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Q-Learning Algorithms for Optimal Stopping Based on Least Squares

Huizhen Yu and Dimitri P. Bertsekas

Abstract—We consider the solution of discounted optimal chain. For textbook analyses, we refer to Bertsekas and

stopping problems using linear function approximation meth-  Tsitsiklis [4], Section 6.8, and Bertsekas [5], Section 6.4.
ods. A Q-learning algorithm for such problems, proposed by

Tsitsiklis and Van Roy, is based on the method of temporal dif-

ferences and stochastic approximation. We propose alternative . R ) .
algorithms, which are based on projected value iteration ideas  1Ne algorithm of Tsitsiklis and Van Roy is based on single
and least squares. We prove the convergence of some of thesetrajectory simulation, and ideas related to the temporal dif-

algorithms and discuss their properties. ferences method of Sutton [6], and relies on the contraction
property just mentioned. We propose a new algorithm, which

is also based on single trajectory simulation and relies on

I. INTRODUCTION the same contraction property, but uses different algorithmic

Optimal stopping problems are a special case of Markddeas. It may be viewed as a fixed point iteration for solving
vian decision problems where the system evolves accordifide pProjected Bellman equation, and it relates to the least
to a discrete-time stochastic system equation, until an expligguares policy evaluation (LSPE) method first proposed by
stopping action is taken. At each state, there are two choicdgrtsekas and loffe [7] and subsequently developed by@Nedi
either to stop and incur a state-dependent stopping codf)d Bertsekas [8], Bertsekas, Borkar, and €8], and Yu
or to continue and move to a successor state accordid§d Bertsekas [9] (see also the books [4] and [5]). We prove
to some transition probabilities and incur a state-dependeifie convergence of our method for finite-state models. We
continuation cost. Once the stopping action is taken, n@/so discuss variants of the method and prove convergence
further costs are incurred. The objective is to minimize théf some of them. We refer to an extended version of this
expected value of the total discounted cost. Examples ap@per [10] for the details of the corresponding convergence
classical problems, such as search, and sequential hypothéalysis.
testing, as well as recent applications in finance and the
pricing of derivative financial instruments (see Tsitsiklis and
Van Roy [1], Barraquand and Martineau [2], Longstaff and The paper is organized as follows. In Section II, we
Schwartz [3]). introduce the optimal stopping problem, and we derive

The problem can be solved in principle by dynamic prothe associated contraction properties of the mapping that
gramming (DP for short), but we are interested in problem@efinesQ-learning. In Section IIl, we describe our LSPE-like
with large state spaces where the DP solution is practicaljgorithm, and we prove its convergence. We also discuss
infeasible. It is then natural to consider approximate DEhe convergence rate of the algorithm, and we provide a
techniques where the optimal cost function or @dactors comparison with another algorithm that is related to the least
of the problem are approximated with a function from @quares temporal differences (LSTD) method, proposed by
chosen parametric class. Generally, cost function approy@adtke and Barto [11], and further developed by Boyan [12].
mation methods are theoretically sound (i.e., are provablj Section IV, we describe some variants of the algorithm,
convergent) only for the single-policy case, where the codthich involve a reduced computational overhead per iter-
function of a fixed stationary policy is evaluated. Howeveration, and discuss the relation of our algorithms with the
for the stopping problem of this paper, Tsitsiklis and Van Royecent algorithm by Choi and Van Roy [13], which can be
[1] introduced a linear function approximation to the optimaksed to solve the same optimal stopping problem. In this
Q-factors, which they prove to be the unique solution of #€ction, we also give without proof a convergence result
projected form of Bellman’s equation. While in general thidor some of the variants of Section IV. A computational
equation may not have a solution, this difficulty does nogomparison of our methods with other algorithms for the
occur in optimal stopping problems thanks to a critical factoPtimal stopping problem is beyond the scope of the present
the mapping defining th@-factors is a contraction mapping Paper. However, our analysis and the available results using
with respect to the weighted Euclidean norm correspondirl§ast squares methods (Bradtke and Barto [11], Bertsekas
to the steady-state distribution of the associated Markag¥nd loffe [7], Boyan [12], Bertsekas, Borkar, and Nedi

