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Distributed Power Control Algorithms for Wireless
Networks

Cynara Wu and Dimitri P. BertsekaBellow, IEEE

Abstract—Power control has been shown to be an effective way to other linear and nonlinear integer programming problems,
to increase capacity in wireless systems. In previous work on power which are of independent interest. Furthermore, we show that
control, it has been assumed that power levels can be assigned fromOur algorithms admit an on-line and distributed implementation,

a continuous range. In practice, however, power levels are assigned - - - . .
from a discrete set. In this work, we consider the minimization of allowing the addition and deletion of constraints which corre-

the total power transmitted over given discrete sets of available SPond to arrivals and departures of users.

power levels subject to maintaining an acceptable signal quality for ~ We first formally define in Section Il the problem which we
each mobile. We have developed distributed iterative algorithms are addressing. Then, in Section I, we generalize the problem
for solving a more general version of this integer programming , g integer programming problem with certain constraints. In

problem, which is of independent interest, and have shown that Section IV d | iterati lgorithm f Ving this i
they find the optimal solution in a finite number of iterations which ection Iv, we develop an iterative algorithm for solving this in-

is polynomial in the number of power levels and the number of mo- teger programming problem and show that the algorithm solves

biles. the problem in a finite number of iterations. The algorithm is
Index Terms—Cellular networks, distributed algorithms, integer simple to |mplemer_1t, can be |mp|_ement_ed ina dlstnbu_teq envi-
programming, power control. ronment, and requires computation which is polynomial in the

number of variables and the cardinality of the discrete sets. In

Section V, we discuss variations of the iterative algorithm in-

volving the addition and deletion of constraints. In Section VI,
FFICIENT resource utilization is a primary problemwe discuss distributed versions of the iterative algorithm. In Sec-
in cellular communications systems. Resource issutgn VI, we describe some computational results.

include assigning transmit power levels to users subject to

acceptable signal quality, providing varying levels of service to Il. PROBLEM FORMULATION

different priority classes, and maintaining connections in theWe consider a system 6¥ cells in whichA mobiles are to

presence of user movements. Given a set of users that Wé%?ablish a connection. Each cell contains a single base station.

to be connected, transmit power levels must be assigned. B’gpending on the distance between a mobile and a base station

propose a_distributed a_lg_orithm that detEIrmin_es ilf therl_e isfag well as path loss, fading, and shadowing, the power received
pow;]a ' as&gnrge_P t provi mg an acctap.ta eh5|gnq quality 19f hase stationthat is transmitted by mobilés attenuated by a
each user a.n It S0, prowl gs .a. solution that m|n|m|;es t ﬁingis. Mobilei can communicate with a base station provided
Fotal transmitted power. M|r1|nj|2|ng energy consumption Is: sNR is above some given threshald We are given a finite
important when users have limited battery power. set X, of discrete power levels from which to assign to mobile

A great deal of work has been done on power control. AIg(,L)'- The goal is to determine whether there exists an assignment

rithms have been developed and shown to minimize the nurmfﬁ‘frpower levels and base stations to all mobiles so that each

of.channel_s requwet_j to accom_moda_te every user [3], to Maiobile’s SNR is acceptable, and if so, find an assignment that
mize the minimum signal-to-noise ratio (SNR) with a ConStra"P\Hinimizes the total transmitted power
a

on the total transmitted power [2], and to minimize the tot Let w; denote the power transmitted by mobiland:s; de-

transmitted power [5], [7]. However, these algorithms all 3%ote the base station to which mobilis assigned. The SNR of
sume that power can be allocated from a continuous range. bile: at base statios. is then

work does not make such assumptions and restricts assigned
power levels to be from given discrete sets, more accurately re- SNR(i, s;) = WiGis
flecting actual systems. In addition, while our algorithms can be D kpi WGks; T Vs,
used to assign power levels in order to minimize the total trans; . . . .
. . e herev,, is the receiver noise at the base station. The power
mitted power subject to obtaining acceptable SNRs for eath : .
ntrol problem we wish to solve has the form

. . . . C
mobile, our formulation is more general and can be applleé’

. INTRODUCTION
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Therefore, if{(w?,s*)|i = 1,..., M} is an optimal solution, 1 Xy - dnfx gt 1h= |

the ¢th mobile should be assigned to base statiprat power
level w; . Equivalently, the problem can be written as

i=1 1 ; : ST 1) Eam |

subject to
max Wigil Wigin 24 ; : g .
Ek;ﬁl Wrgr1 + V1 ’ ’ Ek;ﬁN WEGLN + VN
Ztri, 'L:]_,,.Z\47 szXz 14 ; X . .

The relaxed version of problerf¥.), in which the power
levels at which the mobiles are transmitting are selected fro Y | . 3 4
continuous intervals, can be solved by an iterative algorithm d
scribed by Yates and Huang [7]. At each iteration of their algc-
rithm, each mo_b"e adjusts its power to the minimum povyer neﬁ’g. 1. lllustration of problen{ ). The region specified by the constraints
essary to obtain the threshold SNR at some base station under) > b, is shaded. The feasible region consists of the dots/points that lie
the assumption that all other users maintain their previous powéhin the shaded region.
levels. They show that synchronous and asynchronous versions
of the algorithm converge to optimal solutions. integerC. The problem can be formulated as a problem of type
In the next section, we describe an integer programming géd?) as follows:
eralization of problen{P.) and provide an iterative algorithm

to solve it. This algorithm is similar to that of Yates and Huang minwy +ws

for the relaxed version of the power control problem. subject to
g11 Tigor 912 T1g22
max< =—wj — ——ws, —w; — ——wy » > 11,
Il. I NTEGER PROGRAMMING GENERALIZATION 151 51 %) Vo

