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Convergence Results for Some Temporal Difference
Methods Based on Least Squares

Huizhen Yu and Dimitri P. Bertsekas

Abstract—We consider finite-state Markov decision processes,
and prove convergence and rate of convergence results for certain
least squares policy evaluation algorithms of the type known as
LSPE( ). These are temporal difference methods for constructing
a linear function approximation of the cost function of a stationary
policy, within the context of infinite-horizon discounted and av-
erage cost dynamic programming. We introduce an average cost
method, patterned after the known discounted cost method, and we
prove its convergence for a range of constant stepsize choices. We
also show that the convergence rate of both the discounted and the
average cost methods is optimal within the class of temporal differ-
ence methods. Analysis and experiment indicate that our methods
are substantially and often dramatically faster than TD( ), as well
as more reliable.

Index Terms—Approximation methods, convergence of numer-
ical methods, dynamic programming, Markov processes.

I. INTRODUCTION

W E consider finite-state Markov decision processes
(MDP) with the discounted and the average cost cri-

teria. We focus on a single stationary policy, and discuss the
approximate evaluation of the corresponding cost function
(in the discounted case) or bias/differential cost function (in
the average cost case). Such evaluation methods are essential
for approximate policy iteration, including gradient-descent
type of algorithms (e.g., actor-critic algorithms [1]) when
parametrized policies are considered. A prominent algorithm
for approximating this cost function using a linear combination
of basis functions is TD( ). This is an iterative temporal differ-
ences (TD) method, which uses a single infinitely long sample
trajectory, and depends on a scalar parameter that
controls a tradeoff between accuracy of the approximation and
susceptibility to simulation noise. The method was originally
proposed for discounted problems by Sutton [2], and analyzed
by several authors, including Dayan [3], Gurvits, Lin, and
Hanson [4], Pineda [5], Tsitsiklis and Van Roy [6]. An exten-
sion to average cost problems and was proposed and
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analyzed by Tsitsiklis and Van Roy [7], [8] (the case
may lead to divergence and was excluded; it needs a different
treatment as given by Marbach and Tsitsiklis [9]).

Alternatively, there are two least squares-based algorithms,
which employ the same approximation framework as TD( ),
but use simulation more efficiently. In particular, let us de-
note by a (linear, multiple-step) Bellman equation
involving a single policy, and let denote projection on a
subspace of basis functions with respect to a suitable Euclidean
projection norm. Then TD( ) aims to solve the projected
Bellman equation with a stochastic approximation
(SA) type of iteration. The two least squares-based algorithms
solve the same linear equation, but they use simulation to
construct directly the low-dimensional quantities defining the
equation, instead of only the solution itself, unlike TD( ). The
two algorithms are called the least squares temporal difference
algorithm, LSTD( ), first proposed by Bradtke and Barto [10]
for and generalized by Boyan [11] to , and the
least squares policy evaluation algorithm, LSPE( ), first pro-
posed for stochastic shortest path problems by Bertsekas and
Ioffe [12]. Roughly speaking, LSPE( ) differs from LSTD( )
in that LSPE( ) can be viewed as a simulation-based approx-
imation of the value iteration algorithm, and is essentially a
Jacobi method, while LSTD( ) solves directly at each iteration
an approximation of the equation. The differences between
LSPE( ) and LSTD( ) become more pronounced in the im-
portant application context where they are embedded within
a policy iteration scheme, as explained in Section VI. Both
LSPE( ) and LSTD( ) have superior performance to standard
TD( ), as suggested not only by practice but also by theory:
it has been shown by Konda [13] that LSTD( ) has optimal
convergence rate, compared to other TD( ) algorithms, and it
will be shown in this paper that LSPE( ) has the same prop-
erty. Both algorithms have been applied to approximate policy
iteration. In fact, in the original paper [12] (see also the book by
Bertsekas and Tsitsiklis [14]), LSPE( ) was called “ -policy
iteration” and applied in the framework of optimistic policy
iteration, a version of the simulation-based approximate policy
iteration, to solve the computer game Tetris, which involves a
very large state space of approximately states. LSTD( )
was applied with approximate policy iteration by Lagoudakis
and Parr [15]. Both works reported favorable computational
results which were not possible by using TD( ).

In this paper we will focus on the LSPE( ) algorithm, an-
alyzing its convergence for the average cost case (Section III),
and analyzing its rate of convergence for both the discounted and
average cost cases (Section IV). The convergence of LSPE( )
under the discounted criterion has been analyzed in previous
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works. In particular, LSPE( ) uses a parameter , sim-
ilar to other TD methods, and a positive stepsize. For discounted
problems, Nedić and Bertsekas [17] proved the convergence of
LSPE( ) with a diminishing stepsize, while Bertsekas, Borkar,
and Nedić [17], improving on the analysis of [16], proved the
convergence of LSPE( ) for a range of constant stepsizes in-
cluding the unit stepsize. Both analysis and experiment have in-
dicated that LSPE( ) with a constant stepsize has better perfor-
mance than standard TD( ) as well as LSPE( ) with a dimin-
ishing stepsize. In this paper, we will focus on the constant step-
size version. There has been no rigorous analysis of LSPE( ) in
the context of the average cost problem, despite applications of
LSPE( ) with policy gradient in this context [18], and one of
the purposes of this paper is to provide such an analysis.

The average cost case requires a somewhat more general
treatment than the proof given in [17] for the discounted case.
LSPE( ) is a simulation-based fixed point iteration, the con-
vergence of which relies on the underlying mapping being a
contraction. The projected Bellman equation in the average cost
case involves sometimes nonexpansive mappings (unlike the
discounted case where it involves contraction mappings with
known modulus determined in part by the discount factor).
Two means for inducing or ensuring the contraction property
required by LSPE( ) are (i) the choice of basis functions and (ii)
a constant stepsize. The former, (i), is reflected by a condition
given by Tsitsiklis and Van Roy [7] on the basis functions of
the average cost TD( ) algorithm, which is required to ensure
that the projected Bellman equation has a unique solution and
also induces contraction for the case of , and the case of

and an aperiodic Markov chain, as illustrated in Prop.
2 in Section III. The latter, (ii), is closely connected to the
damping mechanism for turning nonexpansive mappings into
contraction mappings (this is to be differentiated from the role
of a constant and diminishing stepsizes used in SA algorithms,
which is to track a varying system without ensuring convergence
of the iterates, in the case of a constant stepsize, and to enforce
convergence through averaging the noise, in the case of a dimin-
ishing stepsize). Our convergence analysis of a constant stepsize
LSPE( ) will involve both (i) and (ii), and arguments that are
technically different and more general than those of [17]. Our
analysis also covers the convergence results of [17] for the
discounted case, and simplifies proofs in the latter work.