[14], Choi and Van Roy [13]) clearly suggest a superior
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Il. Q-LEARNING FOR OPTIMAL STOPPING I - ||z be the weighted Euclidean norm associated with the
PROBLEMS steady-state probability vectar, i.e.,

We are given a Markov chain with state spdde...,n}, , h
described by transition probabilitigs;. We assume that the IVllz = Z”(')(V(')) .
states form a single recurrent class, so the chain has a steady-
state distribution vectorr = (z(1),...,7(n)) with z(i) >0 It has been shown by Tsitsiklis and Van Roy [1] (see
for all statesi. Given the current state we assume that also Bertsekas and Tsitsiklis [4], Section 6.8.4) thRais a
we have two options: to stop and incur a caét), or to contraction with respect to this norm. For purposes of easy
continue and incur a cosf(i, j), where j is the next state reference, we include the proof.

(there is no control to affect the corresponding transition | emma 1: The mappingF is a contraction with respect
probabilities). The problem is to minimize the associated to ||. ||, with moduluscr.

discounted infinite horizon Cost, wheoec (0, 1) Proof: For any two VectorQ andé we have
For a given state we associate @-factor with each of the
two possible decisions. Th@-factor for the decision to stop FQ FQ)(I)| <o S pij|min{c(]
is equal toc(i). The Q-factor for the decision to continue is (FAH-FAO Z il telh.Q}
denoted byQ(i). The optimalQ-factor for the decision to —min{c(}),Q(J)}|
continue, denoted b@*, relates to the optimal cost function n )
J* of the stopping problem by <ay pj |Q(j) — Q(j)|,
=1
Z pi (9, ) +ad"(p),  i=1...n, or, in vector notation,
and IFQ—-FQ| <aP|lQ-Q],
I (i) =min{c(i),Q" ()},  i=1...n. where|x| denotes a vector whose components are the abso-

The valueQ* (i) is equal to the cost of choosing to continue atute values of the components rf Hence,
the initial state and following an optimal policy afterwards. = = =
g an opiima’ policy IFQ—FQx < a||PIQ-Ql ||, < @|Q~Qll.

The functionQ* satisfies Bellman’s equation
where the last inequality follows from the relatigi®J||; <
Zpu ( j)+amin{c(j) Q*(j)}), i=1....,n. ||J|lz which holds for every vectat (see Tsitsiklis and Van
) Roy [18] or Bertsekas and Tsitsiklis [4], Lemma 6.4). ®

Once theQ-factors Q*(i) are calculated, an optimal policy Wg co_n3|derQ—.factor approximations using a linear ap-
can be implemented by stopping at staté and only if Proximation architecture
cli) < Q'(h). Qi,r) = (i)',

The Q-learning algorithm (Watkins [15]) is

_ . . . . . where¢ (i) is ans-dimensional feature vector associated with

Q(i) == QM) +7(9(i, ) + amin{c(j),Q(J) } — (1)), statei. (In our notation, all vectors are viewed as column
wherei is the state at which we update ti@factor, j Vvectors, and prime denotes transposition.) We also write the
is a successor state, generated randomly according to tRetor . . . )
transition probabilitiegyj, andy is a small positive stepsize, Q= (Q(L,r),...,Q(n,r))
which diminishes to O over time. The convergence of this

algorithm is addressed by the general theoryQeliearning in the compact form

(see Watkins and Dayan [16], and Tsitsiklis [17]). However, Qr =ar,
for problems where the number of statesis large, this hered is then x s matrix whose rows arg (i), i=1,...,n.
algorithm is impractical. We assume that has ranks, and we denote byl the

Let us now consider the approximate evaluatiorQofi).  projection mapping with respect 4o || on the subspace
We introduce the mapping : 0" — O" given by
S={®r|re 0%,