In this section, we provide an integer programming general- max{ﬂpl + &p% Mpl + @pQ} > T,
1248 120

ization of the power control problerGF.), described above. We M1 V2 .
consider a cost minimization problem with the following form: w; €{0,1,...,C}, i=1,2
min f(x) (P) The problem is illustrated in Fig. 2 for the case where
subjecttoh,;(z) > b;, i=1,....M g1 =4/5, g =4/5, T, =Ty, =3/4,
-’L'iEXi, LIL,M 91221/4, 92222/3, and 1/121/221.
where The feasible region for each of the constraints are indicated in
r=(z1,...,xpy) oOptimization vector; parts (a) and (b), and the intersection is indicated in part (c). The
b; real numbers: optimal solution isw* = (3,2). Note that the feasible region
fandh functions mapping vectors ilR™ to heed not be a convex polyhedron.
real numbers; Let X denote the Cartesian product®f, . .., X;:
sets.X; given finite sets of real numbers. Y X xex X
In the above problem statement and in what follows, all vec- -t M-
tors are viewed as column vectors. The problem is illustrated pyr anys: = (x1,...,2z5) € X, i € {1,..., M}, andz € X;,
Fig. 1 for the case where we make the following assumptions regardiiig):

Assumption 1:If z > «;, then
hi(z) =21 — In(z2 + 1),

hg(x) = — 111(371 + 1) + xa, hl(x + (Z - xl)cl) > hi(x)v

by =by=1 whereg; is a unit vector iR with a 1 in theith position and

) o _ 0's elsewhere. Furthermore, we have
and.X; is the set of nonnegative integers less than some arbitrary

constant for = 1,2. hilz + (z — z5)e;) < hj(z), forj#d.
It can be seen that the power control problem is a special case ) ) . L
of problem(P). This is illustrated in the following example for AASSUmption 2:f is monotonically nondecreasingini.e.,
the case of just two _mobiles and two base stations. _ _ if 2>z, thenf((z + (2 — z:)es) > fla).
Example 1: Consider the power control problem in which
we have two mobiles and two base stations. The power levelsAssumption 1 states that increasing tlie component of:
are constrained to be integers less than or equal to some positieeasesi;(x) and either decreases or does not affegt:)
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Fig. 2. lllustration of the power control problem for Example 1. The shaded regions of parts (a) and (b) represent the region satisfying the diostdand se
constraints. The shaded region of part (c) represents the region satisfying both constraints.

for j # i. Note that from Assumption 1, we have< z; = each user’s constraint. This integer programming problem and
hi(z + (z — z;)e;) < h;(z) so that the algorithms described in this paper should be useful in con-
texts more general than power control.
hilz + (z —zi)e;) > hi(z) = 2 > ;. 2
IV. ALGORITHMS FORSOLVING PROBLEM (P)
In the case where the constraint functiégare linear, Assump- . . . . . .
tion 1 is satisfied if the corresponding constraint matrix has pos-" this section, we describe an algorithm that will determine

itive elements along the diagonal and nonpositive elements 8t OPtimal solution of probleri”’) if one exists. If the problem
the diagonal. has no feasible solution, the algorithm will determine that none

As was seen in Example 1, the power control probigh) is exists. Note that if the problem is feasible, there is an optimal so-

aspecial case ¢). Itis straightforward to show that it satisfies!UioN ?lncztr;_ere can be 33_'3( a f|r|1|te number of feasible points.
Assumptions 1 and 2, We first define some additional notation

In general, we can vieWP) as a problem involving the al- 2(t) = value ofz after thetth iteration of
location of discrete resources fd users. The resource allo-

cation is represented by the vectarwherez; is the quantity an algorithm

of resource allocated to userEach usei requires that some z(t) < o(t') meansy;(t) < z;(t), i=1,..., M.
objective, or constraint, is met, i.eh;(x) > b;. Assumption z(t) < (') meanse;(t) < z; ('), i=1,...,M,

1 essentlally specifies that the effects of resources Ql!ocated to wherez;(t) < z;(), for somei.
other users impede or have no effect on a user’s ability to sat-

isfy its constraint. Assumption 2 specifies that resources hawée assume that we start with a poinf0) = (x.(0),

nonnegative incremental costs. The goal is to minimize some , z»;(0)) such that if (P) has a feasible solution;(0)
function of the resources being allocated subject to satisfyisgtisfies:(0) < z*, wherez* = (z7,. .., z%,) is some optimal
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solution. (An optimal solution is guaranteed to exist wiiét) e _ T

has a feasible solution since the séfs are assumed finite.) o Wy + ¥
One possibility is to set;(0) to the minimum value inX; 5 4 ! .

- oy -

z;(0) =min{z € X;}, i=1,...,M. y

44 . : . i . HL, 4+

If problem (P) has no feasible solution, there is no restriction I
onz(0). Note that ifz(0) is feasible, then since(0) < z* and 1L ; =
Assumption 2 holdsy(0) must be optimal.