For convergence rate analysis, we will show that in both the
discounted and average cost cases, LSPE( ) with any constant
stepsize under which it converges has the same convergence rate
as LSTD( ). In fact, we will show that LSPE( ) and LSTD( )
converge to each other at a faster rate than they converge to the
common limit. This was conjectured, but not proved, by [17] in
the discounted case. Since Konda [13] has shown that LSTD( )
has optimal asymptotic convergence rate, as mentioned earlier,
LSPE( ) with a constant stepsize shares this optimality property.

Let us mention that the part of the iterations in LSTD( )
and LSPE( ) that approximates low-dimensional quantities
defining the projected Bellman equation/fixed point mapping
can be viewed as a simple SA algorithm, whose convergence
under a fixed policy is ensured by the law of large numbers
for samples from a certain Markov chain. This connection
provides the basis for designing two-time-scale algorithms

using LSTD( ) and LSPE( ) when the policy is changing. We
will highlight this in the context of approximate policy iteration
with actor-critic type of policy gradient methods, which are
two-time-scale SA algorithms, when we discuss the use of
LSTD( ) and LSPE( ) as a critic (Section VI).

The paper is organized as follows. In Section II, after some
background on TD with function approximation, we introduce
the LSPE( ) method, we motivate the convergence analysis of
Section III, and we also provide a qualitative comparison to
LSTD( ). In Section III, we provide convergence results for
LSPE( ) by using a spectral radius analysis. We also introduce
a contraction theorem for nonexpansive fixed point iterations in-
volving Euclidean projections, we use this theorem to analyze
the contraction properties of the mapping associated with the
average cost TD( ), and to interpret all of our convergence re-
sults for , but only some of our results for . In Sec-
tion IV, we discuss the convergence rate of LSPE( ) for both
the discounted and the average cost cases, and we show that it
is identical to that of LSTD( ). In Section V, we provide some
computational results that are in agreement with the analytical
conclusions, and indicate a substantial and often dramatic speed
of convergence advantage over TD( ), even when the latter is
enhanced with Polyak-type averaging. Finally, in Section VI,
we discuss various extensions, as well as application of the al-
gorithms in the context of approximate policy iteration.

II. PRELIMINARIES: THE AVERAGE COST LSPE( )
AND LSTD( ) ALGORITHMS

We focus on a time-homogeneous finite-state Markov chain
whose states are denoted by . Let be the state transi-
tion probability matrix with entries ,
where the random variable is the state at time . Throughout
the paper we operate under the following recurrence assumption
(in the last section we discuss the case where this assumption is
violated).

Assumption 1: The states of the Markov chain form a single
recurrent class.

Under the above assumption, the Markov chain has a unique
invariant distribution which is the
unique probability distribution satisfying the system of equa-
tions We allow the possibility that the chain may be
aperiodic or periodic, in which case, with slight abuse of termi-
nology, we say that is aperiodic or periodic, respectively.

Let be the cost of transition from state to state ,
and let be the length- column vector with components the
expected state costs , . It is well
known that the average cost starting at state

is a constant independent of the initial state , and

The differential cost function, or bias function, that we aim to
approximate, is defined by
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when the Markov chain is aperiodic, and is defined by the Ce-
saro limit when the Markov chain is periodic: for

It satisfies the average cost dynamic programming equation,
which in matrix notation is

(1)

where is the length- column vector of all 1s, and is
treated as a length- column vector. Under the recurrence
Assumption 1, the function is the unique solution of this
equation up to addition of a scalar multiple of .

A. Background of the TD/Function Approximation Approach

In LSPE( ) and LSTD( ), like in recursive TD( ), we use an
matrix to approximate the bias function with a vector

of the form ,

In particular, for each state , we introduce the vector

which forms the th row of the matrix . We view these rows
as describing attributes or features of the corresponding state ,
and we view the columns of as basis functions. We denote by

the subspace spanned by the basis vectors

We adopt throughout our paper for the average cost case the fol-
lowing assumption from [7], which differs from the discounted
counterpart in that .

Assumption 2: The columns of the matrix are linearly
independent.

For every , all algorithms, LSPE( ) (as will be
shown), LSTD( ), and TD( ), compute the same vector and
hence the same approximation of on the subspace . This
approximation, denoted by , is the solution of a fixed point
equation parametrized by

Here is a projection mapping on , and is a mapping that
has as a fixed point (unique up to a constant shift); the details
of the two mappings will be given below. Both mappings play
a central role in the analysis of Tsitsiklis and Van Roy [7] of
the TD( ) algorithm, as well as in our subsequent analysis of
LSPE( ).

We define the mapping by

and view the Bellman equation (1) as the fixed point equation
. We consider the multiple-step fixed point equations

and combine them with geometrically

decreasing weights that depend on the parameter ,
thereby obtaining the fixed point equation

(2)

where

(3)

In matrix notation, the mapping can be written as

or more compactly as

(4)

where the matrix is defined by

(5)

Note that and for . When function
approximation is used, a positive improves approximation ac-
curacy, in the sense that will be explained later.

The projection norm with respect to which , the operation
of projection on is defined, is the weighted Euclidean norm
specified by the invariant distribution vector . This choice of
norm is important for convergence purposes. (There are other
possible choices of norm, which may be important in the context
of policy iteration and the issue of exploration [14], [19], but this
subject is beyond the scope of the present paper.) In particular,
we denote by the weighted Euclidean norm on

and define

where

In matrix notation, with being the diagonal matrix

(6)

By Tsitsiklis and Van Roy [6, Lemma 1]

(7)

so are nonexpansive mappings with respect
to ; their contraction properties will be discussed later in
Section III-B.
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Tsitsiklis and Van Roy [7] show that there is a unique solution
of the fixed point equation

(8)

to which recursive TD( ) algorithms converge in the limit. Tsit-
siklis and Van Roy [7] also provide an estimate of the error be-
tween , the projection of the true bias function, and ,
modulo a constant shift, which indicates that the error dimin-
ishes as approaches 1. Their analysis was given under As-
sumptions 1, 2, and the additional assumption that is aperi-
odic, but extends to the periodic case as well. Their error anal-
ysis supports the use of as approximation of in approx-
imate value iteration or in actor-critic algorithms. (Sharper and
more general error bounds for projected equations have been re-
cently derived in our paper [20].)

