Math. Program., Ser. A 88: 85-104 (2000)
Digital Object Identifier (DOI) 10.1007/s101070000153

Paul Tseng Dimitri P. Bertsekas

An e-relaxation method for separable convex cost
generalized network flow problemg

Received: November 10, 1996 / Accepted: October 1999
Published online April 20, 2000 8 Springer-Verlag 2000

Abstract. We generalize the-relaxation method of [14] for the single commodity, linear or separable
convex cost network flow problem to network flow problems with positive gains. The method maintains
e-complementary slackness at all iterations and adjusts the arc flows and the node prices so as to satisfy flow
conservation upon termination. Each iteration of the method involves either a price change on a node or a flow
change along an arc or a flow change along a simple cycle. Complexity bounds for the method are derived.
For one implementation employirgscaling, the bound is polynomial in the number of nobleshe number

of arcsA, a certain constarit depending on the arc gains, an«jeﬁﬁ/z), wherec? ande denote, respectively,

the initial and the final tolerance

1. Introduction

Consider a directed grapgh = (W, A) with node setN' = {1,..., N} and arc set

A C N x N.We denote byN the number of nodes and #ythe number of arcs. (The
implicit assumption that there exists at most one arc in each direction between any pair
of nodes is made for notational convenience and can be dispensed with.) We are given,
for each node € N, a scalars (supplyof i) and, for each ardi, j) € A, a positive
scalaryj (gainof (i, j)) and a convex, closed, proper functidip : ’ — R U {oo}

(cost functiorof (i, j)). The generalized separable convex cost network flow problem is

minimize f(x):= Y fij (X)) P
(i,heA
subject to Z Xij — Z ViiXji =S, VieN, (1)
{jli,heA} {il(j.heA}

where the real variablgjj is referred to as théow of the arc(i, j) and the vector
x = {xij | @i, j) € A} is referred to as thow vector We refer to (P) as thprimal
problem. We assume that eagh is co-finite in the sense that lim — fj (¢) = —c0

P. Tseng: Department of Mathematics, University of Washington, Seattle, Washington 98195, USA

e-mail: tseng@math.washington.edu

D.P. Bertsekas: Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Rm. 35-210, Cambridge, Massachusetts 02139, USA, edinatkib@mit.edu

Mathematics Subject Classification (1999RC35, 90C25

* This research is supported by the National Science Foundation, Grant Nos. CCR-9311621 and DMI-
9300494. The extended abstract of this article appeared in the proceedings of the 5th International IPCO
Conference, Vancouver, June 1996.

86 Paul Tseng, Dimitri P. Bertsekas

and lim_ fi}r(g) = oo, where f;7 () and fiJ-“(g) denote, respectively, the left and
right derivative of fjj at¢ [31, p. 116], [32, p. 315]. An important special case is the
linear costcase, where

aijxij If bij < xjj <¢j

f.. Xii =
1 (%ij) otherwise

2

for given scalarsyj, bij, cij . This special case has been much studied (see [3, Chap. 15],
[9, Chap. 8], [25], [28, Chap. 8], and references therein) and has applications in many
areas including financial planning, logistics, hydroelectric power system control (see [2],
[4], [20], [22] and references therein). Another important special case isrttieary
networkcase, whergjj = 1 for all (i, j) € A (see [9], [32]). For the general case,

a range of applications is surveyed in [20]. A flow vectaatisfying

fij (Xij) < oo, Y (i,) € A,
as wellasthe conservation-of-flow constraint (1) is caébedible A feasiblex satisfying
f7(xij) < oo and fF(xij) > —co, Vi, }) € A, 3)

is calledregularly feasiblgsee [32, p. 329], [9, p. 418]). We will assume ttiadre exists
at least one regularly feasible flow vectdm the linear cost case of (2), the condition (3)
reduces to the standard capacity constrdifnt< xij < ¢j for all (i, j) € A.

There is awell-known duality framework for this problem (see [32] and also [9], [17],
[31]), involving a Lagrange multipliep; for theith conservation-of-flow constraint (1).
We refer top; as theprice of nodei, and to the vectop = {p; | i € N} as theprice
vector Thedual problemis

minimize q(p) (D)
subjectto no constraint op,

where the dual cost functianpis given by

ap = Y G —HiP)— Y SPi
(.)eA ieN

andgj; is derived fromfjj by the conjugacy relation

aij (tij) := sup{xijtij — fij (xij)}.

Xjj €R
The co-finite assumption ofi; implies thatg;;j is real-valued and, together with the
existence of a regularly feasible solution, guarantees that both the primal problem (P)
and the dual problem (D) have optimal solutions and their optimal costs are the negatives
of each other ([32, p. 360], [9, p. 452]).
Following [13] and [34], we say that a flow vectoand a price vectop satisfy the
e-complementary slackneg&sCS for short) conditions, wheeds any positive scalar, if

fij (Xij) < oo, and
fiy (i) —€ < pi —njpj < fif (Xij) +e, Vi, heA (€—C3

An e-relaxation method for network flow 87

It is known ([32, p. 360], [9, p. 452]) that a feasible flow vectoand a price vectop
are primal and dual optimal, respectively, if and only if they satisfy 0-CS.

For the primal problem (P) and its dual (D), there are available a number of solution
methods, such as nonlinear variants of the primal simplex method, dual simplex method
[32, Sec. 11J], and relaxation method [34]. The primal simplex method iteratively
improves the primal cost function and the other methods iteratively improve the dual
cost function. For the ordinary network case (with convex cost), there have recently
been proposed other solution methods, based on minimum mean cycle canceling [26],
and one-relaxation [9, Chap. 9], [14], [15], [21], [29]. For the linear cost ordinary
network case, further specialization and improvements of the preceding methods, as
well as many other methods, have been proposed (see the books [3], [16], [28], [32] and
references therein). If is twice differentiable (not necessarily separable), the primal
truncated-Newton method specialized to generalized network flow [2], [20] and the
general-purpose reduced gradient method using quasi-Newton updates [27] can also be
applied.

Here, we propose an extension of theelaxation method studied in [14], [15],
[21], [29] from the ordinary network case to the generalized network case of (P) and
(D), and we present a (computational) complexity analysis for the method. Our interest
in the e-relaxation method stems from its good performance on linear/quadratic cost
ordinary network flow problems, as reported in the above references, and its suitability
forimplementation on parallel computers[5], [6], [11]. However, the extension is highly
nontrivial due to the presence of nonunity arc gains. In particular, flow augmentations
along cycles of non-unity gain need to be considered and new techniques need to be
developed to deal with the presence of directed cycles in the admissible graph. In fact,
even for the linear cost case our method and the associated complexity bounds are
new to our knowledge. Previous complexity bounds for the linear cost case (other than
those obtained by specializing general linear programming complexity bounds [35]) are
further restricted to either the case of all nodes being supply nodes(ize.Q for all
i € N) or being demand nodes (i.s, < 0 for alli € N), with zero lower capacity
on all arcs [1], [18], or the case of a generalized circulation (i.e., maximizing the flow
on a particular arc) [23], [30]. We also report some of our computational experience
with the method. Our experience indicates that, as in the ordinary network case (for
which extensive computational results are given in [14]), the method is not significantly
affected by ill-conditioning in the cost function. Furthermore, on nonlinear problems,
our method substantially outperforms a nonspecialized nonlinear programming code
such as MINOS.