Zp” i) +amin{c(j),Q(1)}), i=1....n i.e., foralJeOn,
We denote byFQ or F(Q) the vector whose components MJ = argmin||J —J||.
are (FQ)(i), i = 1,...,n. By (1), the optimalQ-factor for Jes

the choice to continueQ*, is a fixed point ofF, and it is BecauseF is a contraction with respect t- ||, with
the unique fixed point becauseis a sup-norm contraction modulusa, and M is nonexpansive, the mappirigF is a
mapping. contraction with respect tp- || with modulusc. Therefore,
For the approximation considered here, it turns out to bie mappind1F has a unique fixed point within the subspace
very important that= is also a Euclidean contraction. LetS which (in view of the rank assumption o) can be



uniquely represented abr*. Thusr* is the unique solution 1. ALEAST SQUARESQ-LEARNING
of the equation ALGORITHM

or* = MF(dr*). A. Algorithm

o We generate a singlenfinitely long simulation trajectory
Tsitsiklis and Van Roy [1] show that the error of tH&  (xg,x3,...) corresponding to an unstopped system, i.e., using

factor approximation can be bounded by the transition probabilitieg;;. Our algorithm starts with an
1 initial guessrg, and generates a parameter vector sequence
[or—Q"||z < ——|NQ" — Q*||x. {rt}. Following the transition(x,X%+1), we form the follow-
V1i-a? ing least squares problem at each titne
Furthermore, if we implement a poligy that stops at state oot ,
i if and only if c(i) < ¢(i)'r*, then the cost of this policy, . 0(¢(Xk) F—90%: Xcr1)

denoted byd,, satisfies

) 2
. ) —am'”{C(Xk+1),¢(Xk+1)/rt}> ; 2
(i) (Ju(i)—J(1)) € ———————||INQ" — Q|| ion i
i; ()( i (i) ()) = (1_a)m\\ Q —Qz whose solution is )
. _
These bounds indicate that @ is close to the subspace fi11= (Z (p(xk)q&(xk)’)
S spanned by the basis functions, then the approxirate k=0
factor and its associated policy will also be close to the ! :
optimal potey > 04 (90%%%1) + amin {c(x;1), 9(%;1)'re } ).
K=
The contraction property dflF suggests the fixed point ()
iteration
Then we set
Priiq = MF (Pry), M1 ="re+y(feea —ro), (4)

which in the related contexts of policy evaluation for dis\Wwherey is some fixed constant stepsize, whose range will
counted and average cost problems (see [14], [9], [5]) ke given latef.
known asprojected value iteratiofito distinguish it from the ~ This algorithm is related to the LSPE(0) algorithm, which
value iteration method, which 8,1 = F(Qy)]; see Fig. 1. is used for the approximate evaluation of a single stationary
This iteration converges to the unique fixed poipt* of policy of a discounted Markovian decision problem, and is
MF, but is not easily implemented because the dimensicialyzed by Bertsekas and loffe [7], Nedind Bertsekas [8],
of the vectorF (®ry) is potentially very large. In the policy Bertsekas, Borkar, and Nedj14], and Yu and Bertsekas [9]
evaluation context, a simulation-based implementation of tHgee also the recent book by Bertsekas [5], Chapter 6). In
iteration has been proposed, which does not suffer frolarticular, if there were no stopping action (or equivalently if
this difficulty, because it uses simulation samples of ththe stopping costs are so large that they are inconsequential),
cost of various states in a least-squares type of paramethten, fory= 1, the algorithm (3) becomes
approximation of the value iteration method. This algorithm ¢ -1
is known as least squares pollc_:y evaluation (LSPE), and can Myl = (Z ¢(Xk)¢(xk)'>
be conceptually viewed as taking the form K=o

t

Dry, 1 = NF(Pry) + &, Z)(P(Xk) (g(xk7Xk+l) + 0‘¢(Xk+1)'rt>, (5)
k=

where g is simulation noise which diminishes to 0 (with and is identical to the LSPE(0) algorithm for evaluating the
probability 1) ask — o (see Fig. 1). The algorithm to be policy that never stops. On the other hand, we note that
introduced in the next section admits a similar conceptuahe least square®-learning algorithm (3) has much higher
interpretation, and its analysis has much in common witbomputation overhead than the LSPE(0) algorithm (5) for
the analysis given in [14], [5] for the case of single-policyevaluating this policy. In the process of updatingvia (3),
evaluation. In fact, if the stopping option was not availablgve can compute the matr(% ZL=0¢(XK)¢(XK)')_1 and the