We define the sev;, fori = 1,..., M, as follows:

Vi={x e X|hi(x) > b}

Essentially;z is an element o if it satisfies theith constraint. ]

For the problem in Example 1, the shaded regions in parts (e

and (b) of Fig. 2 represenit; and V>, respectively. Foi — 5 . . . .
1,..., M, we also define the following set of scalars associatec 1 2 3 4 5
with a pointz € X:

= [ah

Fig. 3. lllustration of the MFVA algorithm for the problem of Example 2.
_ _ _ _ The MFVA algorithm starts with an initial point(0) and con-
Essentially,S;(x) is the set of values iiX; such that setting the tinuously applies the iteration described by (3) until a termina-

ith component ofr to any value in the set, while leaving thetion condition is reached. It is illustrated by the example that
remaining components af unchanged, results in the updatedollows.

value ofzx satisfying theith constraint. In other words, fare Example 2: Consider the following power control problem:
{1,..., M}, the scalar is an element of;(x) if the vectorz
given by min wy + wo
_ . 2wy 3 2wy 3
Lz i=t subject to— 22, 407121,
TE N iAd =1, M, 5wzl 3wt

w; €{0,1,...,CY, i=1,2.

is an element o¥/;. Again referring to the problem in Example ) o )

1, for any pointw = (wy, ws), S1(w) is the set of valuessuch AS noted previously, the problem satisfies Assumptions 1 and 2.
that(, w,) is in the shaded region of Fig. 2, part (a), afdw) | Ne results of applying the MFVA algorithm to this problem is
is the set of valuessuch thatw;, ) is in the shaded region of illustrated in Fig. 3. The darkly shaded region represents the fea-

Fig. 2, part (b). sible region in which both constraints are satisfied. The lightly
Note that by definition of the sef§ andsS;(z), if = is not an shaded region represents the region in which neither constraint
element of¥; for anyi = 1,..., M, thenS;(x) cannot contain is satisfied. At each iteration of the algorithm, each component

any values less than or equal#p due to Assumption 1. Fur- "émains less than or equal to that of the optimal solution, and
thermore, ifzi is the minimum value of;(z), thenS;(z) is @ different constraint is satisfied, possibly causing a previously
1 7 ’

the set of values itX; that are greater than or equal® satisfied constraint to no longer be satisfied. The sequence of
’ . points generated by the algorithm therefore alternates between
Siz)y={zeX;|z2a™}, i=1,...,M. the regions where exactly one of the constraints is satisfied until

a point is reached in which both of the constraints are satisfied.
. . . . . To prove that the algorithm terminates, we first show that each
'(AM;—\)//K')CN Iteration of the Minimum Feasible Value ASSIgnme%plication of iteration (3) to a vectar(¢) results in a vector
z(t + 1) such that one component is strictly greater than the
Given apoints(t) = (z(t),...,znm(?)) suchthat:(t) € X, corresponding component oft), i.e., thatz;(t + 1) > z;(t),
select some indeke {1,..., M} satisfyingz(t) ¢ V5. for somei € {1,...,M?}, while the remaining components
« If no suchi exists, the algorithm terminates and returngemain unchanged. The number of iterations involving updating
the pointz(t). (It will be shown that in this case;(t) is any particular component; is then bounded by the number of
optimal.) values in the seX; since once; is equal to the maximum value
« If such ani does exist, then if the seét:(x(¢)) is empty, in X;, the setS;(x) must be empty. The number of iterations is
the algorithm terminates (it will be shown that in this caséherefore bounded by the number of values in all of the sets of
the problem is infeasible). Otherwise, sett + 1) to the X. -
smallest value in the sét(xz(t)); i.e., setr;(t + 1) tothe  Proposition 1: If z(t) ¢ V; for somei € {1,..., M} and
smallest value inX; such thats(t + 1) € V5. Fori # i, S;(«(t)) is nonempty, them;(t) < min S;(z(t)).
we setz; (¢t + 1) = z;(¢): Proof: Sincez(t) ¢ V;, we haver;(t) &€ S;(z(t)). As a
win S:(x(t) fori =7 result, we obtain
ni(t+1) = {xi(t) forii, i=1,... M © ha(x(8)) < bs. @)
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For anyz € S;(x(t)), we have satisfiesz(t) € V; fori = 1,..., M, or the setS;(z(t)) is
empty for some € {1,..., M} such thate(¢) € V;. Consider
R () + (2 — z:(8))es) > br. (5) the former situation, and let(¢) be the resulting vector. Then

we havex(t) € V; fori = 1,..., M, and thereforez(¢) is
feasible. By induction using the results from Prop. 2, we have
z(t) < z*, sox(t) must be optimal. Consider next the latter sit-
uation. If S;(x(t)) is empty for anyi such thatz(¢) ¢ V;, then
hi(2(t)) < hi((2(#) + (2 — x3(8))ed)- ®)  from Prop. 2, probleniP) is infeasible. [ ]
) ) The main idea of the algorithm is to increase some compo-
From Assumption 1, (6) and (2) imply tha(#) < =. B nenta;(t) of z(t) at each iteration while keeping(t) < z*.
A; a re;ult of Prop. 1, an iteration of the MFVA glgonthnEaCh component; can be adjusted at mok; | times, where
starting with a vectox(t) yields a vector:(t + 1) of which the | - | denotes the cardinality of a set. There are therefore at most
:th component is strictly greater than that¢t). Therefore, the %i\il |X,] ormax;_y.__ | X;| M iterations, by which point ei-

MFVA algorithm terminates after a finite number of iterationgna the optimal solution has been found, or it is determined that
for any initial pointz(0). The algorithm either terminates wher}he problem is infeasible

the current point(t) satisfiesz(t) € Vi for i = 1,...,M,  agnoted earlier, if during a particular iteration of the MFVA

or when the se;(z(#)) is empty for some € {L,....M} 5 45rithm, is some index satisfying:(t) ¢ V; and the set
such thatz(¢) ¢ V;. The following proposition and corollary ¢.