The remainder of this paper is organized as follows. In Sect. 2, we motivate and
formally describe the-relaxation method for solving (P) and (D). In Sect. 3, we show
that the method has finite termination for any fixeth Sect. 4, we present one specific
implementation of the method which has a particularly favorable complexity bound. In
Sect. 5, we report some of our numerical experience with the method. In what follows,
by a pathP in G, we mean a sequence of nodés iy, ..., im) in A/ and an associated
sequence ofm — 1) arcs inA such that, for eack = 1, ..., m — 1, either(iy, ix+1)
or (ik+1, 1K) is an arc of the sequence. The set of forward ardB ¢those of the form
(i, iks1)) is denoted byP* and the set of backward arcs 6f (those of the form

88 Paul Tseng, Dimitri P. Bertsekas

(ik+1, ik)) is denoted byP~. We define the gain of the path by
VP3=< I1 Vlj>/([1 Vu'), 4)

(i,jePt (i,))eP~
with yp := 1if P comprises a single node. We say that a ik forwardif P~ = ¢.
A cycleis a path whose starting node equals the ending node. A path is saiditofie
if it contains no repeated nodes except (in the case where the path is a cycle) for the
starting and the ending nodes.

2. Thee-relaxation method

In this section we formally describe afrelaxation method, based efCS, for solving
(P) and (D). For a flow vectax, we define thesurplusof nodei to be the difference
between the supplsy and the net outflow frort

i =S+ Z Yii Xji — Z Xij - ®)

{il(j.heA} {ilG.peA}

The idea of the-relaxation method is to alternately adjust the price of the nodes and the
flow of the arcs so as to maintairCS while decreasing the surplus of the nodes toward
zero. Termination occurs when the surpluses of all the nodes are zero. We describe this
in more detail below.

The method uses two fixed scalars- 0 andd € (0, 1). For any flow-price vector
pair (x, p) satisfyinge-CS, we say that an ar¢, j) € A is activeif

P — i pj > fij (Xij) + 0e (6a)
and isinactiveif

pi — ¥ij Py < fij (Xij) — Oe. (6b)
In the ordinary network case, an arc being active (respectively, inactive) is equivalent
to, in the terminologies of [9], [14], [15], the arc being in the candidate/push list of its

starting (respectively, ending) node. For an active (respectively, inactive), gicthe
supremum o8 for which

Pi — ¥ij Pj = fi}r(Xij +6)

(respectively,pi — yij p; < f7(xij — 8)) is called theflow marginof the arc. An

important fact, shown below, is that the flow margins of these arcs are always positive.

Proposition 1. The flow margins of all active and inactive arcs are positive.

An e-relaxation method for network flow 89

Proof. We argue by contradiction. Assume that for an@rg) € A we have
P —nipj < fii(xij+8, V§>0.
Since the functiorfi}r is right continuous, this yields
P — %ij Pj < g% fif (ij +8) = £ (%)),

and thug(i, j) cannot be active. A similar argument shows that an(arf) € A such
that

pi — ¥ij Pj > fij_(Xij —-38), Vé=>0,

cannot be inactive.
O

Thee-relaxation method starts with a flow-price vector pair p) satisfyinge-CS.
The method comprises two phases. In the first phase, only “up” iterations (to be defined
shortly) are performed so as to adjust p) until no node with positive surplus remains.
In the second phase, only “down” iterations (to be defined shortly) are performed so as
to adjust(x, p) until no node with negative surplus remains.

e-relaxation method — general forma & 0)

Initialization : Choose any flow vectox = {xij | (i,) € A} and price vectolp =
{pi | i € NV} satisfyinge-CS. Fix any scala# € (0, 1).

Firstphase Repeatedly choose a nodevith positive surplugy and adjustx, p)
by doing an up iteration at node until all nodes have nonpositive
surplus.

Second phase Repeatedly choose a nodwith negative surplug; and adjustx, p)
by doing a down iteration at node until all nodes have nonnegative
surplus.

Inan up iteration at a nodevith positive surplugj;, we perform one of the following
three operations:

(&) A price riseon node, which increases the priga by the maximum amount that
maintains-CS, while leaving all arc flows and all other prices unchanged.

(b) A flow push(also called &-flow push along an arc(, j) [or along an ardj, i)],
which increases;j [or decreases;i] by a positive amount, while leaving all node
prices and all other arc flows unchanged.

(c) Aflow pushalso called @-flow pushalong a cycleC containing, which increases
Xk [respectively, decreasesq] by a positive amounyc,s for all (k,1) € C*
[respectively, for all(k,I) € C~], while leaving all node prices and all other arc
flows unchanged. [Her&y denotes the portion o fromi to k, andyc, is given

by (4).]

90 Paul Tseng, Dimitri P. Bertsekas

[The effect of operation (c) is to decrease the surplus of hbgehe amount/(1— yc)
(respectively, 0) ifyc # 1 (respectively, ifyc = 1), while leaving the surplus of all
other nodes unchanged.]$Aflow push along an arc (respectively, a cycle) is said to be
saturatingif it changes the flow margin of the arc (respectively, one of the arcs of the
cycle) from positive to zero. For a fixed> 0 andé < (0, 1), and a given flow-price
vector pair(x, p) satisfyinge-CS, an up iteration updatés, p) as follows:

An up iteration at a nodewith g; > 0

Step I If i has no active outgoing arc and no inactive incoming arc, go to Step 3.
Otherwise, choose any active &rcj) or inactive ardj, i). If this arc belongs
to some cycleC of G whose forward arcs are all active and whose backward
arcs are all inactivand if no price rise nor saturating flow push has been
performed since the last up iteration at ngdego to Step 2b. Otherwise, go
to Step 2.

Step 2a Perform as-flow push along the chosen arc, where

| min{flow margin of {, j), gi} if (i, j) isthe chosen arc
| min{flow margin of (i), gi/yji} if (j.i) isthe chosenarc

Exit.
Step 2h Perform &-flow push alongC, where

_ ming iyec{(flow margin of &, 1)) /yvc,} if yc>1
| min{mingec { (flow margin of &, 1)/vc,}, /(1 —yo)} if ye <1,

andCy denotes the portion & fromi to k. Exit.
Step 3 Perform a price rise onand exit.

In general, finding the cycl€ in Step 1 is expensive. However, such a cycle can be
found without excessive overhead by using special implementations of the first phase
of the method. More precisely, consider the following implementation, which aims at
performing a flow push along a cycle for as long as no price rise or no saturating flow
push is performed.

(a) Select any nodig with positive surplus. If no such node exists, terminate the first
phase of the method. Else let= 0 and go to (b).