[or equivalently if c(i) is so high that it is never optimal Vectort%l Tt 00 (%) 9(X, X1 1) iteratively and efficiently as

to stop], ourQ-learning algorithm would coincide with the i (5). The terms mifc(xc1), ¢ (1)t }, however, need
LSPE algorithm for approximate evaluation of the discountegh pe recomputed for all the samplgs 1, k < t. Intuitively,

cost function of a fixed stationary policy. Let us also notgpjs computation corresponds to repartitioning the states into

that LSPE (like the temporal differences method) is actually

a family of methods parameterized by a scalae [0,1]. IMultiple independent infinitely long trajectories can also be used simi-

Our Q-learning algorithm of the next section corresponds t&‘@y- ) ) i ) o .
h hefle— 0: we do not have a convenient We ignore the issues associated with the invertibility of the matrix in (3).

LSPE(Q)' the cage where=0; w They can be handled, for example, by adding a small positive multiple of

Q-learning algorithm that parallels LSPEY(for A > 0. the identity to the matrix if it is not invertible.
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Fig. 1. A conceptual view of projected value iteration and its simulation-based implementation.

those at which to stop and those at which to continue, bas&dth a stepsizey, the least square®-learning iteration (4)
on the current approximat@-factors®r;. In Section IV, we is written as
will discuss how to reduce this extra overhead. ~
We will prove that the sequencé®dr,} generated by Pri1 = (1= Y)®re + Wl (Pry). 7
the least square®-learning algorithm (3) asymptotically By ergodicity of the Markov chain, we have
converges to the unique fixed point 6fF. The idea of R - R
the proof is to show that the algorithm can be written as a m—n, R—P andg—g,
damped version of the iteratiabry.1 = iR (®re), wherelle it probability 1, whereg denotes the expected per-stage
andkR apprommatdj and F., rgspecuvely, W|Fh|n smulg’qon cost vector WlchJ . pijg(i, ]) as thei-th component.
error that asymptotically diminishes to 0 with probability 1. For eacht, denote the invariant distribution &f by 7. We
now have three distributions, 7, 7;, which define, respec-
tively, three weighted Euclidean norms; ||z, || - |4 || - |7 -
The mappings we consider are non-expansive or contraction
n -1 mappings with respect to one of these norms. In particular:
fie1= <_Zlﬂt(')¢(')¢(')/> « the mapping; is non-expansive with respect to ||z,
= (sincell; is projection with respect t§- |z), and

B. Convergence Proof
The iteration (3) can be written equivalently as

4 NP / « the mappingr is a contraction, with moduluea;, with
i;m( )e (i) (gt ta Z #(jliymin{c(i). 0 () rt}) ’ respectpt%H T,; (the proof of Lemma 1 can be used to
show this).
where7 (i) and(jli) are the empirical frequencies deflnedWe have the following facts, each being a consequence of
by the ones preceding it:
i) = Z}(:05(Xk:i)7 Al = She 05( =i%1=1) () & — 7 with probability 1. _ .
t+1 Skeo (X =1) (i) For anye >0 and a sample trajectory with converging

sequences:, 7, there exists a time such that for all

with &(-) being the indicator function, argl i the empirical t >t and all states

mean of the per-stage costs:

. 1 n:t() 1 (i)
(i) = She og(xk,Xkﬂ)‘S(Xk—')' ﬁ F0] <l+e, ?<WS1+87
Zk 06( ) 1 ﬁt()
[In the case wheres}_,8(x=i) =0, we definegi) = 1+e < 7 (i) <lte

0, %(jli) = O by convention.] In a more compact notation, - wi ) der the condition of (ii), for anyd € 07, we have

Plia =R (Pre). © 19le < @t e0la. 19l < @+ e)la.
where the mappingﬁt andR, are simulation-based approx- 1917 < (14 &)[19]|x,
imations toll andF, respectively:
. I N . o for all t sufficiently large.
Mt = ®(@'Dy®) "Dy, Dy = diag(..., &(i),...), Fact (iii) implies the contraction ofl;/ with respect to
RJ=G +aRmin{cJ}, vieO", (If{)ij = m(j|i). | |lz, as shown in the following lemma.



Lemma 2:Let & € (o, 1). Then, with probability 11,/
is a | - ||z-contraction mapping with modulug for all t
sufficiently large.