It will be useful for our purposes to express and the
solution explicitly in terms of matrices and vectors of dimen-
sion , and to identify fixed point iterations on the subspace
with corresponding iterations on the space of . Define

(9)

(10)

where the matrix is defined by (5), and the vector can
also be written more compactly as

(11)

Using the definitions of [cf. (6)] and [cf. (4)], it is easy
to verify that

(12)

with the linear term corresponding to

(13)

and, by the linear independence of columns of ,

It follows from (12) that the fixed point iteration

on is identical to the following iteration on with
:

(14)

and similarly, the damped iteration

on is identical to

(15)

These relations will be used later in our analysis to relate the
LSPE( ) updates on the space of to the more intuitive approx-
imate value iterations on the subspace .

B. The LSPE( ) Algorithm

We now introduce the LSPE( ) algorithm for average cost
problems. Let be an infinitely long sample trajec-
tory of the Markov chain associated with , where is the state
at time . Let be the following estimate of the average cost at
time :

which converges to the average cost with probability 1. We
define our algorithm in terms of the solution of a linear least
squares problem and the temporal differences

In particular, we define by

(16)

The new vector of LSPE( ) is obtained by interpolating
from the current iterate with a constant stepsize

(17)

It is straightforward to verify that the least squares solution is

where

and the matrices and vector are defined by1

These matrices and vectors can be computed recursively:

(18)

(19)

1A theoretically slightly better version of the algorithm is to replace the term
� in � by � ; the resulting updates can be computed recursively as before.
The subsequent convergence analysis is not affected by this modification, or
any modification in which � � � with probability 1.
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(20)

(21)

The matrices , and vector are convergent. Using the
analysis of Tsitsiklis and Van Roy [7, Lemma 4] on average
cost TD( ) algorithms, and Nedić and Bertsekas [16] on dis-
counted LSPE( ) algorithms, it can be easily shown that with
probability 1

as , where , , and are given by (9)–(10).
Our average cost LSPE( ) algorithm (17) thus uses a constant

stepsize and updates the vector by

(22)

In the case where , is simply the least squares solu-
tion of (16). In Section III we will derive the range of stepsize
that guarantees the convergence of LSPE( ) for various values
of . For this analysis, as well as for a high-level interpretation
of the LSPE( ) algorithm, we need the preliminaries given in
the next subsection.

C. as Simulation-Based Fixed Point Iteration

We write the iteration (22) as a deterministic iter-
ation plus stochastic noise

(23)

where and are defined by

and they converge to zero with probability 1. Similar to its dis-
counted case counterpart in [17], the convergence analysis of
iteration (23) can be reduced to that of its deterministic portion
under a spectral radius condition. In particular, (23) is equiva-
lent to

(24)

When and , the stochastic noise term
diminishes to 0, and the iteration matrix

converges to the matrix . Thus, convergence hinges
on the condition

(25)

where for any square matrix , denotes the spectral radius
of (i.e., the maximum of the moduli of the eigenvalues of ).
This is shown in the following proposition.

Proposition 1: Assume that Assumptions 1 and 2 and the
spectral radius condition (25) hold. Then the average cost
LSPE( ) iteration (22) converges to with prob-
ability 1 as .

Proof: The spectral radius condition implies that there ex-
ists an induced matrix norm such that

(26)

For any sample trajectory such that , there exists such
that for all

for some positive , and consequently, from (24)

The above relation implies that for all sample trajectories such
that both and (so that ),
we have . Since the set of these trajectories has
probability 1, we have with probability 1.

The preceding proposition implies that for deriving the con-
vergence condition of the constant stepsize LSPE( ) iteration
(23) (e.g., range of stepsize ), we can focus on the determin-
istic portion

(27)

This deterministic iteration is equivalent to

(28)

where

(29)

[cf. (15) and its equivalent iteration]. To exploit this equivalence
between (27) and (29), we will associate the spectral radius con-
dition with the contraction and nonex-
pansiveness of the mapping on the subspace .2 In this
connection, we note that the spectral radius is
bounded above by the induced norm of the mapping re-
stricted to with respect to any norm, and that the condition

is equivalent to being a contraction
mapping on for some norm. It is convenient to consider the

norm and use the nonexpansiveness or contraction prop-
erty of to bound the spectral radius , be-
cause the properties of under this norm are well-known.
For example, using the fact

we have that the mapping of (29) is nonexpansive for all
and , so

(30)

Thus, to prove that the spectral radius condition
holds for various values of and , we may

follow one of two approaches:
1) A direct approach, which involves showing that the

modulus of each eigenvalue of is less than
1; this is the approach followed by Bertsekas et al. [17]
for the discounted case.

2Throughout the paper, we say that a mapping� � � �� � is a contraction
or is nonexpansive over a set � � � if ����������� � ���� �� for all
�� � � � , where � � ��� �� or � � �, respectively. The set � and the norm
� 	 � will be either clearly implied by the context or specified explicitly.
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2) An indirect approach, which involves showing that the
mapping is a contraction
with respect to .

The first approach provides stronger results and can address ex-
ceptional cases that the second approach cannot handle (we will
see that one such case is when and ), while the
second approach provides insight, and yields results that can be
applied to more general contexts of compositions of Euclidean
projections and nonexpansive mappings. The second approach
also has the merit of simplifying the analysis. As an example, in
the discounted case with a discount factor , because the map-
ping (given by the multiple-step Bellman equation for the
discounted problem) is a -norm contraction with modulus

for all , it fol-
lows immediately from the second approach that the constant
stepsize discounted LSPE( ) algorithm converges if its stepsize

lies in the interval . This simplifies parts
of the proof given in [17]. For the average cost case, we will
give both lines of analysis in Section III, and the assumption
that (Assumption 2) will play an important role in both,
as we will see.

Note a high-level interpretation of the LSPE( ) iteration,
based on (23): With chosen in the convergence range of the
algorithm (given in Section III), the LSPE( ) iteration can be
viewed as a contracting (possibly damped) approximate value
iteration plus asymptotically diminishing stochastic noise
[cf. (23), (27) and (28)]

D. The LSTD( ) Algorithm

A different least squares TD algorithm, the average cost
LSTD( ) method, calculates at time

(31)

For large enough the iterates are well-defined3 and converge
to . Thus LSTD( ) estimates by simulation two
quantities defining the solution to which TD( ) converges.
We see that the rationales behind LSPE( ) and LSTD( )
are quite different: the former approximates the fixed point
iteration [or when , the iteration

] by introducing asymptotically di-
minishing simulation noise in its right-hand side, while the
latter solves at each iteration an increasingly accurate simula-
tion-based approximation to the equation .