(b) Ifi := ik has no active outgoing arc and no inactive incoming arc, perform a price
rise on nodeg and go to (a). Otherwise, choose any active(ar¢) or inactive arc
(j,1). If] =i for somel < k, go to (c). Else perform &flow push along this arc
as in Step 2a, and if this saturates the arc or if the surplys@fains nonpositive,
go to (a); else leity;1 := j, incremenk by 1 and go to (b).

(c) A cycle whose forward arcs are all active and whose backward arcs are all inactive
isC :iy, |41, ..., Ik, I|. Perform a-flow push alongC as in Step 2b, and go to (a).

1 In variants of the method, instead of always going to Step 2a at this point, we go to Step 2b if we had
encountered a cycl€ containing this arc and whose forward arcs are all active and whose backward arcs
are all inactive; and go to Step 2a if no such cycle was encountered. These variants have similar termination
properties and admit the same complexity bound as the stated method.

An e-relaxation method for network flow 91

A down iteration at a nodéewith g; < 0 is defined analogously to an up iteration,
but with “active” and “inactive” switched and with “increase” and “decrease” switched.
In addition, “up”, “rise”, “g;” are replaced by, respectively, “down”, “drop’-g;”.

There is also an important modification of the above implementation, called the
auction/sequential-shortest-path algorithisee [8], [9], [15], [29] for special cases
of this algorithm that apply to the ordinary network case), in which we refrain from
performing a flow push until we encounter a ngdeith negative surplus, at which time
we push flow fronig along the pathg, i1, ..., ik,] towardsj by an amount that either
saturates an arc or zeroes out the surplug of j. With this modification, it is possible
to mix up and down iterations without affecting the termination or the complexity of
the method. Finally, we note that, in contrast to the ordinary network case (see [14]),
we need to consider not only flow pushes along arcs, but also flow pushes along cycles.
The intuition for this is that a cycl€ with yc < 1 is “flow absorbing” when flow is
pushed alon@ and thusC acts like a node with negative surplus; similarly, a cyCle
with yc > 1 is “flow generating” when flow is pushed alo@and thusC acts like
a node with positive surplus.

We make the following observations about the up iterations inethelaxation
method. (Analogous observations can be made for the down iterations.)

1. The iterations preserveCS and the prices are monotonically nondecreasing. This
is evident from the initialization and Step 3 of the up iteration.

2. Once the surplus of a node becomes nonnegative, it remains nonnegative for all
subsequent up iterations. The reason is that a flow push at a wadaot make the
surplus ofi negative (cf. Steps 2a, 2b), and cannot decrease the surplus of any other
node.

3. If at some iteration a node has negative surplus, then its price must be equal to its
initial price. This is a consequence of observation 2 above and the fact that price
rises occur only on nodes with positive surplus.

Notice that the surpluses of all nodes are nonpositive at the beginning of the second
phase. Moreover, the surpluses remain nonpositive throughout the second phase (since
a down iteration does not change the surplus of any node from nonpositive to positive).
Therefore, it follows that, at the end of the second phase, the surplus of all nodes are
zero, i.e., the flow vector is feasible.

3. Termination of the e-relaxation method

To prove the termination of therelaxation method of Sect. 2, we first have the following
proposition which bounds from below the price rise/drop increments.

Proposition 2. Each price rise (respectively, price drop) increment in ¢hrelaxation
method is at leastl — 6)¢/y, wherey := max{1, max; jc4 %ij }-

Proof. We note that a price rise on a nodeccurs only when it has no active outgoing
arc nor inactive incoming arc. Thus for every dicj) € A we havep; — yij pj <
fijr(xi,-) + 0e, and for every ar¢j, i) € A we havepj — yji pi > fji_(in) — Oe. This

92 Paul Tseng, Dimitri P. Bertsekas

implies that we can increagg by an amount of at leasi — 6)¢/y and still maintain
€-CS. A similar argument applies to a price drop.
O

Next, we have the following technical lemma, obtained by specializing the Con-
formal Realization theorem in [32, Chap. 10] to circulations in a certain augmented
generalized network.

Lemma 1. Consider any flow vectoy = {yij | (,])) € A} and leth; :=
Z{j\(j,i)eA} YiiYji — Z{j\(i,j)eA} yij forall i € NV. Then, for anys € N with hs < 0,
there exist @ € A and a simple patiH in G from sto t that conforms toy; that is,
yij > Oforall (i, j) € H" andyij < Oforall (i, j) € H™. Moreover, eitheh; > 0 or
t belongs to a simple cycle in G that conforms to/ and satisfiesc < 1.

Proof. LetS :={i e N | hj <0} and7 := {i € M | hj > 0}. Define the augmented
directed graplyy = (M, A"), whereN” := N U{0}, A’ := AU ({0} x S) U (T x {0}),
and define the scalars:

Yij if (i,j)eA
Vi/j == 2kesk/ Dkerhc if i €T, j=0,
1 ifi=0jecS

yij if @i, peA
yij=1h fieT,j=0.
—hj ifi=0jes

Then, the vectoy’ := {y{j | (i, j) € A’} is a circulation for the generalized netwak
with arc gains/i’j (i,) € A.Foranys € S, sinceyy > 0, we have from the Conformal
Realization theorem [32, p. 456] and the characterization of elementary primal supports
for generalized networks [32, p. 463] that there exis§ireither (i) a simple cycle
with yc = 1 or (i) two disjoint simple cycle€; andC,, with yc, > 1 andyc, < 1,
and a simple pathd from a node inC; to a node inCy or (iii) two simple cyclesCy
andC,, with yc, > 1 andyc, < 1, that have a (single) joint portion or meet in exactly
one node. Moreover, in case (@,conforms toy’ and uses0, s); in case (ii),C1, C2, H
conform toy’ and one of them us€®, s); in case (iii),Cy, C» conform toy’ and one
of them useg0, s). It can be verified that, in all cases, there exist§ ia simple path
that conforms tgy and goes frons to either a node iff” or a node in a simple cycle that
conforms toy and whose gain is less than 1.

O

For a pathP in G, define
Tp:=) vm.)

ieP
where, for each nodee P, P, denotes the portion of the pakhfrom the starting node
of P toi. By using Prop. 2 and Lemma 1, we obtain the following proposition which
bounds the total number of price rises in termd ef and other network parameters.
The proof is patterned in part after the proofs for the linear cost ordinary network case
[7], [12], and for the convex cost ordinary network case [14], [29].