Proof: Consider a simulation trajectory from the set of

probability 1 for which® — P and &, & — 7. Fix ane > 0.
For any functions); and J,, using fact (iii) above and the
non-expansiveness and contraction propertieElioaind ,
respectively, we have far sufficiently large,
PRI — MiRdlx < (1+€) MR — MR
< (1+¢)[RAh—RE[4
< (1+&)?|RA—Rdx
< (1+e)aldi— |4
<(1+¢&)3a||dh— Lz
Thus, by lettinge be such tha(l+¢)3a < & < 1, we see

thatf1;R is a||- || z-contraction mapping with modulu for
all t sufficiently large. ]

Proposition 1: For any constant stepsizec (0, 1%&), re
converges ta* with probability 1, ast — oo.
Proof: We choosd such that for alt >t, the contrac-
tion property of Lemma 2 applies. We have for su¢ch

[ @rea—@r |z = | (1= y) (@re - or)
+y(OeR(Pry) — MF(dr))

< 1= | Pre — |

+7Hﬁt|§t(q)rt) - ﬁtﬁt(q)r*)”n

+ 7[R (Pr) — MF (Or) |z
< (11— 7]+ 78) | ®r - r |z +7er, (8)

T

where L
& = ||MiR(Pr*) —MF(dr) ||

Because||[1; R (®r*) — MF(®r*)||z — 0, we haveg — O.
Thus, fory <1, since

(1-y+ya) <1,

it follows that ®r; — ®r*, or equivalently,r; — r*, with
probability 1. Similarly, based on (8), in order thabr;, 1 —
®r*||; converges to 0 under a stepsige- 1, it is sufficient
thaty— 1+ ya < 1, or equivalently,

"S1ira

Hencedr, converges tabr* for the stepsize € (0, 2-). W

' 1+oa

SO

TR (Pre) — MF(Pr) || < (| — A HIG )+ 111116 — gl
+a||TR — 1P| || min{c, ®r; }],

where || - || is any norm. Sincebr; is bounded with prob-
ability 1, the bound on the right-hand side can be seen to
asymptotically diminish to O.

C. Comparison to an LSTD Analogue

A natural alternative approach to findim§ that satisfies
®r* =TF(Pr*) is to replacell and F with asymptotically
convergent approximations. In particular, Iat.;” be the
solution of ®r = M/ (Pr), i.e.,

®Fy 41 = MR (DF 1),

With probability 1 the solutions exist fdr sufficiently large
by Lemma 2. The conceptual algorithm that generates the
sequencef;} may be viewed as the analogue of the LSTD
method, proposed by Bradtke and Barto [11], and further
developed by Boyan [12] (see also the text by Bertsekas [5],
Chapter 6). For the optimal stopping problem this is not a
viable algorithm because it involves solution of a nonlinear
equation. It is introduced here as a vehicle for interpretation
of our least square®-learning algorithm (2)-(4).

In particular, we note that;[; is the solution of the
equation

t=0,1,....

t

s = argmin%(mxk)’r — g% Xk1)

reds k=

—amin{c(X1), ¢(Xk+1)/ﬂ+l}> 27 9

so it is the fixed point of the “argmin” mapping in the right-
hand side of the above equation. On the other hand, the least
squaresQ-learning algorithm (2)-(4), with stepsizg= 1,
that generates; 1 can be viewed as a single iteration of a
fixed point algorithm that aims to find,3, starting fromr;.
This relation can be quantified further. Using an argument
similar to the one used in [9] for evaluating the optimal
asymptotic convergence rate of LSPE, it can be shown that
with any stepsize in the rang®, 1), the LSPE-like update
@r; converges to the LSTD-like updatef; asymptotically
at the rate ofO(t) [while we expect both to converge to
®r* at a slower raté(y/t)]. We state this in the following
proposition, the proof of which can be found in [10].
Proposition 2: For any constant stepsize € (0,1%&),
t(Pry — Pfy) is bounded with probability 1.

Note that the range of stepsizes for which convergencey. VARIANTS WITH REDUCED OVERHEAD PER

was shown includeg = 1.