: : : ; ) S;(x(t)) is not empty, therb;(x(¢)) consists of points greater
show that given an appropriate starting pei(tt), the algorithm 5 or equal tas;(¢). We can construct a variant of the MFVA

will terminate with an optimal solution in the former Sit“ationalgorithm in which instead of setting;(¢ + 1) to the smallest
when the problem is feasible and will terminate in the 'att‘?falue in S:((t)), we simply increase;(t + 1) to the next
situation when the problem is infeasible. In what follows, pioher value in'the sets. Itis straightforward to show that this
rgfers to some 0ptw_na| solutlo_n whenever problef) IS fea- single-step variant of the MFVA algorithm also finds the optimal
sible. If problem(P) is not f§a3|ble$* refers to the point such 4| ytion of (P) if one exists in a finite number of iterations,
thatz} = max{z € X;}fori=1,..., M. . andthat it has the same complexity bound on the number of re-
Proposition 2: If problem (P) is feasible, and:(t) satisfies - qireq jterations as the standard MFVA algorithm. This variant
a(t) < " andx(t) ¢ V; for somei € {1,..., M}, thenthe set oy he yseful in contexts where it is difficult to determine the
Si(x(t)) is nonempty. Furthermores;(t) < min 83(z(t)) < setS;(x(t)). For instance, in the power control problem, it may
L R be possible to only determine whether a mobile user has a suf-
Proof. Definez as follows: ficient SNR and not to determine what power level is necessary

to satisfy the signal to noise threshold if the current ratio is not

Combining (4) and (5), we have

i = {-Ti(t)v fOF'{ # g, sufficient. In this case, the power level of the mobile user can
a fori = . be incrementally increased until its threshold ratio is reached.
) _ ) ) Computational experiments show that the number of iterations
Sincez" is an optimal solution, we have required for the variant to find the optimal solution is typically
less than 5% greater than the number required for the standard
hi(z™) > b;. MFVA algorithm to find the optimal solution, so the poten-

tial convenience afforded by the variant described may be well
Since#; = «% and#; < 7, for # ¢, we have from Assump- worth the extra computation involved.
tion 1
hi(@) > hi(a®). V. MODIFYING THE CONSTRAINTS OFPROBLEM ()

In a cellular network, the number of users that need to be con-

Therefore, we havé;(2) > b;, and it follows thatz? is an el- nected to the base station varies as users arrive and depart. The
ement ofS;(z(¢)). Therefore,S;(z(¢)) is nonempty. The min- optimal power assignments change as a result of the arrivals and
imum of this set must be less than or equatipand it follows departures. In this section, we consider how the optimal solution

from Prop. 1 thaty;(#) < min S;(x) < x7. m to (P) changes when the problem is modified as a result of in-
It follows from Prop. 2 that if an iteration of the MFVA algo- creasing or decreasing the dimension of the optimization vector
rithm is executed, we have(t) < z(t + 1) < z*. x, as well as adding or removing a constraint. In the context of

Corollary 3: Given an initial starting point(0) < z*, the the power control problem, this corresponds to the arrival or de-

MFVA algorithm terminates in a finite number of iterationgarture of a mobile.
under one of the following two conditions: either we have Given an optimal solution* to problem(P), we will show
x(t) € V;fori = 1,..., M, in which casex(t) is an op- that an optimal solution to a new problef®) that augments
timal solution to(P), or the setS;(z(¢)) is empty for some problem( ) with an additional constraint can be found by using
1 € {1,..., M} such thatz(¢) ¢ V4, in which case there is no z* as a starting point for the MFVA algorithm. Given an op-
feasible solution td P). timal solutionz* to problem(P), we will show that an optimal

Proof: We have shown that the MFVA algorithm termi-solution to a new probleri”) that removes a constraint from
nates and that when this occurs, either the current pditjt problem(P) can be found by using* as a starting point for an
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“inverse” algorithm that finds an appropriate starting point fowhere the first inequality follows from Assumption 1 and the

the MFVA algorithm. second inequality follows since" is feasible for probleni ).
Foranyi=1,...,M,if &; = &7, we have
B. Addition of a Constraint . . . o .
) ) ) hi(&) > hi(27,...,8%) = hi(E], ... 834, 0)
Assume probleniP) is feasible and we have an optimal solu- S (o v 0
tion. Suppose we are given a new problef that differs from =" Z(ajl’ - B4 (0)
the original in that the dimension of the optimization vector is = hi(Z7) = bi.

increased by one, and it has one more constraint. Propfém

has the form The first three inequalities follow from Assumption 1 and the

fact that we hav® < 3,41(0) < #*. The last inequality fol-
lows sincet* is feasible for probleni?).  is therefore a fea-

min f(x) . sible solution to probleniP). Since for some € {1,..., M},
subjecttoh;(x) > b;, i=1,.... M +1, we haver? > z%, itfollows thatf(#) < f(z*), andz is a better
rneX;,, i=1,...,. M+1 solution thanz* to problem(P), yielding a contradiction. m
To insure thatr ;41 (0) < 23,1, we can initializer ;.1 (0)

where the optimization variablte = (xy,...,zp41) isnow a as follows:

vector inRM+1, thed;, fori = 1,...,M, are as before, and _

bary1 is a given real number. The selg, fori = 1,..., M, ey+1(0) = min{z € Xpr4a}.

are as before, andl 5,41 i§ a gi\fen finite set of nonnegative real

numbers. The functiong andh,, for< = 1,...,M +1map ¢c. Removal of a Constraint

vectors inkM+1 to real numbers. Furthermore, we assume that

if 2ar41 = 0, we have Assume probleniP) is feasible and we have an optimal so-

lution. We are given a new proble®) that differs from the
original in that it has one fewer variable and one fewer set of

Fan o amen) = [, constraints. As in Section V-A, if ;1 = 0, we have
and
iLi(xl,...,xA4+1):hi(xl,...,xM), izl,...,M. f(xl""’xjw+1):f(xl""’xjw)’
and
We assume thgt Assumption 1 holds for the new problem, while hi(zy, ... wng1) = bz, ... 2n),
Assumption 2 is modified as follows: i—1 M

Assumption 2’: f is monotonically increasing; i.e.,

. . We also use the same assumptions as in Section V-A.
if 2>, thenf((z+ (z—x;)e;) > f(x). Let #* be some optimal solution taP). Sincez* is feasible
for (P), we have

Using an optimal solution to the original problem as a patrtial R
starting point, the MFVA algorithm can be used to solve the new hi(2*) 2 b;, i=1,...,M+1.
problem, as shown in the next proposition.