Note that LSTD( ) differs from LSPE( ) in an important re-
spect: it does not use an initial guess and hence cannot take
advantage of any knowledge about the value of . This can
make a difference in the context of policy iteration, where many
policies are successively evaluated, often using relatively few
simulation samples, as discussed in Section VI.

3The inverse �� exists for � sufficiently large. The reason is that �� con-
verges with probability 1 to the matrix � � � ��� � ���, which is nega-
tive definite (in the sense � �� � � for all � �� �) and hence invertible (see the
proof of Lemma 7 of [7]).

Some insight into the connection of LSPE( ) and LSTD( )
can be obtained by verifying that the LSTD( ) estimate is
also the unique vector satisfying

(32)

where

Note that finding that satisfies (32) is not a least squares
problem, because the expression in the right-hand side of (32)
involves . Yet, the similarity with the least squares problem
solved by LSPE( ) [cf. (16)] is evident. Empirically, the two
methods also produce similar iterates. Indeed, it can be verified
from (22) and (31) that the difference of the iterates produced
by the two methods satisfies the following recursion:

(33)

In Section IV we will use this recursion and the spectral radius
result of Section III to establish one of our
main results, namely that the difference converges to 0
faster than and converge to their limit .

III. CONVERGENCE OF AVERAGE COST LSPE( )
WITH A CONSTANT STEPSIZE

In this section, we will analyze the convergence of the con-
stant stepsize average cost LSPE( ) algorithm under Assump-
tions 1 and 2. We will derive conditions guaranteeing that

, and hence guaranteeing that LSPE( ) converges,
as per Prop. 1. In particular, the convergent stepsize range for
LSPE( ) will be shown to contain the interval for

, the interval for , and the interval for
and an aperiodic Markov chain (Prop. 2). We will then

provide an analysis of the contraction property of the mapping
underlying LSPE( ) with respect to the norm, which

yields as a byproduct an alternative line of convergence proof,
as discussed in Section II-C.

For both lines of analysis, our approach will be to investigate
the properties of the stochastic matrix , the approximation
subspace and its relation to the eigenspace of , and the
composition of projection on with , and to then, for the
spectral radius-based analysis, pass the results to the -dimen-
sional matrix using equivalence relations discussed
in Section II.

A. Convergence Analysis Based on Spectral Radius

We start with a general result relating to the spectral radius
of certain matrices that involve projections. In the proof we will
need an extension of a Euclidean norm to the space of -tu-
ples of complex numbers. For any Euclidean norm in (a
norm of the form , where is a positive definite
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symmetric matrix), the norm of a complex number
is defined by

For a set , we denote by the set of complex
numbers . We also use the fact that for
a projection matrix that projects a real vector to a subspace of

, the complex vector has as its real and imaginary parts
the projections of the corresponding real and imaginary parts of

, respectively.
Lemma 1: Let be a subspace of and let be an

real matrix, such that for some Euclidean norm we have
. Denote by the projection matrix which projects a

real vector onto with respect to this norm. Let be a complex
number with , and let be a vector in . Then is an
eigenvalue of with corresponding eigenvector if and only
if is an eigenvalue of with corresponding eigenvector , and

.
Proof: Assume that . We claim that

; if this were not so, we would have

which contradicts the assumption . Thus,
, which implies that , and .

Conversely, if and , we have .
We now specialize the preceding lemma to obtain a necessary

and sufficient condition for the spectral radius condition (25) to
hold.

Lemma 2: Let be a complex number with and let
be a nonzero vector in . Then under Assumption 2, is an

eigenvalue of and is a corresponding eigenvector if
and only if is an eigenvalue of and is a corresponding
eigenvector.

Proof: We apply Lemma 1 for the special case where
, is the subspace spanned by the columns of , and the

Euclidean norm is . We have [cf. (7)]. Since

[cf. (13)], and by Assumption 2, has linearly independent
columns, we have that is an eigenvalue/eigenvector pair
of if and only if is an eigenvalue/eigenvector
pair of , which by Lemma 1, for a complex number with

, holds if and only if is an eigenvalue of and
is a corresponding eigenvector.

We now apply the preceding lemma to prove the convergence
of LSPE( ).

Proposition 2: Under Assumptions 1 and 2, we have

and hence the average cost LSPE( ) iteration (22) with constant
stepsize converges to with probability 1 as , for any
one of the following cases:

i) and ;
ii) , , and is aperiodic;

iii) , , is periodic, and all its eigenvectors
that correspond to some eigenvalue with and

, do not lie in the subspace ;
iv) , .

Proof: We first note that by (30), we have
, so we must show that has no eigenvalue with

modulus 1.
In cases (i)–(iii), we show that there is no eigenvalue of

that has modulus 1 and an eigenvector of the form , and
then use Lemma 2 to conclude that . This
also implies that for all , since

Indeed, in both cases (i) and (ii), is aperiodic [in case
(i), all entries of are positive, so it is aperiodic, while in
case (ii), is equal to , which is aperiodic by assumption].
Thus, the only eigenvalue of with unit modulus is ,
and its eigenvectors are the scalar multiples of , which are not
of the form by Assumption 2.

In case (iii), a similar argument applies, using the hypothesis.
Finally, consider case (iv). By Lemma 2, an eigenvalue of

with is an eigenvalue of with eigenvec-
tors of the form . Hence we cannot have , since the
corresponding eigenvectors of are the scalar multiples of ,
which cannot be of the form by Assumption 2. Therefore,
the convex combinations , , lie in the
interior of the unit circle for all eigenvalues of ,
showing that for .

Remark 1: We give an example showing that when
and is periodic, the matrix can have spectral ra-
dius equal to 1, if the assumption in case (iii) of Prop. 2 is not
satisfied. Let

For any , using (9), we have

so . Here the eigenvectors corresponding to
the eigenvalue of are the nonzero multiples of ,
and belong to .

Remark 2: Our analysis can be extended to show the conver-
gence of LSPE( ) with a time varying stepsize , where for
all lies in a closed interval contained in the range of stepsizes
given by Prop. 2. This follows from combining the spectral ra-
dius result of Prop. 2 with a refinement in the proof argument
of Prop. 1. In particular, the refinement is to assert that for all

in the closed interval given above, we can choose a common
norm in the proof of Prop. 1. This in turn follows from
explicitly constructing such a norm using the Jordan form of the
matrix (for a related reference, see e.g., Ortega and
Rheinboldt [21, p. 44]).