Remark 1:We can interpret the iteration of the least

ITERATION
At each iteration of the least squares Q-learning algo-

squaresQ-learning algorithm, with the unit stepsize, forrithm (3), (4), while updating;, it is necessary to recompute

instance, as the deterministic fixed point iteratiof (dr;)

the terms mir{ c(Xcy1), ¢ (X1)'r¢ } for all the samples 1,

plus an asymptotically diminishing stochastic disturbancg < t. Intuitively, this corresponds to repartitioning the sam-

(see Fig. 1). In particular,
MR (Pre) — NF (ry)
= (M6 — Ng) + (MR — NP) min{c, ®r,},

pled states into those at which to stop and those at which
to continue based on the most recent approxingatactors
@ry. In this section we discuss some variants of the algorithm
that aim to reduce this computation.



A. First Variant This is a special case of an algorithm due to Choi and Van

A simple way to reduce the overhead in iteration (3jR0Y [13], as we will discuss shortly. By carrying out the
is to forgo the repartitioning just mentioned. Thus, in thighinimization overr, we can equivalently write (10) as

variant we replace the terms n{in(Xc1), ¢ (Xcr1)'re} by Bl t
G(Xct1, 1), given by a1 = —= Y 0(x) (g(xk Xki1)
t+1k; ’
" _Jexq)  ifkeK, - /
At = {¢(Xk+l)lrt if k¢ K, +amin{e1) 0 X1)'T} ).

where K = {k| c(X1) < 0(X1)'rc} is the set of states where we denote

to stop based on the (earlier) approxim&efactors ®ry, 11 ,
rather than the (most recent) approximgtdactors ®r;. In B = 1 Z ¢ (%) 9 (%)
particular, we replace the term

To gain some insight into this iteration, let us rewrite it,

t
Z)qb(xk)min{c(ka),(p(ka)’rt} using the definition of; and the relation
k=
1
in (3) with Bri1= m(tBt +o(x)9(%)),
t
;¢(Xk)q(xk+1, ') as follows:
k= Bt_l
= P()CX1) T Y O(X)9(Xir) Tt fer1 =T+ —*ith) ( —¢(%)'Te +904,%+1)
k<t,keK k<t,k¢K t+
H /
which can be efficiently updated at each time +amin{c(X+1), ¢ (%+1) rt}>~
Some other similar variants are possible, which employ a (11)

limited form of repartitioning the states into those to stopl_ . .
. ... The convergence of this iterationitb follows from a general
and those to continue. For example, one may repartition

s . : convergence theorem of Choi and Van Roy [13]. However,
only the sampled states within a time window of the X .
i . . . . we will show by example that its rate of convergence can be
most recent time periods. In particular, in the precedin

calculation, instead of the s&t, we may use at timeé the %fenorto.the least squqré}learnmg algquthm [cf. (.3)_(4)]'.
Accordingly, we consider another variant that aims to im-

t . . .
se prove the practical (if not the theoretical) rate of convergence
Ki={k|keKi_1,k<t—m} of iteration (10) [or equivalently (11)], and is new to our
U{k[t—m<k<t,ci1) < 0(%1)Te}, knowledge. In particular, we introduce a time window of size

m, and we replace the terms n{in(Xi;-1), ¢ (Xi1)re } in the

Starting with Ko = {O} Here m = o CorreSpondS to the least squares prob|em (2) with n'{in(xk+l),¢(xk+l)/rlkt},
algorithm of the preceding section, while= 1 corresponds \yhere "

to the algorithm of the preceding paragraph. Thus the over-
head for repartitioning per iteration is proportionalnpand
remains bounded. In other words, we consider the algorithm
An important observation is that in the preceding vari-
ations, if r; converges, then asymptotically the terms

It = min{k+m—1,t}.

t
fr=argmin’y (¢(xk)’r — 904 Xic+1)

min{c(Xcr1), 9 (X1)'re} and (X 1,1¢) coincide, and it rens o

can be seen that the limit af must satisfy the equation ] , 2

®r =TMF(®r), so it must be equal to the unique solution —omin{C(Xcr1), @ (Xcr1) rlk,t}) -
However, at present we have no proof of convergence.of (12)