Proposition 4: Let z* be an optimal solution of(P).
Let 2 be an optimal squtlon of(P) if (P) |§ fea- hi(at, B ) = hi(3%, ..., 3%,,0)
sible, and letZ* be such thati! = max{z € X} for -

i = 1,...,M + 1, if (P)is not feasible. Given the starting

point #(0) = . (#1(0),- .-, 2rr41(0)), where &;(0) salis- Therefore* is feasible for( ), and(P) has an optimal solu-
fies xf(o) < f?i ¢ = 1,...,M and 2x1.(0) satisfies tjon, In order to find an optimal solution to probleif), we can
0 < #m41(0) < &3yy,, the MEVA algorithm terminates in siart with a solution:(0) initialized as follows:

a finite number of iterations under one of the following two

conditions: either we havé(t) ¢ V; fori = 1,.... M + 1, z;(0) =min{z € X;}, i=1,..

in which casei(t) is an optimal solution tdP), or the set

S;(#(t)) is empty for somel € {1,...,M + 1} such that and run the MFVA algorithm to solve proble(®). Another

#(t) € V3, in which case there is no feasible solutior(f¢). ~ Possibility, which aims at a better starting poir0), is to ini-
Proof: Due to Corollary 3, it is sufficient to show that if tialize 2(0) as

(P) is feasiblex < #¥, fori = 1,..., M. Assume the con-

trary, that for someé € {1,..., M}, =7 > i%. Definez so that

Due to Assumption 1, we also have

zhz(i’*)zb“ izl,...,M.

M

Y

2(0)=&F, i=1,....M

and run an “inverse” version of the MFVA algorithm. Recall that
#; =min(z],27), =1,...,M. during an iteration of the MFVA algorithm, some component of
z is increased to the smallest value in its feasible set so that
Foranyi=1,..., M, if &; = z}, we have its corresponding constraint is satisfied. Consider an “inverse”
algorithm in which an iteration consists of some component of
hi(Z) > hi(z*) > b; x being decreased to the smallest value in its feasible set so that
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bty 1) to the largest value in the s&;(x(t)). Fori # i, we

I & & i . setw;(t +1) = ai(t):
‘ [ max R;(x(t)), fori=1
4 = " - - " & xZ(t—i_l)_{.’I’Z(t), fori#z, 'L:].,,M
(7)
The Maximum Infeasible Value Assignment algorithm

(MIVA) starts with an initial pointz(0) and continuously ap-
plies the iteration described by (7) until a termination condition
1. * ] * * . ] is reached. It is illustrated by the example below.

Example 3: Consider the following power control problem
in which we have three mobile users in a single cell with a
threshold requirement of 0.4635:

- . - - - - - 0T, minwy + wo + ws
4
. 5 W1
subject tog—=———
ST,UQ + ET,U3 + 1

I
—
=

> 4635

Fig.4. lllustration of an “inverse” MFVA algorithm that does not correctly find 4w2

the optimal solution in the case where a constraint is removed. The algorithm 1 > 5 > 4635
iteratively decreases some component so that its corresponding constraint is still 5W1 + St +1
satisfied. Starting at the poity, 4), the algorithm terminates at the po{ist 3) §w3
even though the optimal solution is the pofat 2). I 6 I > 4635
gwl + gwg + 1
its corresponding constraint is still satisfied. As illustrated in w; €{0,1,...,C}, i=1,2.3.

Fig. 4, such an algo_rlthm may not f'_nd an Opt'mfll soll_mon. Using the MFVA algorithm, we can obtain the optimal solution
Instead, we consider an alternative “inverse” version of the, = (11,11,11)

MFVA algorithm that obtains a point = (.Ql’ o ’QM) Su.Ch Suppose the second mobile user ends its connection, resulting
thatz < z*, and then run the MFVA algorithm starting with

in the followi bl
This “inverse” algorithm is described below. We first define folrn € following probiem

i1 =1,...,M, the setl; as follows: minw; + ws
4
. =w
Ui ={z € X |hi(z) < b;, }. subject to=—>—— > 4635
Ewg + 1
For: = 1,..., M, we also define the following set of scalars gwg
i i i . —2 = > 4635
associated with a point € X: Tuy+1° 0
Ri(x) w; €{0,1,...}, i=1,3.
={z€ Xi|hi(z1, .-, zi1,2,Tip1,. -, 2m) < by, ) Using the resulting point from the original problem,

w = (11,11), as the starting point, running the MIVA al-
orithm results in the pointy = (1,1). The progression of
e algorithm is illustrated in Fig. 5. Note that < w}, for

¢ = 1,2, wherew* = (2,2) is the optimal solution for this
problem(F), and thereforet would be an appropriate starting

Note that the set#’; and R;(z) are analogous to the set$
andS;(x) defined in Section IV. In these sets, the inequalitie
L PR |
are reversed. Also note that by definition of the two sets,iff
not an element o/; for anyi = 1,..., M, thenR;(x) can not
contain any values greater than or equalitdue to Assumption