B. Contraction Property of With Respect to

For the set of pairs given in the preceding spectral ra-
dius analysis (Prop. 2), of (28) is a contraction mapping
with respect to some, albeit unknown, norm. We will now re-
fine this characterization of by deriving the pairs
for which is a contraction with respect to the norm
(see the subsequent Prop. 4). These values form a subset of the
former set; alternatively, as discussed in Section II-C, one can
follow this line of analysis to assert the convergence of LSPE( )
for the respective smaller set of stepsize choices (the case
turns out to be exceptional).
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First, we prove the following proposition, which can be ap-
plied to the convergence analysis of general iterations involving
the composition of a nonexpansive linear mapping and a projec-
tion on a subspace. The analysis generalizes some proof argu-
ments used in the error analysis in [7], part of which is essen-
tially also based on the contraction property.

Proposition 3: Let be a subspace of and let
be a linear mapping

where is an matrix and is a vector in . Let
be a Euclidean norm with respect to which is nonexpansive,
and let denote projection onto with respect to that norm.

a) has a unique fixed point if and only if either 1 is not an
eigenvalue of , or else the eigenvectors corresponding to
the eigenvalue 1 do not belong to .

b) If has a unique fixed point, then for all , the
mapping

is a contraction, i.e., for some scalar , we have

Proof:
a) The linear mapping has a unique fixed point if and

only if 1 is not an eigenvalue of . By Lemma 1, 1 is an
eigenvalue of if and only if 1 is an eigenvalue of with
the corresponding eigenvectors in , from which part (a)
follows.

b) Since has a unique fixed point, we have
for all . Hence, , either , or

for some scalar due to the nonexpan-
siveness of . In the first case we have

(34)

where the strict inequality follows from the strict convexity of
the norm, and the weak inequality follows from the nonexpan-
siveness of . In the second case, (34) follows easily. If we
define and note
that the supremum above is attained by Weierstrass’ Theorem,
we see that (34) yields and

By letting , with , and by using the definition
of , part (b) follows.

We can now derive the pairs for which the mapping
underlying the LSPE( ) iteration is a -norm contrac-

tion.
Proposition 4: Under Assumptions 1 and 2, the mapping

is a contraction with respect to for either one of the fol-
lowing cases:

i) and ,
ii) and .

Proof: For , we apply Prop. 3, with equal to
, equal to the stochastic matrix , and equal to the

subspace spanned by the columns of . The mapping has
a unique fixed point, the vector , as shown by Tsitsiklis and
Van Roy [7] [this can also be shown simply by using Prop. 3
(a)]. Thus, the result follows from Prop. 3 (b).

Consider now the remaining case, and .
Then is a linear mapping involving the matrix [cf.
(4)]. Since and all states form a single recurrent class, all
entries of are positive [cf. (5)]. Thus can be expressed
as a convex combination

for some , where is a stochastic matrix with positive
entries. We make the following observations:

i) corresponds to a nonexpansive mapping with respect
to the norm . The reason is that is an invariant
distribution of , i.e., , [as can be verified by
using the relation ]. Thus, we have

for all [6, Lemma 1], implying that has
the non-expansiveness property mentioned.

ii) Since has all positive entries, the states of the Markov
chain corresponding to form a single recurrent class.
Hence the eigenvectors of corresponding to the eigen-
value 1 are the nonzero scalar multiples of , which by
Assumption 2, do not belong to the subspace .

It follows from Prop. 3 (with in place of , and in place of
) that is a contraction with respect to the norm ,

which implies that is also a contraction.
Remark 3: As Prop. 2 and Prop. 4 suggest, if is aperiodic,

may not be a contraction on the subspace with respect
to the norm , while it is a contraction on with respect to
another norm. As an example, let

and note that is aperiodic. Then , so
the norm coincides with a scaled version of the standard
Euclidean norm. Let and denote the columns of . For

Since , is not a contraction on with
respect to . However, according to Prop. 2 (ii), we have

, which implies that is a contraction
on with respect to a different norm.

IV. RATE OF CONVERGENCE OF LSPE( )

In this section we prove that LSPE( ) has the same asymp-
totic convergence rate as LSTD( ), for any constant stepsize

under which LSPE( ) converges. The proof applies to both
the discounted and average cost cases and for all values of
for which convergence has been proved ( for the dis-
counted case and for the average cost case).
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For both discounted4 and average cost cases, the LSPE( )
updates can be expressed as

while the LSTD( ) updates can be expressed as

Informally, it has been observed in [17] that became close
to and “tracked” well before the convergence to took
place—see also the experiments in Section V. The explanation
of this phenomenon given in [17] is a two-time-scale type of
argument: when is large, and change slowly so
that they are essentially “frozen” at certain values, and then
“converges” to the unique fixed point of the linear system

which is , the value of of LSTD( ).
In what follows, we will make the above argument more

precise, by first showing that the distance between LSPE( )
and LSTD( ) iterates shrinks at the order of (Prop. 5).
We will then appeal to the results of Konda [13], which show
that the LSTD( ) iterates converge to their limit at the order of

. It then follows that LSPE( ) and LSTD( ) converge
to each other at a faster time scale than to the common limit;
the asymptotic convergence rate of LSPE( ) also follows as a
consequence (Prop. 6).

For the results of this section, we assume the conditions that
ensure the convergence of LSPE( ) and LSTD( ) algorithms.
In particular, we assume the following conditions:

Condition 1: For the average cost case, Assumptions 1 and 2
hold, and in addition, for LSPE( ), the stepsize is chosen as
in Prop. 2; and for the -discounted case, Assumption 1 holds,
the columns of are linearly independent, and in addition, for
LSPE( ), the stepsize is in the range ,
where (cf. [17]).

4For the �-discounted criterion and � � ��� ��, the update rules of LSPE(�)
and LSTD(�) are given by (22) and (31), respectively, with the corresponding
matrices

� � ��� ���� � � � � � ����� � � ��� � �

	 � � 
�� � � �� � � ���� ��� �

(see [17]); and the stepsize of LSPE(�) is chosen in the range
������� 	 ���� ����, where ���� �� � ��� ������� ��� (cf. [17, Prop.
3.1] and also our discussion in Section II-C). The matrix 
� and vector 
	
converge to � and 	, respectively, with

� �� 
�� � ���� 	 � � 
�� � ��� � 


where

� ���� �� � ��� � � � � ��� ��

(see [16]). LSPE(�) and LSTD(�) converge to the same limit � � �� 	.
Alternatively, one may approximate relative cost differences, similar to the av-
erage cost case and to the discussion in [8]; the resulting iterates may have lower
variance. Our analysis can be easily applied to such algorithm variants.