B. Second Variant Thus, at timet, the lastm terms in the least squares sum

Let us consider another variant, whereby we simply re2ré identical to the ones in the corresponding sum for
place the terms mife(X.1), # (Xr1)'¢ } in the least squares th_e least square®-learning aIgpnthm [cf. (2)]. The terms
problem (2) with mifc(xc.1),¢ (% 1)'r}. The idea is that min{c(Xc1), ¢ (Xt1) Ny, } remain constant aftem updates
for large k andt, these two terms may be close enough téWhenlk; reaches the value+m—1), so they do not need
each other, so that convergence may still be maintained. ThigsPe updated further.

we consider the iteration Note that in the firstn iterations, this iteration is identical
t to the least squard3-learning algorithm of Section Il with
liy11 = argmin ((])(Xk)’r — 09Xk, Xkr 1) unit stepsize. An important issue is the sizenofFor large
refs K=o m, the algorithm approaches the least squa@eearning

algorithm, while form =1, it is identical to the earlier

_amin{c(xk+1),¢(xk+1)/rk})2' (10) variant (10).



C. Comparison with Other Algorithms ast — oo, y/try converges in distribution to a Gaussian

Let us now consider an algorithm, due to Choi and Varq'smbu“g” with mean zero and variane#/(1— a)?, so
Roy [13], and referred to as tHixed point Kalman filterlt ~ that E{r{} converges to 0 at the rate/t] i.e., there is a
applies to more general problems, but when specialized f@nstantC such that
the optimal stopping problem, it takes the form 2

tE{r{} <C, Vt=0,1,....

rer1 = e+ B0 00) ( — 906) e+ 9%, %)
The second variant [Section 1V-B, with time windaw=

+amin{c(le),(p(xtH)’rt}), 1; cf. (11)], takes the form
(13)
O t+a
where % is a diminishing stepsize. The algorithm is mo- M41= m‘F tr1 b (16)

tivated by Kalman filtering ideas and the recursive least

squares method in particular. It can also be viewed as The fixed point Kalman filter algorithm [cf. (13)], and the
scaled version (with scaling matrB},) of the method by Tsitsiklis and Van Roy algorithm [cf. (14)] are identical
Tsitsiklis and Van Roy [1], which has the form because the scaling matri® .1 is the scalar 1 in this
example. They take the form
rm:rt+%¢(xt)(—¢(><t)’rt+g(xt,xt+1)

+ amin{c(x1), ¢(Xt+1)’rt}> - (14

Scaling is believed to be instrumental for enhancing the ra
of convergence. o t+o

It can be seen that whep= 1/(t +1), the iterations (11) =7t (17)
and (13) coincide. However, the iterations (12) and (13) are
different for a window sizen > 1. As far as we know, the verifying that they are identical to the second variant (16).
convergence proofs of [1] and [13] do not extend to iteration We claim that iteration (17) converges more slowly than
(12) or its modification that we will introduce in the nextiteration (15), and thatE{r?} — c. To this end, we write
section (in part because of the dependencepf on as
many ast —m past iterates through the time window). The 2 t+a)? 2 o2
following example provides some insight into the behavior E{ria) = (Hl) E{re} + m
of the various algorithms discussed in this paper.

Myl ="t +’M(gt —+ ory — I't).

for a stepsizet = 1/(t+ 1), they become

Example 1:This is a somewhat unusual example, which NN
can be viewed as a simple DP model to estimate the mean of Giot =
a random variable using a sequence of independent samples. t(t+1)
It involves a Markov chain with a single state. At each time
period, the cost produced at this state is a random variadiéom this equation (for > 1/2), we have
taking one ofn possible values with equal probability.et
Ok be the cost generated at tkih transition. The “stopping Gor> G+ 7
cost” is taken to be very high so that the stopping option t+1
does not affect the algorithms. We assume that the apsts
are independent and have zero mean and variafc& he
matrix @ is taken to be the scalar 1, $6 is equal to the
true cost and* = 0.

t+ o)? o2
( ) Ct+ .
t+1

02

s0 §; tends too.
Finally, the variant of Section IV-B with time windowm >
1 [cf. (12)], fort > m takes the form

