vr(wg) (w — w), w € Q.
The following proposition gives a corresponding upper bound for Dk.

Proposition 3 Assume that Vv is Lipschitz continuous with Lipschitz con-
stant n > 0 and that for some 3 > 0 we have v(w) > [ for allw € Q. Then

2\
D.< (1422 .
f—< +2B>

Proof. For any k and any w € {0, we have

v(w) = v(w) + /01 Vv (wg + t(w — wy))dt
= v(wg) + Vo (wg) (0 — wy) (29)
+ /01 <Vz/(wk + t(w — wg)) — Vy(wk)> dt.
Using the Lipschitz continuity of Vv, we have for all ¢ € [0, 1],
Vv (wi + tw — wy)) — V(wi)|] < tnllw — w|| < tnp.

Hence the third term in Eq. (29) can be bounded by 7p?/2, which implies
that )
(W) — b(w)] < %, Vwen.

Since v > 3, we see that an upper bound for both max,{/(w)/v(w)} and
max,{v(w)/v(w)} is
v(w) = p(w)] v(w) = o(w)] np?
1 1 <14 —-.
s {1 M1 M <1
This together with Eq. (27), yields the desired result. |

The qualitative advantage of piecewise linear versus piecewise constant
approximation for small p can be seen by comparing the bound of Prop. 2
(which involves p) with the one of Prop. 3 (which involves p?).
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Let us finally mention that in the case of a piecewise approximation,
there is a bound for the divergence factor that is slightly sharper than the
one of Eq. (27). It is given by

K ﬁk(w) K V(w)
D; < (Z"’“fé?i ) ) ' (;”kfé%’i ﬁk(w)> ’

k=1

where

~ Ywen, V(W)
" Tcar@)”
Using this bound one may obtain slightly sharper but qualitatively similar
estimates to the ones of Props. 1-3.

4 Confidence Regions

The preceding sections have focused on the essential elements of our ap-
proach to obtain low-variance estimates of the components of the matrix G
and the vector ¢ for a fixed number of samples. In this section, we will focus
on quantifying the effect of the number of samples on the quality of the esti-
mate 7 produced by the regression methodology of Section 2, in conjunction
with the simulation formulas of Eqgs. (7)-(8).

We will derive a (1 — €)-confidence region for the approximate solution
7, where 6 is a given small positive number. We consider the case where
regularization of the form I'"! = I is used, for some 3 > 0. Then assuming
that the inverses below exist, the approximate solution 7 of Eq. (11) can be
rewritten as

P= (GG or) - (&ste+ 7)), (30)

where ¥ is some positive definite symmetric matrix.
We denote by 7"; the solution that would be obtained if G = G and ¢ = ¢:

s = (G'E71G + 1) (G'S Ve + pF)

which differs from r* since # # 0. We will now derive a confidence interval
for the error 7 — r*. Let us denote

d=x""%c-Gr),
so from Eq. (30), the error can be written as

o= (GG pn) (G A -). B

17



Let also ¥ be the covariance of (¢ — Gr*), and let

~

d=3%"Y2(— Gr*) = 5712012, (32)

For a large number of samples, we may assume (by the central limit theorem)
that (¢—Gr*) is a zero mean Gaussian random s-dimensional vector, so that
the scalar

|d]|> = (¢ — Gr*)YS7 e — Gr¥)
can be treated as a chi-square random variable with s degrees of freedom.
Assuming this, we have

ldll < vP~1(1 —6:5) (33)

with probability (1 — ), where P~1(1 — 6;s) is the threshold value v at
which the probability that a chi square random variable with s degrees of
freedom takes value greater than v is (1 — 6). In our algorithm, ¥ can be
any positive definite matrix, but we have focused on the case where X is the
sample covariance of (& — @7’), where 7 is only a guess of r*, such as Gle
cf. Section 2. If 7 is close to r*, then ¥ is close to 3 and d is close to d.
We now derive the following confidence interval for the error 7 — r*
(assuming that d can be treated as a Gaussian random variable).

Proposition 4 We have

P(|f —r| <o(%,8) >1-0,

where
Ai 1/2$—1/2 -
"(E’ﬁ):ii??“?fs{Angg}Hz 12571/ H‘/P T(1—0;5)
(34)
+omax {2 Lyr oy
i=1,..s | A2+ 8 ’
and A1, ..., s are the singular values of »-12G.