An e-relaxation method for network flow 93

Proposition 3. Let K be any nonnegative scalar such that the initial price veqibr
for thee-relaxation method satisfidée-CS together with some feasible flow veotbr
Then, the:-relaxation method performs at mad€ + 1)I"/(1 — 0) price rises on each
node and at mogtl + I')(K + 1)I"/(1 — 6) price drops on each node, where

_ I'c
' .=y- max YH) max +ThHy,
H: simple path C: simple cycle withyc<1 1 — yc

andyH, yc, I'c, 'y are given by Egs. (4), (7) and := max{1, max; jjeA %j }-

Proof. Consider the paitx, p) at the beginning of an up iteration in thkerelaxation
method. Since the flow vecto® is feasible, we have upon applying Lemma 1 to
y := x% — x (for whichh; = —g;) that, for each nodswith gs > 0, there exist a node

t and a simple pathi in G fromstot that conforms to® — x, i.e.,

Xij <X}, VY, j)eHT, (8a)

Xij > X, V(,j)eH . (8b)

Moreover, eithergy < 0 ort belongs to a simple cycl€ in G with y¢ < 1 and
conforming tox? — x, i.e.,
xij <x}. V(. jecCh, (92)
Xij >x}. V(. jpeC . (9b)

From Egs. (8a) and (9b), and the convexity of the functindor all (i, j) € A,
we have

froap) < 7o), Y,) eHT, (10a)
fioa) = fiod), VA, DeH™ (10b)
Since the pairx, p) satisfiex-CS, we also have that
p—nipj € [fjoi) —e fiixip+e], Vi,)eA (11a)
Similarly, since the paitx®, p°) satisfiesKe-CS, we have
PP — i) e [y () —Ke, fT(x}) +Ke], ¥dQ.heAd (11b)
Combining Egs. (10a)—(11b), we obtain
p—yiPj <P —nip)+(K+De, Vi,)eHT,
pi—yip=p—nip)—(K+De, V(i j)eH.

Applying the above inequalities for all arcs of the pathwe obtain

ps—prtsp?—pr?+(K+1)<ZyHi>e, (12)
ieH

94 Paul Tseng, Dimitri P. Bertsekas

whereH; denotes the portion of the pathfromstoi € H. We observed earlier that if
a node has negative surplus at some time, then its price is unchanged from the beginning
of the method until that time. Thusg; < O, then

Pt = pp- (13)

On the other hand, if belongs to some simple cycte satisfying Egs. (9a) and (9b),
a similar argument shows that

P—WiP <P —niP+(K+De, V. jeCt,
P—%iPi =P —nip)—(K+De V(. peC,

which when applied for all arcs of the cydlzyields

Pt —ycht < p?—ycp?+(K+1)<ZVci)e,

ieC
whereC; denotes the portion of the cycefromt toi € C. Usingyc < 1, we obtain
o< 0 (k +p e el (14)

1-yc
Therefore, ifg; < 0, then Egs. (12) and (13) yield

ps < P2+ (K + 1)<Zm>e < pd+ (K+Dre,
ieH

and ift belongs to some simple cydlesatisfying (9a) and (9b), then Egs. (12) and (14)

yield

ps < p2+<K+1>yH%

- E+(K+1)(Z)/Hi>€§ P2+ (K + D)le/7,
ieH
(15)
where the second inequality follows from the definitionlofSince only nodes with
positive surplus can increase their prices and, by Prop. 2, each price rise incrementis at
least(1 — 0)¢/y, we conclude from Eq. (15) that the total number of price rises that can
be performed for nodeis at mostK + 1)I'/(1 — 6).
Now we estimate the number of price drops on each nodept et {pil i e N}
denote the price vector at the end of the first phase ot#tedaxation method. From

Eqg. (15) we see that® < p! < pf + (K + DI/ foralli € N, so that
P’ — i) — (K+Dle < pt —yijp} < p? =y P+ (K+Dle, Vi, j) € A.

Since(x?, p%) satisfiesKe-CS, this implies tha¢x?, pl) satisfies(K + (K +1)I")e-CS.
Since, by Prop. 2, each price drop incrementis at ldast)¢/j, an argumentanalogous
to the one above, but with® replaced byp! and with Lemma 1 applied tg := x — x°
instead, yields that the number of price drops that can be performed on each node is at
most(K + (K + DI'+ HIr/(1—6) = (1 +I)(K + DI/ (1 —0).

]

An e-relaxation method for network flow 95

The preceding proposition shows that the bound on the number of price changes is
independent of the cost functions, but depends only on the arc gains and thekstalar
given by

KO :=inf{K € [0, 00) | (x°, p%) satisfiesKe-CS for some feasible flow vectaf },

which is the minimum multiplicity ok by which 0-CS is violated by the initial price
together with some feasible flow vector. This result will be used later to prove a par-
ticularly favorable complexity bound for therelaxation method. Note th&t® is well
defined for anyp® because, for alk sufficiently large Ke-CS is satisfied byp® and

any feasible flow vectox.

We will now derive a bound on the number of flow pushes required by-thaxation
method. By our choice of (see Steps 2a and 2b of the up iteration), a nonsaturating
flow push always exhausts (i.e., sets to zero) the surplus of the node being iterated on.
In what follows, for anye >~ 0 andé € (0, 1), and any flow-price vector paix, p)
satisfyinge-CS, we define the arc set

A= {@,)|,)) e Aisactivg U {(j,i)] (@, j) € Aisinactivg

and theadmissible graphg* := (W, A*). By analyzing changes in the admissible
graph, we have the following proposition, which bounds the number of flow pushes
between successive price rises in the first phase.

Proposition 4. The number of flow pushes along arcs (respectively, cycles) between two
successive price rises (not necessarily at the same node) performedesethration
method is at mosi2 A (respectivelyNA).

Proof. Consider the flow pushes between two successive price rises. First, we observe
that the number of arcs in the admissible grgihis nonincreasing after a flow push,
and is strictly decreasing after a saturating flow push. Thus, the number of saturating
flow pushes is at mog.

Consider the flow pushes between changes in the admissible Gtgplnich must
allbe nonsaturating). Each flow push along an arc, being nonsaturating, does notincrease
the number of nodes with positive surplus, while each flow push along a cycle, being
nonsaturating, decreases this number by one. (For a flow push fronn alog a cycle
C to be nonsaturating, we must haye < 1 and the surplus af must be set to zero,
while the surplus of all other nodes must be left unchanged.) Thus, there can be at
most N flow pushes along cycles. By the logic of an up iteration, a flow push along
an arc (oriented in the direction of flow change) belonging to a forward cydE @&
performed only if the ending node of this arc has not been iterated upon in an earlier
flow push. Thus, there can be at mdsflow pushes along arcs belonging to forward
cycles ofG*. There remains to estimate the number of flow pushes along arcs (oriented
in the direction of flow change) not belonging to any forward cyclgtf These arcs
form an acyclic directed graph, s&*. Moreover, a flow push can repeat at an arc,
say(, j), in G** only if there is an arc ir;** pointing intoi along which a flow push
was performed earlier. Since any forward patlgiti has length at modtl — 1 (so the
surplus of a node can be propagated to successors along the @ftbgfat mostN — 1

96 Paul Tseng, Dimitri P. Bertsekas

flow pushes) and originally at mobt nodes have positive surplus, this implies that the
total number of flow pushes along arcgifi* is at most(N — 1) N.
Thus, between two successive price rises, the admissible graph can change at most
A times and, between successive changes in the admissible graph, there areMit most
flow pushes along cycles and at mdgt flow pushes along arcs.
]

It follows from Props. 3 and 4 that the first phase of theelaxation method
terminates after at mo§(NKI") price rises, and at mo&((N3 AKI") flow pushes along
arcs, and at mogD(N2AKT") flow pushes along cycles, whekeis any nonnegative
scalar such that the initial price vector satistiesCS together with some feasible flow
vector. A similar result can be shown for the second phase, though the bounds increase
by a multiplicative factor ofl” (cf. the estimates of Prop. 3). In Sect. 4, a specific
implementation of the method with sharper complexity bound will be presented. Upon
termination of thes-relaxation method, we have that the flow-price vector paimp)
satisfies-CS and thax is feasible since the surplus of all nodes is zero. The following
result from [34, Props. 7 and 8] shows that this flow vector and price vector are within
a factor that is essentially proportionaktof being optimal for, respectively, the primal
problem (P) and the dual problem (D).