The difference between the LSPE( ) and LSTD( ) updates
can be written as [cf. (33)]

(35)

The norm of the difference term of the LSTD( ) it-
erates in the right-hand side above is of the order , as
shown in the next lemma. To simplify the description, in what
follows, we say a sample path is convergent if it is such that

, , and converge to , , and , respectively. (All such
paths form a set of probability 1, on which both LSTD( ) and
LSPE( ) converge to .)

Lemma 3: Let Condition 1 hold and consider a convergent
sample path. Then for each norm , there exists a constant
such that for all sufficiently large

Proof: This is a straightforward verification. By definition
of the LSTD( ) updates, we have

(36)

Since and , we have
for some constants and

and for all sufficiently large. Thus we only need to bound
the terms and by for some
constant . By the definition of , it can be seen that for
sufficiently large, for the average cost case

for some constant , (since , , and are bounded for all
), and similarly, the relation holds for the discounted case (the

difference being without the term ). By the definition of

Applying the Sherman-Morisson formula for matrix inversion
to in the second term of the last expression, it can be seen
that for
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for some constant and sufficiently large. Combine these
relations with (36) and the claim follows.

The next result provides the rate at which the LSPE( ) and
LSTD( ) iterates converge to each other.

Proposition 5: Under Condition 1, the sequence of random
variables is bounded with probability 1.

Proof: Consider a convergent sample path. Since
(as proved in [17, Prop. 3.1] for the discounted

case and in our Prop. 2 of Section III for the average cost case),
we may assume that there exist a scalar and a norm

such that

for all sufficiently large. From (35), we see that

Thus, using also Lemma 3 with the norm being , we obtain

for all sufficiently large. This relation can be written as

(37)

where

Let be such that , where Then, for all
, from the relation [cf. (37)], we have

Thus the sequence is bounded, which implies the desired
result.

Note that Prop. 5 implies that the sequence of random vari-
ables converges to zero with probability 1 as

for any . Using this implication, we now show that
LSPE( ) has the same convergence rate as LSTD( ), assuming
that LSTD( ) converges to its limit with error that is normally
distributed, in accordance with the central limit theorem (as
shown by Konda [13]). We denote by a vector-valued
Gaussian random variable with zero mean and covariance ma-
trix .

Proposition 6: Let Condition 1 hold. Suppose that the se-
quence of random variables of LSTD( ) converges
in distribution to as . Then for any given initial

, the sequence of random variables of LSPE( )
converges in distribution to as .

Proof: Using the definition of LSPE( ) and LSTD( ) [cf.
(22) and (31)], it can be verified that

and thus it suffices to show that
with probability 1. (Here we have used the following

fact: if converges to in distribution and converges to 0
with probability 1, then converges to in distribution.
See e.g., Duflo [22, Properties 2.1.2 (3), (4), p.40].)

Consider a sample path for which both LSTD( ) and
LSPE( ) converge. Choose a norm . When is sufficiently
large, we have for some constant , so
that

Since for some constant (Lemma 3), the
second term converges to 0. By Prop. 5,
the first term, , also converges to 0. The proof
is thus complete.

Remark 4: A convergence rate analysis of LSTD( ) and
TD( ) is provided by Konda [13, Chapter 6]. (In this analysis,
the estimate for the average cost case is fixed to be in
both LSTD( ) and TD( ) for simplicity.) Konda shows [13,
Theorem 6.3] that the covariance matrix in the preceding
proposition is given by , where is
the covariance matrix of the Gaussian distribution to which

converges in distribution. As Konda also shows
[13, Theorem 6.1], LSTD( ) has the asymptotically optimal
convergence rate compared to other recursive TD( ) algorithms
(the ones analyzed in [6] and [7]), whose updates have the
form

where

for the average cost case, and

for the -discounted case. The convergence rate of LSTD( )
is asymptotically optimal in the following sense. Suppose
that converges in distribution to ,
(which can be shown under common assumptions—see
[13,Theorem 6.1]—for analyzing asymptotic Gaussian ap-
proximations for iterative methods), and also suppose that the
limit is well defined. Then, the
covariance matrix of the limiting Gaussian distribution is
such that is positive semidefinite. (In particular, this
means that if , where is a constant scalar, then

and converges in distribution to ,
where is positive semidefinite.)

Remark 5: We have proved that LSPE( ) with any constant
stepsize (under which LSPE( ) converges) has the same asymp-
totic optimal convergence rate as LSTD( ), i.e., the convergence
rate of LSPE( ) does not depend on the constant stepsize. Es-
sentially, the LSPE( ) iterate tracks the LSTD( ) iterate
at the rate of regardless of the value of the stepsize (see
Prop. 5 and its proof), while the LSTD( ) update converges
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Fig. 1. Computational results obtained for Example 1. Graphs of updates of average cost LSPE(�), LSTD(�), TD(�), and TD(�) with Polyak averaging (TD-P)
using the same single trajectory and for different values of �. At the scale used, LSPE(�) and LSTD(�) almost coincide with each other. The behavior of TD(�)
with Polyak averaging conforms with the theoretical analysis in this case.

to at the slower rate of . This explains why the con-
stant stepsize does not affect the asymptotic convergence rate of
LSPE( ). On the other hand, the stepsize affects the spectral
radius of the matrix and the corresponding scalar

(see the proof of Prop. 5), and therefore also the (geometric)
rate at which , the distance between the LSPE( )
and LSTD( ) iterates, converges to 0. This can also be observed
from the computational results of the next section.

Remark 6: Similar to the argument in Remark 2, our con-
vergence rate results Props. 5 and 6 extend to LSPE( ) with a
time varying stepsize , where for all lies in a closed in-
terval contained in the range of stepsizes given by Condition 1.
This can be seen by noticing that the norm in the proof
of Prop. 5 can be chosen to be the same for all in the above
closed interval.

V. COMPUTATIONAL EXPERIMENTS

The following experiments on three examples show that
• LSPE( ) and LSTD( ) converge to each other faster than

to the common limit, and
• the algorithm of recursive TD( ) with Polyak averaging,

which theoretically also has asymptotically optimal con-
vergence rate (cf. Konda [13]), does not seem to scale well
with the problem size.

Here are a few details of the three algorithms used in experi-
ments. We use pseudoinverse for matrix inversions in LSPE( )
and LSTD( ) at the beginning stages, when matrices tend to
be singular. The stepsize in LSPE( ) is taken to be 1, ex-
cept when noted. Recursive TD( ) algorithms tend to diverge
during early stages, so we truncate the components of their up-
dates to be within the range . The TD( ) algo-
rithm with Polyak averaging, works as follows. The stepsizes

of TD( ) are taken to be an order of magnitude greater than
, in our experiments. The updates of TD( )

are then averaged over time to have as the
updates of the Polyak averaging algorithm. (For a general refer-
ence on Polyak averaging, see e.g., Kushner and Yin [23].)