.Then., the Iegst squaré€¥learning algorithm of Section Ill Qo+t M1+ Fm—+ -+ 1+ M -
with unit stepsize [cf. (3) and (4)] takes the form M41= + ; t>m
t+1 t+1
Gt o . (18)
f1=""7 +art. (15)  Fort < m, it takes the form
The first variant (Section IV-A) also takes this form, re- _Got+---+ G
o ) Mty1=—————-+o0r, t<m
gardless of the method used for repartitioning, since the t+1
stopping cost is so high that it does not materially affect th ite iterati 18
calculations. Since iteration (15) coincides with the LSPE(O e may write iteration (18) as
method for this example, the corresponding rate of conver- o t+a (M= 1)(r — 1)
gence results apply (see Yu and Bertsekas [9]). In particular, t+1= 1 + mrt + aH——17 t>m,

3A more conventional but equivalent example can be obtained by intro- di b h . haE{r2 imil
ducing states 1..,n, one for each possible value of the cost per stage, anan '_t can be shown again thal {rt} — o, similar to
transition probabilitiesp; = 1/n for all i,j =1,...,n. iteration (17).



D. Convergence Analysis a contraction with respect to the projection nojir|, (cf.

We can show the convergence of a slightly modified-€mma 1). Our convergence proofs made strong use of this
version of iteration (12), the variant of Section IV-B with Property. _ _ .
time window m > 1. Our proof is different in style from  ItIS possible to consider the extension of our algorithms to

the one of Choi and Van Roy [13], which applies to thedeneral finite-spaces discounted problems. An essential re-
casem=1; it is based on a time scaling argument thafluirement for the validity of such extended algorithms is that

is typical of the ODE approach. Generally, in the ODEN€ associated mapping is a contraction with respect to some
approach, boundedness of the iterates must either be proJegelidean norm. Under this quite restrictive assumption, it

independently or assumed. In our case, we choose to modifyPossible to show certain convergence results. In particular,
the updates using a projection 6fi)'r, onto an appropriate Choi and Van Roy [13] have shown the convergence of an

lower bound, so that, is bounded with probability 1. It may @algorithm that generalizes the second variant of Section IV

be possible to remove this boundedness assumption throughthe casen= 1. Itis also possible to extend this variant for

a more sophisticated analysis, but we have not been abletf§ case whers> 1 and prove a corresponding convergence
do so.

We first note thatp(i)'r; is bounded from above for all
statesi. To ensure that(i)'r; is also bounded from below,
we introduce a scaldr satisfying

o(i)r*>L, i=1...,n

g ooy lly

(1]
and we replace the terms nfin(Xc,1), ¢ (Xr1)'ri,, } in iter-
ation (12) with
min{c(xk+l)amax{¢(xk+l)/r|k1t7|-}}' [2l
In other words, defining function§ and h by (3]
f(y)=max{y.L},  h(xr)=min{c(x),f(¢(x)r)},
we consider the iteration 4l
1 1 t [5]
Mi1= Bt+1m k;)(P(Xk) <Q(Xk,Xk+1) + ah (X1, fm)) -
as)
[cf. (12)]. Thus by constructiom; is bounded with proba- Y
bility 1. SinceNF is a contraction mapping, the solution of
the equationf (®r) = MF f(®r), wheref is applied to each [8]
component, must still bér*. We now state our convergence
result. [9]
Proposition 3: Let r; be defined by (19). Then with prob-
ability 1, ry — r*, ast — oo, [10]

The proof of Prop. 3 can be found in [10]. Furthermore[11
the damped version of iteration (19) converges as well, i.e.,
the iteration
. [12]

1= (1= Y)re+ ¥t
converges ta* with probability 1, where a constant stepsize[lg]
¥y < 1is used to interpolate betweenand the least squares
solution (19), now denoted hy, 3. We refer readers to [10] [14]
for a detailed analysis.

V. CONCLUSIONS

In this paper, we have proposed n@atearning algorithms
for the approximate cost evaluation of optimal stopping
problems, using least squares ideas that are central in thél
LSPE method for policy cost evaluation with linear functionm]
approximation. We have aimed to provide alternative, faster
algorithms than those of Tsitsiklis and Van Roy [1], and18]
Choi and Van Roy [13]. The distinctive feature of optimal
stopping problems is the underlying mappikg which is

[15]

result by using our line of proof.
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