Proposition 5. For eache > 0, letx(¢) and p(¢) denote any flow and price vector pair
satisfyinge-CS withx(e) feasible and le€(e) denote any flow vector satisfyifigCS
with p(e) [&(e) need not be feasible]. Then

0< f(x@)+a(p@) <e Y |xij(e)—&je). (16)
(i,)heA

Furthermore,f (x(¢)) + q(p(e)) — Oase — 0.

Proposition 5 does not give an a priori estimate of how smahs to be in order
to achieve a certain degree of approximate optimality, as measured by the duality gap.
However, in the common case where finiteness of the arc cost fundtjoinsply lower
and upper bounds on the arc flows:

—o00 < bjj := igf{El fij (§) < oo} SSEHSI fij (§) < oo} =: Gjj < o0,

as in the linear cost case of (2), the right-hand side of (16) is bounded above by
€ Z(i’j)eA Icij — hij |, which gives an a priori estimate of the duality gap betwe@i
andp(e).

4. A sweep implementation of thes-relaxation method

We say that a strongly connected component (abbreviated as SCC) of the admissible
graphG* is apredecessoof another SCC o§* if there is a forward path ig* from

a node in the first SCC to a node in the second SCC (and we say that the second SCC is
a successor of the first SCC). [An SCCdfis a subgraplg’ of G* with the properties

An e-relaxation method for network flow 97

that (i) there is a forward path i@ from every node i’ to every other node i’ and
(i) G' is not properly contained in any other subgraplgbfvith property (i).] Observe
that flow is pushed towards the successors of a SCC and that flow cannot be pushed
from a SCC to any of its predecessor SCC. We say that an S@@3isveif it contains
at least one node with positive surplus; otherwise the SCC is aadledositive

Thesweep implementatiarf thee-relaxation method, introduced in [7] and further
analyzed in [12], [17], and [10] for the linear cost ordinary network case, selects a node
for an up iteration as follows (an analogous rule holds for selecting a node for a down
iteration): LetG* denote the current admissible graph. Choose any positive SGC of
whose predecessor SCC are all non-positive. In Step 1 of an up iteration,i delbéet
any node in the chosen SCC with positive surplus. Also, in Step 1, always go to Step 2b
when(i, j) belongs to some forward cycte of G*.

Forthe sweep implementation, we can improve on Prop. 4 as shown in the proposition
below. The intuition for this improvement is that an up iteration at a nodaving
a positive predecessor SCC may be wasteful since its surplus may be set to zero through
a flow push and become positive again by a flow push at a node in the predecessor SCC.
The sweep implementation avoids performing such an up iteration. Our proof follows
the corresponding line of analysis for the ordinary network case in [14], [29].

Proposition 6. For the sweep implementation of theelaxation method, the number

of nonsaturating flow pushes between two successive price rises (not necessarily at the
same node) is at mobt+ N A, whereA denotes the maximum number of arcs contained

in any SCC of the admissible graph.

Proof. Consider the flow pushes between two successive price rises. Each nonsaturating
flow push at a node changes the surplus ofto zero. Since, by selection, does not
have any predecessor node in a different SCC with positive surplus, the surpiut of
remain at zero until the SCC containinghanges (due to the removal of a saturated arc
from this SCC). Thus, the number of nonsaturating flow pushes between changes in the
SCC of the admissible graph is at mdét Since at least one arc is removed from an
SCC of the admissible graph each time the latter changes, the number of changes in the
SCC of the admissible graph is at mast

O

By using Props. 3 and 6, we obtain the following improved complexity bound for
the sweep implementation of thkerelaxation method.

Proposition 7. Let K be any nonnegative scalar such that the initial price vector
for the sweep implementation of therelaxation method satisfieKe-CS together
with some feasible flow vector. Then, the method requ@ST"N) price rises and
O(KI'N2(1 + A)) flow pushes in the first phase ar@(KI'2N) price drops and
O(KI"2N2(1 + A)) flow pushes in the second phase.

Proof. It suffices to analyze the first phase of theelaxation method, which involves

up iterations only. According to Prop. 3, there &€KT") price rises on each node, so

the number of price rises ©(KI'N). Furthermore, whenever a flow push is saturating,

it takes at least one price rise on one of the end nodes before the flow on that arc can be

98 Paul Tseng, Dimitri P. Bertsekas

changed again. Thus the total number of saturating flow pust&si§ A). Finally, by
Prop. 6, the number of nonsaturating flow pushes between successive price rises is at
mostN(1+ A), so the total number of nonsaturating flow pushe®(&KI'N2(1+ A)).
SinceA < N2, the result for the first phase follows. An analogous analysis applies for
the second phase.

O

In the ordinary network case wherfe= O(N) and the second phase is not needed,
it was shown in [15, Prop. 5] (also see [14, Prop. 4] for the case ef1/2) that if
the initial admissible graph is acyclic, then the admissible graph will remain acyclic
at all iterations of thes-relaxation method, in which casé = 0 (each SCC always
comprises an individual node and hence contains no arc at all) and,I5iac®(N),
Prop. 7 would yield a complexity bound @i(KN?) price changes an®(K N?) flow
pushes. In general, we have < A. We can further improve the complexity of the
e-relaxation method by using-scaling as is described in [14]: initially set = €
for somee?, run thee-relaxation method until it terminates with soree®, p%), then
decrease by a fixed fraction (e.g., a half) and rerun theelaxation method wittp®
as the starting price vector, and so on,diteaches some target valeieAssuming that
€% is chosen sufficiently large so that the initial price vector satisfle€S together
with some feasible flow vector, this yields an improved complexity bound in wiich
replaced by Ie%/€), that is, a bound 0®(In(%/€)I"'N) on the number of price changes
and a bound 00©(In(%/2)I'N?(1+ A)) on the number of flow pushes in the first phase.
A similar bound, though higher by a multiplicative factor Iof holds for the second
phase. To our knowledge, this is the first complexity result for the generalized network
flow problem with nonlinear cost function.

5. Computational experimentation

We have developed an experimental Fortran code implementirgtiaxation method
for the case of problems (P) and (D) with quadratic arc cost functions. The code, named
QE-RELAXG (“Q” stands for quadratic and “G” stands for generalized), implements
the version of the--relaxation method whereby the cydzin Step 1 of each iter-
ation is found using the technique described in Sect. 2 argdadjusted using the
e-scaling technique of Sect. 4. In this section, we report on our computational experi-
ence with the code on some test problems. (We have also implemented a version of the
auction/sequential-shortest-path algorithm mentioned in Sect. 3. This work is still very
preliminary, although the initial results are encouraging.)