; : . point for the MFVA algorithm.
1. Furthermore, ifr*** is the maximum value ofR;(z), then . S -
Ri(z) is the set ofzvalues i that are less than E)r)equal to The proof of the algorithm terminating in a finite number of

o iterations is analogous to that of the MFVA algorithm. As in that

i case, each application of the iteration to a vec{®) results in a
Ri(z)={z€ Xi| z<a™}, i=1,... M. vectorz(t 4+ 1) such that one component is strictly less than the
corresponding component of¢), i.e., thatz; (¢ + 1) < z;(¢),
C. Typical Iteration of the Maximum Infeasible Value Assigrfor somei € {1, ..., M}, while the remaining components re-
ment (MIVA) main unchanged. The number of iterations involving any partic-
Givenapointz(t) = (z1(?),...,zm(¢)) suchthate() € X, ular component; is then bounded by the number of values in
select some indexe {1, ..., M} satisfyingz(¢t) ¢ U;. the setX; since oncer; is equal to the minimum value iX;,

« If no suchs exists, the algorithm terminates and returnthe setR;(x) must be empty. The number of iterations is there-
the pointz(¢). (It will be shown that in this case;(t) is fore bounded by the number of values in all of the setX of
optimal.) Consider the following problem:

« If such an: does exist, then if the sét;(x(¢)) is empty,
the algorithm terminates (it will be shovsln(trzzalt in this case, ma% flz) (@)
the problem is infeasible). Otherwise, sgtt + 1) to the subjecttoh;(z) < b;, i=1,...,M
largest value inX; suchthat:(t 4+ 1) € U;; i.e., sete;(t + v, € X, i=1,..., M.
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13,

TR Under this condition, we can show that the proposed algo-

rithm will find an optimal solution to probler?). Note that the
- constraints provided by (9) and (10) form the feasible regions of
(@) and(P), respectively. In what follows, let* denote an op-
. timal solution to problem{@) if (@) is feasible. If(Q) is not
- feasible, letz* be the point such that

=

@ & @ @ @ @ & @om 7

165

zf =min{z € X;}, i=1,....M. (12)

Proposition 6: Let the Constraint Monotonicity Condition
hold and consider the following sequence of steps. Starting with
a pointx(0) initialized according to (8), run the MIVA algo-
- rithm. If the algorithm finds an optimal solution to problér),

e +« 105 letz be this solution. Otherwise, if problef) is infeasible, let
« +« BV « be the point given in (11). Run the MFVA algorithm starting
7 with the pointz. The resulting vector is an optimal solution to
problem(P).

Proof: We have already shown that the pair{d) is fea-
sible for problem(P). As a result of the Constraint Mono-
Fig. 5. lllustration of the MIVA algorithm. tonicity Condition,z(0) satisfiesz(0) > z*. The MIVA algo-

rithm will therefore find an optimal solution t@?) if problem
As shown in the following proposition, given an appropriaté?) is feasible. Also as a result of the Constraint Monotonicity
starting point, the MIVA algorithm will terminate with an op-Condition, any solutior: to (Q) satisfiesz < z*, wherez* is
timal solution to problen{Q) if (Q) is feasible. If(Q) is not any optimal solution t¢ P). If (Q) is not feasible, the point

@ @& ® & & 8 @ & & @ & @
- & & = = @ L] [ ] i@ & & &
" & ® ¥ ¥ ¥F F B O @B & @
" ¥ ¥ ¥ F F @ L] - % ® =
" ® ¥ F F F F ¥ . ® ® @
- ¥ ¥ ¥ B L] & " & & %
" ® ¥ F ¥ F F # % B ® @

R . B B B B B
@ @ @ @ B O® F R R R @ @ @ OB B W

i

feasible, the algorithm will terminate without a solution. given by (11) also satisfies < z*. Since(P) has an optimal
Proposition 5: Letx* be an optimal solution to problef®) solution, it follows from Corollary 3 that running the MFVA al-

if (Q) is feasible. If(Q) is not feasible, let* be such that? = gorithm starting withe will result in an optimal solution. =

min{z € X;}fori = 1,..., M + 1. Given a starting point It can be shown that the power control problem satisfies

x(0) > z*, the MIVA algorithm terminates in a finite numberthe Constraint Monotonicity Condition. If the Constraint
of iterations under one of the following conditions: either wdlonotonicity Condition does not hold, the sequence of steps
havex(t) € U; fori = 1,..., M, in which casex(¢) is an described in Prop. 6 is not guaranteed to find an optimal solu-
optimal solution ta(@), or the setR;(x(t)) is empty for some tion to problem(P) since any optimal solutior of problem

i€ {l,..., M} suchthate(t) ¢ U, in which case there is no (Q) may not satisfyr; < z7, fori = 1,..., M, wherez* is

feasible solution td@). some optimal solution to problef®). To guarantee finding an
Proof: The proof is analogous to those of Proposition 2ptimal solution to probleni”) we can start with a solution
and Correlation 3 and is omitted. m z(0) initialized as follows:

Returning to the problem of finding an optimal solution to
(P) given an optimal solution tdP), we propose to run the
MIVA algorithm starting with the point:(0) initialized as fol-
lows:

2;(0) =min{z € X;}, i=1,....M

and run the MFVA algorithm to solve probleq®).
The following proposition provides an alternative condition
20y =35, i=1,.... M @) underwhi_c_h the Constraint Monotonicity Condition holds.
Proposition 7: Suppose that
whe(e " is an optima! solution ta(P). If the_ algor?thm ‘ ‘
terminates with a solution, we use the resulting painas hi(y) > hi(@),
a starting point for the MFVA algorithm. If the algorithm¢,, o) vectorsy of the formy = (¢ + @1, ..., c+ ), where

terminates without a solution, we use the point where s 4 hositive constant. Then the Constraint Monotonicity Con-
z; = min{z € X;} as a starting point for the MFVA algorithm. ition holds.