In all the following figures, the horizontal axes index the time
in the LSPE( ), LSTD( ), and TD( ) iterations, which use the
same single sample trajectory.

Example 1: This is a 2-state toy example. The parameters are

We use one basis function: . The updates of
LSPE( ), LSTD( ), TD( ), and TD( ) with Polyak averaging
are thus one dimensional scalars. The results are given in
Fig. 1.

Example 2: This example is a randomly generated
fast-mixing Markov chain with 100 states indexed by 1 to
100. The state transition probability matrix is

where is the identity matrix, and is a random stochastic ma-
trix with mutually independent rows which are uniformly dis-
tributed in the space of probability distributions over the state
space. The per-stage costs are

where denotes a random number uniform in and in-
dependently generated for each . We use 3 basis functions in
the average cost case.

Even though the chain mixes rapidly, because of the cost
structure, it is not an easy case for the recursive TD( ) algo-
rithm. The results are given in Figs. 2 and 3.

Example 3: This example is a 100-state Markov chain that
has a random walk structure and a slow mixing rate relative to
the previous example. Using as a shorthand for

, we let the state transition probabilities be

, , , and
. The per-stage costs are the same as in

Example 2, and so are the basis functions. The results are given
in Figs. 4 and 5.
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Fig. 2. Computational results obtained for Example 2. Graphs of distances and updates of the TD algorithms using the same single trajectory and for different
values of �. Only the parts within the range of the vertical axis are shown. (a) and (c): Distances between LSPE(�) and LSTD(�) (d-LSPE-LSTD), between
LSPE(�) and the limit (d-LSPE-Limit), and between LSTD(�) and the limit (d-LSTD-Limit). LSPE(�) and LSTD(�) are at all times much closer to each other
than to the limit. (b) and (d): Graphs of one of the components of the updates of LSPE(�), LSTD(�), TD(�), and TD(�) with Polyak averaging (TD-P). We were
not able to get TD(�) to converge in this case.

VI. EXTENSIONS TO MULTIPLE POLICIES

AND POLICY ITERATION

In this section, we discuss various uses and extensions of
LSPE( ) for the more general MDP problem that involves
optimization over multiple policies (as opposed to just a single
policy as we have assumed so far). The main difficulty here is
that when function approximation is introduced, the contraction
properties that are inherent in the single policy evaluation case
are lost. In particular, the corresponding projected Bellman
equation (which is now nonlinear) may have multiple fixed
points or none at all (see De Farias and Van Roy [24]). As a
result the development of LSPE-type algorithms with solid
convergence properties becomes very difficult.

However, there is one important class of MDP for which the
aforementioned difficulties largely disappear, because the cor-
responding (nonlinear) projected Bellman equation involves a
contraction mapping under certain conditions. This is the class
of discounted optimal stopping problems, for which Tsitsiklis
and Van Roy [25] have shown the contraction property and ana-
lyzed the application of TD(0). It can be shown that LSPE(0) can
also be applied to such problems, and its convergence properties
can be analyzed using appropriate extensions of the methods of

the present paper. Note that the deterministic portion of the it-
eration here involves a nonlinear contraction mapping. Because
of this nonlinearity, the least squares problem corresponding to
LSTD( ) is not easy to solve and thus LSTD( ) is not easy to
apply. This analysis is reported elsewhere (see Yu and Bertsekas
[26],[27]).

Let us now consider the use of LSPE( ) and LSTD( ) in
the context of approximate policy iteration. Here, multiple poli-
cies are generated, each obtained by policy improvement using
the approximate cost function or -function of the preceding
policy, which in turn may be obtained by using simulation and
LSPE( ) or LSTD( ). This context is central in approximate
DP, and has been discussed extensively in various sources, such
as the books by Bertsekas and Tsitsiklis [14], and Sutton and
Barto [19]. Lagoudakis and Parr [15] discuss LSTD( ) in the
context of approximate policy iteration and discounted prob-
lems, and report favorable computational results. The use of
LSPE( ) in the context of approximate policy iteration was pro-
posed in the original paper by Bertsekas and Ioffe [12], under
the name -policy iteration, and favorable results were reported
in the context of a challenging tetris training problem, which
could not be solved using TD( ).

Generally, one may distinguish between two types of policy
iteration: (1) regular where each policy evaluation is done with a
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Fig. 3. Comparison LSTD(�) and LSPE(�) with different constant stepsizes � for Example 2. Plotted are one of the components of the updates of LSPE(�) and
LSTD(�).

long simulation in order to achieve the maximum feasible policy
evaluation accuracy before switching to a new policy via policy
improvement, and (2) optimistic where each policy evaluation is
done inaccurately, using a few simulation samples (sometimes
only one), before switching to a new policy. The tradeoffs be-
tween these two variants are discussed extensively in the litera-
ture, with experience tending to favor the optimistic variants.
However, the behavior of approximate policy iteration is ex-
tremely complicated, as explained for example in Bertsekas and
Tsitsiklis [14, section 6.4], , so there is no clear understanding of
the circumstances that favor the regular or optimistic versions.

Given our convergence rate analysis, it appears that LSPE( )
and LSTD( ) should perform comparably when used for regular
policy iteration, since they have an identical asymptotic conver-
gence rate. However, for optimistic policy iteration, the asymp-
totic convergence rate is not relevant, and the ability to make
fast initial progress is most important. Within this context, upon
change of a policy, LSPE( ) may rely on the current iterate
for stability, but LSTD( ) in its pure form may be difficult to
stabilize (think of LSTD( ) within an optimistic policy iteration
framework that changes policy after each sample). It is thus in-
teresting to investigate the circumstances in which one method
may be having an advantage over the other.

An alternative to the above use of approximate policy itera-
tion in the case of multiple policies is a policy gradient method.

Let us outline the use of LSTD( ) and LSPE( ) algorithms in
the policy gradient method of the actor-critic type, as consid-
ered by Konda and Tsitsiklis [1], and Konda [13]. This discus-
sion will also clarify the relation between LSTD( )/LSPE( )
and SA algorithms. Actor-critic algorithms are two-time-scale
SA algorithms in which the actor part refers to stochastic gra-
dient descent iterations on the space of policy parameters at the
slow time-scale, while the critic part is to estimate/track at the
fast time-scale the cost function of the current policy, which
can then be used in the actor part for estimating the gradient.
Konda and Tsitsiklis [1], and Konda [13] have analyzed this type
of algorithms with the critic implemented using TD( ). When
we implement the critic using least squares methods such as
LSPE( ) and LSTD( ), at the fast time-scale, we track directly
the mapping which defines the projected Bellman equation as-
sociated with the current policy. This is to be contrasted with
the TD( )-critic in which we only track the solution of the pro-
jected Bellman equation without estimating the mapping/equa-
tion itself.