First we describe the test problems. In these problems, the cost function of each
arc(i, j) is quadratic of the form

aij Xij +bini2,- if 0 <xij <aij,
fij (xij) = .
otherwise
for someaj; € N andbjj € [0, 00) andcij € [0, o0). We calla;j, bjj, andcj the
linear cost coefficient, the quadratic cost coefficient, and the capacity, respectively,
of arc (i, j). The test problems are created using the public-domain Fortran problem

An e-relaxation method for network flow 99

generator NETGENG [24], which is an extension of the popular generator NETGEN
that creates linear-cost generalized assignptiemsportatiopitransshipment problems
having a certain random structure. (See Tables 1 and 2 forthe NETGENG parameters that
we used to create the test problems.) As NETGENG creates only linear-cost problems,
we modified the created problems as in [13] and [14] so that, for a user-specified fraction
(taken to be a half in our tests) of the arcs, the quadratic cost coefficient is randomly
generated from a user-specified range of consecutive integers (takefl{®b&, 4, 5}

in our tests) according to a uniform distribution, and, for the remaining arcs, the quadratic
cost coefficient is set to a user-specified vatu&/henb = 0, the cost functionf is

mixed linear/quadratic. Wheln > 0, the cost functionf is strictly convex quadratic

and, ad — 0, the dual problem (D) becomes increasingly more ill-conditioned in the
traditional sense of unconstrained nonlinear programming.

Table 1.Solution times (in seconds) for QE-RELAXG. Problems are created using NETGENGRED=
13502460, No. sources No. sinks= (No. node$/2, Supply= 500 x (No. node$, and Linear Cost Coeff.
€ [1, 1000. Quadratic Cost Coeff. is randomly generated fridn2, 3, 4, 5} for half of the arcs and is equal
to the valueb shown in column six for the remaining arcs

No. No. Gain Quad. Optimal QE-RELAXG

nodes | arcs range | coeff.b cost Soln. times
Symmetric No. 400 2000 | .5-15 0 | 153309205 1.21
Capacitated nodes 400 6000 | .5-1.5 0 65375508 2.12
Transhipment fixed 400 8000 | .5-1.5 0 62536366 3.14
cape [500, 1000 400 | 10000 | .5-1.5 0 59481317 8.24
Symmetric No. 400 2000 | .5-1.5 0 84626835 .92
Uncapacitated nodes 400 6000 | .5-1.5 0 38725118 1.94
Transportation fixed 400 8000 | .5-1.5 0 38421522 5.52
400 | 10000 | .5-1.5 0 28760650 8.89
Symmetric No. 400 7000 | .5-15 0 65894687 4.10
Capacitated arcs 600 7000 | .5-1.5 0 | 123247677 5.37
Transhipment fixed 800 7000 | .5-1.5 0 | 220246167 4.31
cape [500, 1000 1200 7000 | .5-1.5 0 | 404739277 5.42
Symmetric No. 400 7000 | .5-1.5 0 34137013 5.29
Uncapacitated arcs 600 7000 | .5-1.5 0 77835120 3.64
Transportation fixed 800 7000 | .5-1.5 0 | 121479983 4.52
1200 7000 | .5-1.5 0 | 245152297 3.95

Next, we describe the implementation details for QE-RELAXG. This codefuses
1/2 and s initialized withp; = 0 for all nodes and withe = % max;, j)e.Alaij +20ij Xij },
whereXij = min{cjj, maxecn |S1}. The initial flow vectorx is then chosen to satisfy
€-CS with the initial price vector. The code terminates when the node surpluses and
the duality gapf(x) — q(p) are below 10° times, respectively, maxy/ |s | and| f(x)|.
A further enhancement, adapted from theelaxation codes for the ordinary network
case [14], is the use of a surplus threshold whereby only nodes whose surplus exceeds
this threshold in magnitude are selected for up/down iterations. This threshold is initially
set to;l1 maXcar |S| and is decreased at the r%eeach timee is decreased, until this
threshold reaches 18- max . |s|. (We also experimented with a stricter termination
criterion where 10° is replaced by 10%. The code did not change its qualitative
behavior, though the solution times increased by a factor between 1 and 4.) After some

100 Paul Tseng, Dimitri P. Bertsekas

experimentation, we settled opfi8.as the fraction used kscaling. Otherwise, we have
not fine-tuned the parameters in the code.

Table 2. Solution times (in seconds) for QE-RELAXG. Problems are created using NETGENGRED=
13502460, No. sources No. sinks= (No. node$/2, Supply= 500 x (No. node$, and Linear Cost Coeff.
€ [1, 1000. Quadratic Cost Coeff. is randomly generated frid2, 3, 4, 5} for half of the arcs and is equal
to the valueb shown in column six for the remaining arcs

No. No. Gain Quad. Optimal QE-RELAXG

nodes | arcs range coeff.b cost Soln. times

Symmetric No. 1200 7000 | 1.0-1.0 0 | 394520079 4.37
Capacitated nodes, | 1200 7000 9-1.1 0 | 399896552 52.03
Transhipment arcs 1200 7000 5-1.5 0 | 404739277 5.42
cap= [500, 1000 fixed 1200 7000 .2-4.0 0 | 482554996 4.38
Symmetric No. 400 | 10000 | 1.0-1.0 0 27910212 4.32
Uncapacitated nodes, 400 | 10000 9-1.1 0 29439130 12.42
Transportation arcs 400 | 10000 5-15 0 | 245152297 3.95
fixed 400 | 10000 .2-4.0 0 38990680 2.14

Symmetric No. 1200 7000 5-1.5 1 727711866 7.47
Capacitated nodes, | 1200 7000 .5-15 .01 | 409727972 3.90
Transhipment arcs 1200 7000 5-1.5 .0001 | 404789495 4.14
cape [500, 1000 fixed 1200 7000 5-1.5 0 | 404739277 5.42
Symmetric No. 400 | 10000 5-15 1 | 474088846 4.77
Uncapacitated nodes, 400 | 10000 5-1.5 .01 | 249634201 2.57
Transportation arcs 400 | 10000 5-15 .0001 | 245197678 3.21
fixed 400 | 10000 5-1.5 0 | 245152297 3.95

Now we describe our computational tests and experience. Our tests were designed
to study the performance of therelaxation method relative to the earlier relaxation
methods, and the dependence of this performance on network topology, arc gains, and
problem ill-conditioning. We experimented with three sets of test problems generated
using NETGENG as described above: the first set comprises mixed linear/quadratic
cost problems with varying topology and arc capacities (Table 1); the second set com-
prises mixed linear/quadratic cost problems with varying ranges of arc gains (top half
of Table 2); the third set comprises strictly convex quadratic cost problems with varying
degrees of ill-conditioning (bottom half of Table 2). The solution time for QE-RELAXG
on these problems are shown in the last column of the tables. These times were obtained
by compiling and running QE-RELAXG on a Sun Ultra-1 workstation and under the
Solaris operating system, Version 2.5.1. The -O option was invoked when compiling.
From the solution times we see that the performance of QE-RELAXG is not signifi-
cantly affected by changes in the number of nodes (see bottom half of Table 1) or
problem ill-conditioning (see bottom half of Table 2). A possible explanation for the
latter is that, by its use of-CS, quadratic cost coefficients that are small are effec-
tively treated as zeros by therelaxation method. Thus, in contrast to the relaxation
methods of [13] and [34], therelaxation method is well suited to handle ill-conditioned
problems (also see [14] for analogous observations in the ordinary network case). On
the other hand, the performance of QE-RELAXG is adversely affected by increases in
the number of arcs (see top half of Table 1) and, more significantly, by the presence
of non-unity arc gains near 1 (see top half of Table 2). The reason for the latter is
not well understood, though it seems to be related to the way in which NETGENG