fori=1,....M (12)

For this method to yield an optimal solution to problém), Proof: Assume the contrary, that for some ¢
we need the following cointion. N {1,...,M}, we havez; > #;, wherez = (z,...,2,)
D. Constraint Monotonicity Condition _satisfies (9) and: = (21, ..., %) satisfies (10). Let,, be the
Letz = (z1,...,z)) be any point satisfying the constraint§,qex such thai:. — #: is maximized:
B S b =L M © b = vz, — 31}
andletz = (21, . .., Zar) be any point satisfying the constraints
(# m) yp ving Lety be a vector irlR™ such thaty; = z; — #;, + ;. Since
hi(@)>b;,, i=1,...,M. (10) z; —;, > 0, we have from (12)

Then we have;; < @;,fori =1,..., M. hi (y) > hi (&) > b .
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1,

Note thaty;,, = z; . Fori # i,, we have e T
b T -
T =%, 2T~ 5] . .
3 14 =
sincei,,, maximizese, — &;. Therefore, we have | g =T
! . il g ! !
i
¥

Yy >z, fori#in,. | :
It follows that di r = i E
i
hi, (z) = hi, (y) > bi,, 3 _.L i - g

i
1
contradicting the assumption thasatisfies (9). [ | | |
When the constraints; are linear, we can rewrite problem it : H E
(P) as :
; : : —
min f(x) I 2 i i 5

subjecttoH z > b;, i i )
. Fig. 6. |lllustration of the synchronous parallel MFVA algorithm for the
ze€X;, 1=1,.... M problem of Example 2.

and the condition described by Prop. 7 corresponds tdthe

M matrix H being diagonally dominant «*. Then for some finite, =(¢) is an optimal solution t¢) for

allt > t.
Proof: From Proposition 2, we have thaf > z;(t +

1) > x;(t) for all ¢ such that:(¢) ¢ V;. During each iteration

In this section, we consider synchronous and asynchrondas which we have:(t) ¢ V; for at least somé, at least one
distributed versions of the MFVA algorithm. We assume th@omponent of: is strictly increased. Since the number of times
problem(P) is feasible and show that the algorithms will findeach component af can be increased is finite, the number of
an optimal solution to probler®) in a finite number of itera- such iterations must also be finite. Therefore, for some fiite
tions. If problem(P) is not feasible, the arguments below came must haver(t) € V; fori = 1,..., M, soz(f) must be
be modified to show that in this case, similar to the sequenti@lasible. By induction, we have(¢) < z*, soz(¢) must be
version, the distributed algorithms will terminate with an infeasptimal. According to the algorithm, we havét + 1) = z(¢)

VI. DISTRIBUTED ALGORITHMS

sible solution. fort > tsincex(t) e V;, fori=1,..., M. ]
Note that as currently stated, the algorithm continues indef-
B. Synchronous MFVA initely, even after an optimal solution has been obtained. One
Givenapoints(t) = (x1(t), ..., zx(t)) such that:(t) € X, possible method for determining when an optimal solution has
we assume we hav&/ processors, each of which is responbeen obtained is for each processor to compare updated values
sible for updating a component eft). Specifically, fori = of components with the previous values. When none of the com-
1,...,M, we have ponents has changedt) is an optimal solution and processors

no longer need to update their components.

.’L’i(t + 1) = di(.’rl(t), . ,.’L’]w(ﬁ))
_ ) ~ C. Asynchronous MFVA
wherez; is updated by processéraccording to some given n d ibi th h distributed .
functiond;. We also assume the updates occur simultaneousl! ’n escribing € asynchronous —distributed  version,
use the framework presented in [1, Sect. 6.1]. Let

and each processor receives all of the updated values in ti ©

for the next iteration. The synchronous parallel version of th t) = (#1(t),...,am(t)), where

MFVA algorithm is given below and illustrated in Fig. 6. x;(t) = Value of theith component of: at timet.
Given a pointz(t) = (x1(t),...,zam(t)) such thate(t) €

X, each processarsuch that:(¢t) ¢ V;, setsz;(¢t + 1) to the

smallest value in the sét; (x(2)); i.e.,z;(t + 1) is the smallest

value inX; such that:(¢ + 1) € V;. Each processarsuch that

z(t) € Vi, setsz,;(t + 1) = x;(¢)

We assume thatthereisa et {0, 1,2, ...} oftimes at which

one or more components(t) of z(t) are updated. Lef* be the

set of times at whiche;(¢) is updated. As in the synchronous

case, we assume we ha¥é processors, each of which is re-

sponsible for updating a componentdf). Here, however, we

it 1) = { min S; (z(¢)), @f x(t) € Vi, assume that the processors do not necessarily ha\_/_e access to the
¢ 2;:(t), if 2(t) e V;. most recent values of the other components. Specifically, we as-

The following proposition shows that given an appropriattSume thatfor any, j € {1,...., M}, 7;(#) is the time at which

. . ) : . ) : fhie value of theith component that was most recently available
starting point, this algorithm obtains an optimal solution tQ 9 b y

. o : . at the processor updating(t) was last updated. Therefore, if
problem(P) in a finite number of iterations.
" i . . . each processor used the values of components most recently re-
Proposition 8: Let z* be some optimal solution to problem

(P). Suppose the synchronous distributed version of the MF\%Ned’ we would have‘ ‘ ‘
algorithm described by (13) is run with a starting pai) < zi(t+1)=d; (w1 (r{@)) ..., 2m(y (1)), VEeT