To make our point more concrete, we consider here the
average cost criterion. (Other cost criteria are similar.) We
consider randomized policies parametrized by a -dimensional
vector , and we view the state-action pairs as the joint state
variables. The basis functions, the projected Bellman equation
and its solution, as well as the Bellman equation, now depend
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Fig. 4. Computational results obtained for Example 3. Graphs of distances and updates of the TD algorithms using the same single trajectory and for different
values of �. Only the parts within the range of the vertical axis are shown. (a), (b) and (c): Distances between LSPE(�) and LSTD(�) (d-LSPE-LSTD), between
LSPE(�) and the limit (d-LSPE-Limit), and between LSTD(�) and the limit (d-LSTD-Limit). LSPE(�) and LSTD(�) are closer to each other than to the limit for
most of the time. (d): Graphs of one of the components of the updates of LSPE(�), LSTD(�), TD(�), and TD(�) with Polyak averaging (TD-P). The convergence
of the recursive TD(�) (hence also that of the Polyak averaging) is much slower than LSPE(�) and LSTD(�) in this case.

on . We will use subscripts to indicate this dependence. Under
certain differentiability conditions, the gradient of the average
cost can be expressed as (see e.g., Konda and Tsitsiklis
[1], Konda [13, Chapter 2.3])

where is the Q-factor, or equivalently, the bias function of the
MDP on the joint state-action space, is as before the diagonal
matrix with the invariant distribution of the Markov chain on
its diagonal, is an matrix whose columns consist of
a certain set of basis functions determined by , and is the
projection on a certain subspace such that

. We consider one variant of the actor-critic algorithm,
(the idea that follows applies similarly to other variants), in
which the critic approximates the projection by , the
solution of the projected Bellman equation , and
then uses it to approximate the gradient

This is biased estimation, with the bias diminishing as tends
to 1 or as the subspace is enlarged.

When the critic is implemented using LSTD( ) or LSPE( ),
the actor part has the form of a stochastic gradient descent iter-
ation, as with the TD( )-critic

(38)

where is a stepsize and is an estimate of ,
while gradient estimation can be done as follows. Let

be a single infinitely long simulation
trajectory with being the state-action at time . Omitting the
explicit dependence on of various quantities such as and
for notational simplicity, we define iterations

(39)

(40)

and

(41)

(42)

(43)

(44)



YU AND BERTSEKAS: CONVERGENCE RESULTS FOR SOME TEMPORAL DIFFERENCE METHODS BASED ON LEAST SQUARES 1529

Fig. 5. Comparison of LSTD(�) and LSPE(�) with different constant stepsizes � for Example 3. Plotted are one of the components of the updates of LSPE(�)
and LSTD(�).

[cf. (18)–(21) for LSPE( ) under a single policy]. In the
above, is a stepsize that satisfies the standard conditions

, as well as the additional
eventually non-increasing condition: for suf-
ficiently large. Furthermore, the stepsizes and satisfy

, and

which makes evolve at a slower time-scale than the iterates
(39)–(40) and (42)–(44), which use as the stepsize. Possible
choices of such sequences are and

, or and with .
The latter is indeed preferred, as it makes the estimates depend
“less” on the data from the remote past. We let be updated
either by LSTD( ) or LSPE( ) with a constant stepsize

as given in the present paper, i.e.

Then, under standard conditions (which involve the bounded-
ness of and , the smoothness of , , and ), viewing

as part of the Markov process , one can apply
the results of Borkar [28] and [29, Chapter 6] to show that
can be viewed as “quasi-static” for the iterates in (39)–(40) and
(42)–(44). In particular, the latter iterates track the respective
quantities associated with

with the differences between the two sides asymptotically
diminishing as . In the above, note particularly
that together with define the projected
Bellman equation and its associated mapping at ,
therefore the iterates track the projected Bellman
equation/mapping associated with . From this one can fur-
ther show (under a uniform contraction condition such as

in the case of LSPE( ))
that tracks

and hence tracks the approximating gradient

with asymptotically diminishing differences. In the actor’s iter-
ation (38), one may let or let be a bounded version
of . The limiting behavior of can then be analyzed fol-
lowing standard methods.

VII. CONCLUDING REMARKS

In this paper, we introduced an average cost version of the
LSPE( ) algorithm, and we proved its convergence for any

and any constant stepsize , as well as for
and . We then proved the optimal convergence rate
of LSPE( ) with a constant stepsize for both the discounted and
average cost cases. The analysis and computational experiments
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also show that LSPE( ) and LSTD( ) converge to each other at
a faster scale than they converge to the common limit.

Our algorithm and analysis apply not only to a single in-
finitely long trajectory, but also to multiple infinitely long
simulation trajectories. In particular, assuming trajectories,
denoted by , , the least squares
problem for LSPE( ) can be formulated as the minimization
of where is the least squares objective
function for the -th trajectory at time as in the case of a single
trajectory, and is a positive weight on the -th trajectory, with

. Asymptotically, the algorithm will be speeded
up by a factor at the expense of times more computation per
iteration, so in terms of running time for the same level of error
to convergence, the algorithm will be essentially unaffected.
On the other hand, we expect that the transient behavior of the
algorithm would be significantly improved, especially when the
Markov chain has a slow mixing rate. This conjecture, however,
is not supported by a quantitative analysis at present.

When the states of the Markov chain form multiple re-
current classes , (assuming there are no transient
states), it is essential to use multiple simulation trajectories,
in order to construct an approximate cost function that re-
flects the costs of starting points from different recurrent
classes. While there is no unique invariant distribution, the
one that relates to our algorithm using multiple trajectories, is

, where is the unique
invariant distribution on the set . Our earlier analysis can
be adapted to show for the average cost case that the constant
stepsize LSPE( ) algorithm converges if the basis functions
and the eigenvectors of the transition matrix corresponding
to the eigenvalue 1 are linearly independent. The approximate
cost function may be combined with the average costs of the
recurrent classes (computed separately for each trajectory)
to design proper approximate policy iteration schemes in the
multi-chain context.

We finally note that in recent work [30], we have extended
the linear function approximation framework to the approximate
solution of general linear equations (not necessarily related to
MDP). Some of the analysis of the present paper is applicable
to this more general linear equation context, particularly in con-
nection to rate of convergence and to compositions of projection
and nonexpansive mappings.
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