An e-relaxation method for network flow 101

generates problems with arc gains near 1, namely, the generated problems tend to be
infeasible or nearly infeasible, with many flow generating cycles needed to meet the
flow demands and many flow aborbing cycles needed to absorb the flow supplies.
For these nearly infeasible problems, a large number of price rises/drops are required
to direct flow from flow generating cycles to sinks and from sources to flow aborb-
ing cycles. (The value of" does not appear to be a factor since, according to the
proof of Prop. 3" affects complexity of the-relaxation method only through upper

and lower bounds on the prices generated by the method. In our tests, these bounds
did not change significantly, nor did the average price increment.) Also, we observed
that, on all runs, the computation was dominated by price rises/drops and flow pushes
along arcs, with less than 0.1 percent of flow pushes being made along cycles (and
the cycles were typically short). In other words, QE-RELAXG behaves much like its
counterpart for the ordinary network case where flow pushes are made only along
arcs.

To assess the efficiency of our coding, we compared QE-RELAXG with two spe-
cialized Fortran codes: therelaxation code NE-RELAXF from [14] for mixed lin-
ear/quadratic cost ordinary network flow problems, and the primal-simplex code NET2
from [19] for linear cost generalized network flow problems (also see [33]). In our tests,
we found QE-RELAXG to be slower than NE-RELAXF, though not beyond a factor
of 1.5 in solution time. QE-RELAXG was typically slower than NET2, by a factor be-
tween 1.2 to 4. NET2 was also adversely affected by the presence of non-unity arc gains
near 1, as well as by wider gain range. And on two problems with gain range of .2—4.0,
NET2 was unable to find a feasible solution even with double-precision arithmetic (see
Table 3). Thus, although QE-RELAXG is not as fast as the specialized codes, as might
be expected, it can serve as a good all-around code, since it can handle arcs that involve
gains as well as nonlinear cost.

Table 3. Solution times (in seconds) for QE-RELAXG, NET2 and MINOSL on a Dec Alpha-linear cost
case. Problem parameters are as in Table 2, with the linear cost coeffigjgrtapacitiess;j, gainsy;j , and

suppliess truncated to 3 decimal places. The quadratic cost coefficlgptare set to zero.lNETZ exited

with unsatisfied demand ef6.73 at node 507 and 12.65 at node 114ET2 exited with unsatisfied demand
of —2.13 at node 14 and 1.47 at node 304.]

No. No. Gain Optimal QE-RELAXG NET2 MINOSL
nodes | arcs range cost Soln. times Soln. times | Soln. times
Symmetric 1200 7000 | 1.0-1.0 | 206232923 2.26 1.00 25.19
Capacitated 1200 7000 9-1.1 | 206357872 7.63 3.71 25.06
Transhipment 1200 7000 .5-1.5 | 205287384 2.74 3.23 18.19
cape [500, 1000 1200 7000 .2-4.0 | 227083686 1.42 infeast 11.67
Symmetric 400 | 10000 [1.0-1.0 15745545 1.31 .07 2.37
Uncapacitated 400 | 10000 9-1.1 15778149 4.54 0.34 2.80
Transportation 400 | 10000 5-15 16052702 1.35 0.30 2.38
400 | 10000 .2-4.0 20672078 0.36 infeas 1.61

While this paper was under review, the referees suggested that we compare QE-
RELAXG with popular linear programming (LP) or nonlinear programming (NLP)
codes such as MINOS or CPLEX. Although we did not have CPLEX, we did have
MINOS 5.4 by Murtagh and Saunders [27], which we ran on a common set of test

102 Paul Tseng, Dimitri P. Bertsekas

problems as QE-RELAXG. The test results with MINOSL, a version MINOS adapted
for LP, are tabulated in Table 3. The test results with MINOS, the NLP code, are
tabulated in Table 4. The tests were run on a Dec Alpha as the Sun Ultra-1 was not easily
accessible to us at this time. The test problems were generated using NETGENG with
the same settings as in Table 2, although, to simplify input into MINOS, we truncated
the real dataj, Gij, yij, ands to 3 decimal places. Due to the large problem size,
some care was needed to set parameters in MINOS so that it has sufficient workspace.
After some experimentation, we settled on nwcer@ 5000000 and Superbasics limit

= min{300Q A+ 1}. The objective function and gradient were defined in the subroutine
funobj, with the quadratic cost coefficieriis stored in a common block inside funobj.

We consulted with Michael Saunders to ensure that these MINOS settings and data
inputs were reasonable. To make a fair comparison of QE-RELAXG with MINOS,
we changed 10 in the termination criterion for QE-RELAXG to 1@ and 1077,
respectively, for the first eight and the last eight problems in Table 4. This ensured that
the accuracy of the solutions generated by QE-RELAXG, as measured by cost, is similar
to that generated by MINOS. The solution times for MINOSL and MINOS, as reported
under “Time for solving problem”, do notinclude the probleminputtime. As can be seen
from Tables 3 and 4, QE-RELAXG is significantly faster than MINOSL and MINOS on
most of the test problems. The exceptions are the linear cost uncapacitated transportation
problems in Table 3 and the two quadratic cost problems in Table 4 with non-unity arc
gains near 1, for which QE-RELAXG is at most twice as fast as MINOSL or MINOS
(and slower than MINOSL on one problem). Changing the termination criterion for
MINOSL and MINOS does not appear to improve their solution times appreciably.
Workspace allocation is also an issue for MINOS on the quadratic cost problems. For
example, setting Superbasics limit too low (e.g., 2000) caused early exit, while setting
it too high (e.g., 10000) resulted in workspace requirement exceeding the available disk
space.

Table 4. Solution times (in seconds) for QE-RELAXG and MINOS on a Dec Alpha. Problem parameters are
as in Table 2, with the linear cost coefficiersg, capacitiescij, gainsy;j, and supplies; truncated to 3
decimal places.[The costs obtained by the two codes differ from the optimal cost only slightly in the least
significant digit.]