(13)
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whered; are given functions and(¢) are times such that TABLE |
NUMBER OF ITERATIONS REQUIRED TO FIND AN OPTIMAL SOLUTION

USING THE PREVIOUS SOLUTION AS A STARTING POINT AND USING THE

i
0= T; (t) <t, Viel. VECTOR(0,...,0) AS A STARTING POINT

Note that a processor may not necessarily receive upda*==

. . Number of Number of iterations using Number of iterations
values of a component in the order that they were sent; i.e., ) . ) . . .
Mobile Users | previous solution as starting point starting from 0
i i 914 5626 5626
Ti(11) < 7; (T2 fort; <t

i(h) <j(t2), 915 46 5673
may not necessarily hold. 916 128 5803
The asynchronous version of the MFVA algorithm is giver 917 26 5825
below. 918 27 5847
Foralli =1,...,M and allt € T, let 919 9 5929
920 441 6372

2t (t) = (ajzl t),..., ajéw(t)) * This value corresponds to a starting point of 0.
be the vector of components being stored at tirbg the pro-
cessor updating;(t). We have

; _ [ min S;(2%(t)), if 2'(t) € V;
zi(t+1) = {x?(t), :f () e V;

T

schemes of [1] and [6], and then run a (synchronous or asyn-
chronous) parallel version of the MFVA.
(14)
VIl. COMPUTATIONAL RESULTS

where
We have implemented sequential versions of the MFVA and

MIVA algorithms to obtain empirical results. We summarize the
results as follows.

Note that the values used to updatgt) are the maximum of « Asnoted in Section IV, the number of iterations is bounded
the ones received for each component instead of the ones most by the number of values in all of the sets of feasible points
recently received. As will be seen in Proposition 9, updates of  for each component. In fact, the maximum number of iter-
any component results in a value that is greater than or equal to ations is the number required for the single-step variant to
the previous value. Therefore, using the maximum of the values terminate. Ifthe problem is feasible, the maximum number
received results in using the most recently updated values. is the number of values in all of the sets of feasible points
The following proposition shows that given an appropriate  for each componentless than or equal to the corresponding
starting point, this algorithm eventually obtains an optimal so-  component of some optimal solution. If the problem is in-
lution to problem(P). feasible, the maximum number is the number of values in
Proposition 9: Let z* be some optimal solution to problem all of the sets of feasible points for each component. Com-
(P). Suppose the asynchronous distributed version of the putational experiments show that the number of iterations
MFVA algorithm described by (14) is run with a starting point required for the MFVA algorithm to terminate is typically
#(0) < z*. Let the setl’ c T be the set of times in which greater than 95% of the maximum bound.
at least one component’s value is changed. Then th&’set + When a new user enters the system, running the MFVA
contains a finite number of elements. Furthermoré, i the algorithm using as a starting point the optimal solution
maximum element off’, thenz(#) is an optimal solution to for the problem prior to the new user’s arrival typically
(P). results in substantial computational savings. Table | shows

a:i(t) = ielqr“l%{gtxj (T;(f)) , j=1,...,M.

Proof: From Proposition 2, we have that > z;(t+1) >
z;(t) for all i such thatt € 7% and(z'(¢),...,2%,(t)) € Vi.
If t & T% or (z4(¢),...,245,(t) € V;, we haver;(t + 1) =
x;(t). Since the number of times each component @&n be

results from a power control problem involving a system
of ten by ten cells and approximately nine hundred mobile
users. The number of iterations required to find the optimal
solution for an initial problem is given, along with the

increased is finite, the s&f must contain a finite number of number of iterations required to find the optimal solution
times. Letf be the maximum value ift. Since each update sent when additional users enter the system.
by a processor is eventually received by every other processor,» When an existing user departs from the system, running
we must havezi (f),...,z%,(#) € V; fori = 1,..., M, and the MIVA algorithm to find an appropriate point from
2i(f) = z;(8) for 4,5 = 1,..., M. Thereforex(f) must be which to run the MFVA algorithm typically results in so-
feasible. By induction, we have(?) < z*, soz(#) must be lutions in which each component is very close to the min-
optimal. [ | imum value in its corresponding feasible set. It therefore
We do not discuss the issue of detecting when an optimal so- seems more efficient to simply run the MFVA algorithm
lution has been found. This issue is addressed in [1, Sect. 8.1], starting with a vector in which each component is initial-
as well as in [6]. A related issue is how to construct a parallel ized to the minimum value in its corresponding feasible
synchronous or asynchronous implementation of the algorithm  set. Additional computational results should be conducted
of Section V-B for the case where a constraint is removed. One to determine whether there are situations in which the
possibility is to run a (synchronous or asynchronous) parallel MIVA algorithm yields computational savings. In prac-
version of the MIVA, detect its termination using one of the tice, one may want to use the simpler heuristic algorithm
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mentioned first in Section V-B (cf. Fig. 4) whenever a [5] J. Rulnick and N. Bambos, “Mobile power management for wireless

user departs from the system, and perform a reoptimiza- communication networksWireless Ne_tv_vorks/ol_. 3, pp. 3-14, 1997.

. L . [6] S. A. Savari and D. P. Bertsekas, “Finite termination of asynchronous
tion periodically or when a new user arrives that cannotbe ™ e ative algorithms, Parallel Comput, vol. 22, pp. 39-56, 1996.
accommodated by running the MFVA algorithm starting [7] R. Yates and C. Huang, “Integrated power control and base station as-
from the current operating point. signment,”IEEE Trans. Veh. Technolol. 44, pp. 638—-644, 1995.
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