Proof. Let Y-12G = UAV’ be the singular value decomposition of »-12¢,
where A = diag{)\1,..., s}, and U, V are unitary matrices (UU' = VV' =
I). Then, Eq. (31) becomes
P —r* = (VAU'UAV' + 8I) " (VAU'd + B(7 — 1))
= V(A?+ 8D TAUd+ BV (A* + 517V (7 — 1Y)
= V(A + BI)TAU' SY2ET2d + V(A2 + BTV (7 — 1),
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~ N -1/,
vy = (G'E-1G+ BI) (@S 1e + ) io = (Grem1Gr 1) (Crore+ o)

Confidence Regions

Figure 1: Illustration of confidence regions for different values of the regu-
larization parameter 3. For different values of 3 € [0, 00|, the figure shows
the estimates 73, corresponding to a finite number of samples, and the exact
values 7, corresponding to an infinite number of samples. By Eq. (31), we
may view 73 —r* as the sum of a “simulation error” whose norm is bounded
by the first term in the estimate (34), and a “regularization error” whose
norm is bounded by the second term in the estimate (34).

where the third equality follows from Eq. (32). The matrix V (A2+431)~tAU’
in the above equality has singular values \;/(\? + 3), while the matrix
multiplying (7 — r*) has singular values 3/(\? + ). Taking the norm of
both sides and using the triangle inequality, it follows that

s 1 s {5
(35)

Since Eq. (33) holds with probability (1 — @), the desired result follows. W

Note from Eq. (35) that the error |7 —7*|| is bounded by the sum of two
terms. The first term, reflects the simulation error, and depends on ||d||,
which can be made arbitrarily small by using a sufficiently large number of
samples [cf. Eq. (32)]. The second term reflects the regularization error (the
bias introduced by the quadratic 3||r — 7||? in the regularized cost function)
and diminishes with 3, but it cannot be made arbitrarily small by using
more samples (see Fig. 1).

Now consider the hmltmg case of the preceding prop051t10n where 6=0
and ¥ = 3, assuming that G is invertible. In this case # = G~! ¢, and the
preceding proof can be used to show that

R 1
P <||G16—7“*H < max {)\—} P-1(1 —9;5)> >1-6.

This shows that the level of confidence is adversely affected by near sin-
gularity of the matrix G, and hence by near singularity of the matrix G
(since G is close to G). It is also possible to derive a confidence interval
involving the singular values of G rather than G. While the derivation is
more complicated and will not be given in this paper, it supports the qual-

|| <
|7 TH_igaX {)\Z

EARE)
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Figure 2: Comparison of the projection error e, the subspace approximation
error eg and the simulation plus regularization error ez, where x* is the exact
solution to Ax = b, Ilx* is the projection of x* on the subspace S, ®r* is
the exact solution to the approximate low-dimensional system [cf. Eq. (3)]
and ®7 is the approximate solution obtained by the proposed algorithm.

itative conclusion that the radius of the confidence interval is proportional

to |G

5 Computational Results

Our proposed simulation and regression methodology has been tested on
a few large inverse problems, two of which will be discussed here: a heat
conduction problem [Car82] and the evaluation of the second derivative of
a noisy function [Han94|. These systems take the form of Fredholm integral
equations of the first kind, and are approximated by the Galerkin or Gauss
quadrature methods, which can yield square linear systems of the form Ax =
b of arbitrarily large dimension [DW74]. Note that for both test problems,
the exact solutions x* are known and available for comparison. Additional
computational results may be found in the companion paper [PWB09].

We consider a subspace S spanned by multi-resolution functions, which
are pairwise orthogonal piecewise constant functions with disjoint local sup-
ports. The scalar components of G and ¢ are estimated separately, and
since G is symmetric, it suffices to estimate its upper-triangular components,
yielding a total of (s? + 3s)/2 scalars to be estimated. Each component Gy,
and ¢y is estimated using a specially designed sampling distribution, which
involves a piecewise low-order spline approximation to A (we refer to the
companion paper [PWB09] for more details). The experiments were com-
puted on a dual processor laptop computer with 4GB RAM running Matlab,
using 10% samples per entry of G and ¢, with each sample taking 50us on
average. Note that the proposed algorithm is well suited for parallel pro-
cessing.
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In presenting the computational results, we will compare three types
of error, as illustrated in Fig. 2: (i) the projection error ey = la* — x*,
which measures the distance between the exact solution and the subspace
S; (ii) the subspace approximation error ey = ®r* — Ilx*, which measures
the distance of ®r* and the “best” approximation of z* within S; and (iii)
the simulation error e3 = ®7 — ®r*, which can be made arbitrarily small by
sufficient sampling. We will also compare the algorithm’s performance for
alternative importance sampling distributions.