No. No. Gain Quad. Optimal QE-RELAXG MINOS
nodes | arcs range | coeff.b cost Soln. times Soln. times
Symmetric 1200 7000 | 1.0-1.0 0 | 399436018 3.85 212.11
Capacitated 1200 7000 9-1.1 0 | 399896578 112.95 233.69
Transhipment 1200 7000 5-1.5 0 | 404739276 6.08 223.72
cape [500, 1000 1200 7000 .2-4.0 0 | 482554994 5.83 104.72
Symmetric 400 | 10000 | 1.0-1.0 0 29359255 6.73 82.99
Uncapacitated 400 | 10000 9-11 0 29439130 37.95 87.42
Transportation 400 | 10000 .5-1.5 0 28760650 17.99 92.45
400 | 10000 .2-4.0 0 38990680 5.44 95.83
Symmetric 1200 7000 5-1.5 1 727712182 19.35 945.69
Capacitated 1200 7000 5-1.5 .01 | 409727971 6.79 254.10
Transhipment 1200 7000 5-1.5 .0001 | 404789494 6.78 228.46
cap= [500, 1000 1200 7000 5-1.5 0 | 404739276 6.08 223.72
Symmetric 400 | 10000 5-15 1 84149783 5.35 5185.96
Uncapacitated 400 | 10000 5-1.5 .01 30373637 3.99 108.98
Transportation 400 | 10000 .5-1.5 .0001 28777090 12.99 103.53
400 | 10000 5-1.5 0 28760650 17.99 92.45

An e-relaxation method for network flow 103

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.
29.

Adler, I., Cosares, S. (1991): A strongly polynomial algorithm for a special class of linear programs.
Oper. Res39, 955-960

Ahlfeld, D.P., Mulvey, J.M., Dembo, R.S., Zenios, S.A. (1987): Nonlinear programming on generalized
networks. ACM Trans. Math. Softwar8, 350-367

Ahuja, R.K., Magnanti, T.L., Orlin, J.B. (1993): Network Flows. Prentice-Hall, Englewood Cliffs

Ahuja, R.K., Magnanti, T.L., Orlin, J.B., Reddy, M.R. (1995): Applications of network optimization.

In: Network Models, Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L., eds., North-Holland,
Amsterdam, 1-83

Beraldi, P., Guerriero, F. (1997): A parallel asynchronous implementation efrédexation method for

the linear minimum cost flow problem. Parallel Com®8, 1021-1044

Beraldi, P., Guerriero, F., Musmanno, R. (1997): Efficient parallel algorithms for the minimum cost flow
problem. J. Optim. Theory App85, 501-530

Bertsekas, D.P. (1986): Distributed asynchronous relaxation methods for linear network flow problems.
Laboratory for Information and Decision Systems Report P-1606, M.I.T., Cambridge, November 1986
Bertsekas, D.P. (1992): An auction sequential shortest path algorithm for the minimum cost network flow
problem. Laboratory for Information and Decision Systems Report P-2146, M.|.T., Cambridge, MA
Bertsekas, D.P. (1998): Network Optimization: Continuous and Discrete Models. Athena Scientific,
Belmont, MA

Bertsekas, D.P., Castafion, D.A. (1993): A generic auction algorithm for the minimum cost network flow
problem. Comput. Optim. AppR, 229-260

Bertsekas, D.P., Castafion, D., Eckstein, J., Zenios, S.A. (1995): Parallel computing in network op-
timization. In: Network Models, Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L., eds.,
North-Holland, Amsterdam, pp. 331-399

Bertsekas, D.P., Eckstein, J. (1988): Dual coordinate step methods for linear network flow problems.
Math. Program42, 203-243

Bertsekas, D.P., Hosein, P.A., Tseng, P. (1987): Relaxation methods for network flow problems with
convex arc costs. SIAM J. Control Optir25, 1219-1243

Bertsekas, D.P., Polymenakos, L.C., Tseng, P. (1997):mefaxation method for separable convex cost
network flow problems. SIAM J. Optin¥, 853-870

Bertsekas, D.P., Polymenakos, L.C., Tseng, P. (199®laxation and auction methods for separ-
able convex cost network flow problems. In: Network Optimization, Lecture Notes in Economics and
Mathematical Systems 450, Pardalos, P.M., Hearn, D.W., Hager, W.W., eds., Springer-Verlag, Berlin,
103-126

Bertsekas, D.P., Tseng, P. (1988): Relaxation methods for minimum cost ordinary and generalized network
flow problems. Oper. Re86, 93-114

Bertsekas, D.P., Tsitsiklis, J.N. (1989): Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, Englewood Cliffs

Cohen, E., Megiddo, N. (1994): New algorithms for generalized network flows. Math. Progdam.
325-336

Currin, D.C. (1983): A comparative evaluation of algorithms for generalized network problems. NRIMS
Technical Report TWISK 289, Pretoria, South Africa

Dembo, R.S., Mulvey, J.M., Zenios, S.A. (1989): Large-scale nonlinear network models and their appli-
cation. Oper. Res37, 353-372

De Leone, R., Meyer, R.R., Zakarian, A. (1999): A partitiorectlaxation algorithm for separable
convex network flow problems. Comput. Optim. AppR, 107-126

Glover, F., Hultz, J., Klingman, D., Stutz, J. (1978): Generalized networks: a fundamental computer-based
planning tool. Manage. S24, 1209-1220

Goldberg, A.V., Plotkin, S.A., Tardos, E. (1991): Combinatorial algorithms for generalized circulation
problem. Math. Oper. Red6, 351-381

Hultz, J. (1976): Algorithms and applications for generalized networks. Unpublished Dissertation, Uni-
versity of Texas, Austin, TX

Jewell, W.S. (1962): Optimal flow through networks with gains. Oper. F&€76-499

Karzanov, A.V., McCormick, S.T. (1997): Polynomial methods for separable convex optimization in
unimodular linear spaces with applications. SIAM J. Comp6t.1245-1275

Murtagh, B.A., Saunders, M.A. (1993): MINOS 5.4 user’s guide. Technical Report SOI 83-20R, Depart-
ment of Operations Research, Stanford University, Stanford, CA, March 1993

Murty, K.G. (1992): Network Programming. Prentice-Hall, Englewood Cliffs

Polymenakos, L.C. (1995%)relaxation and auction algorithms for the convex cost network flow problem.
Electrical Engineering and Computer Science Department Ph.D. Thesis, M.1.T., Cambridge, MA

104

Paul Tseng, Dimitri P. Bertsekas: Arrelaxation method for network flow

30.

31.
32.

33.
34.

35.

Radzik, T. (1998): Faster algorithms for the generalized network flow problem. Math. Ope3Res.
69-100

Rockafellar, R.T. (1970): Convex Analysis, Princeton University Press, Princeton

Rockafellar, R.T. (1998): Network Flows and Monotropic Programming. Wiley-Interscience, New York,
NY, 1984; republished by Athena Scientific, Belmont, MA

Tseng, P., Bertsekas, D.P. (1987): Relaxation methods for linear programs. Math. Oe#, 563-596
Tseng, P., Bertsekas, D.P. (1990): Relaxation methods for monotropic programs. Math. Pdégram.
127-151

Vaidya, P.M. (1989): Speeding-up linear programming using fast matrix multiplication. In: Proceedings
of the 30th IEEE Annual Symposium on Foundations of Computer Science, IEEE Press, New York,
332-337