5.1 The inverse heat conduction problem

The problem is to reconstruct the time profile of a heat source by monitoring
the temperature at a fixed location away from the source [Car82]. The one-
dimensional heat transfer in a homogeneous quarter plane is expressed as
an elliptic partial differential (heat) equation,

ou_ o
or Y902

u(e,0) =0, u(0,7) = x(7),

where u(o, 7) is the temperature at location o and time 7, and « is the heat
conductivity constant. Let b(-) = u(ad,-) be the temperature history at a
location & away from the source. It satisfies the following Volterra integral
equation,

T 7/ (7/a)?
b(t) = ; dv m exp<—7> z(v), 0<7<T, (36)

or equivalently
T
b(1) = / dvA(v, T)z(v), 0<7<T, (37)
0

where A is a lower-triangular kernel given by

4m(v—T)3 ~ 4v-7)

g/a (6/&)2 0< < <T
. { exp(— ), D <r<u=T,
0,

The integral equation (37) is discretized into a linear square system of di-
mension n = 10°. We consider a subspace S spanned by s = 50 and s = 100
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multi-resolution basis functions, and assume an initial guess 7 = 0 and a reg-
ularization weight matrix ['~! = 3L} L1, where L is the (s — 1) x s discrete
first-order difference operator given by,

-1 1 0 0
0O -1 1 0 0
L= . ,
. 0
0 0 -1 1

and 3 is a small positive scalar. The simulation results are illustrated in
Figs. 3-4, which are consistent with our earlier analysis and conjectures.

5.2 The second derivative problem

This classical inverse problem refers to differentiating noisy signals that typ-
ically arise from experimental measurements. Let b be the noisy signal func-
tion and x be the desired derivative function, so that

1
b(v) = /0 dr A(v, 7)x(T) T,v € [0,1] (38)

where we denote by A(v,7) the Green’s function of the second derivative

defined by

Ju(r=1) v<T,
A(v,T) = {T(U 1) ws (39)

This problem is known to be mildly ill-posed, exhibiting instabilities with
increasing levels of noise in v [Cul71]. Following the approach of Hansen
[Han94] we discretize Eq. (38) using the Galerkin method and obtain a
linear square system Ax = b of dimension n. We also impose an initial
guess of 7 = 0 with I~! = BL, Ly, where the (s — 2) x s matrix Lo is the
discrete second-order difference operator given by

1 -2 1 0 0
o 1 -2 1 0
L2 - )
0 w0
0 O 1 -2 1

and f is a small positive scalar. We have chosen a subspace S spanned
by s = 50 and s = 100 multi-resolution basis functions. The experimental
results are shown in Figs. 5-6. In Fig. 5, the approximate solution ®7 is
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Figure 3: The simulation-based approximate solution & = ®# for the in-
verse heat conduction problem, compared with the exact solution z* and
the projected solution ITz*. The dimension is n = 10°, and the subspace S
has dimension s = 50 for the left-hand plot and dimension s = 100 for the
right-hand plot. The number of samples used per component of G and c is

10,000.
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Figure 4: The decrease of the simulation error for the inverse heat conduction
problem as a function of the number of samples per component of G and c.
The figure compares the norm of the simulation error as a function of the
number of samples for two sampling distributions.



compared with the exact solution z* and the projected solution Ilz*. In
Fig. 6, the simulation error are illustrated for alternative choices of sampling
distribution when the number of samples and the number of partitions for
piecewise approximation vary.

6 Conclusion

We have considered the approximate solution for large-scale least squares
problems on a subspace spanned by a given set of features or basis func-
tions. We have proposed a simulation-based regression methodology, that
uses low-dimensional calculations. Through the use of importance sampling
with near-optimally designed sampling distributions, our methodology can
overcome the challenges posed by near-singularity of the problem and ex-
cessive variance of simulation noise.

The utility of our methodology will likely be judged on the basis of its
ability to solve challenging large-scale problems. Examples of such problems
were given in this paper and the companion paper [PWB09]. Additional re-
search, targeted to specific applications, will be very helpful in clarifying
the range of potential uses of our methods. Another direction worth in-
vestigating is the approximate solution of infinite-dimensional least squares
problems using approximation within a low-dimensional subspace and sim-
ulation. The main ideas underlying such an approach should be similar to
the ones of the present paper, but the corresponding mathematical analysis
will likely be more complex.
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