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We propose a massively parallelizable algorithm for the classical assignment
problem. The algorithm operates like an auction whereby unassigned persons
bid simultaneously for objects thereby raising their prices. Once all bids are in,
objects are awarded to the highest bidder. The algorithm can also be inter-
preted as a Jacobi -like relaxation method for solving a dual problem. Its
(sequential) worst -case complexity, for a particular implementation that uses
scaling, is O(NAlog(NC)), where N is the number of persons, A is the number
of pairs of persons and objects that can be assigned to each other, and C is
the maximum absolute object value. Computational results show that, for large
problems, the algorithm is competitive with existing methods even without the
benefit of parallelism. When executed on a parallel machine, the algorithm exhi-

bits substantial speedup.

1. INTRODUf;rION
Relaxation methods for optimal network flow problems resemble classical
coordinate descent, Jacobi, and Gauss-Seidel methods for solving uncon-
strained nonlinear optimization problems or systems of nonlinear equations.
They operate on a dual problem which is unconstrained and involves a dual
variable for every node (also called a node price). In their pure form they
modify the node prices one at a time using only local node information while
aiming to improve the dual cost. They are well suited for distributed imple-
mentation on massively parallel machines.

For problems with strictly convex arc costs, relaxation methods can be
shown to converge to the correct solution under mild additional assumptions.
An important property of strictly convex cost problems is that the dual cost
function is differentiable. This facilitates the use of the relaxation idea because
at any nonoptimal dual vector one can find a single node price coordinate
along which the dual cost can be improved. However, the convergence proper-
ties of the method do not follow from classical results of unconstrained optimi-
zation because the dual cost function is not strictly convex and does not have
bounded level sets. Nonetheless, there is sufficient structure to guarantee
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convergence, which can also be shown for a totally asynchronous implementa-
tion where price updates at each node are carried out asynchronously with
out-of-date price information from neighboring nodes [15], [18]. Computational
experiments with parallel relaxation methods applied to strictly convex arc cost
problems have been very encouraging [47], [48].

By contrast, for problems where the arc costs are linear the dual cost func-
tion is nondifferentiable (piecewise linear). As a result the relaxation idea may
encounter difficulty at points where the dual cost cannot be improved in any
coordinate direction as seen in Fig. 1.

FIGURE I: Illustration of the difficulty of the relaxation approach for
linear arc costs. At the indicated point it is impossible to
improve the dual cost by changing any single price.

One approach to overcome the difficulty has b~n pursued by the author and
his coworkers for the past several years [7], [9], [16], [17]. In this approach, in
addition to the single coordinate relaxation steps, one occassionally changes
the prices of several nodes as a group as illustrated in Figure 2. Unfortunately,
however, these multiple no.de price changes need global node price information,
thereby substantially complicating the distributed implementation of the algo-
rithm. Nonetheless, public domain sequential codes based on this approach
have proved highly successful, and have outperformed the classical primal sim-
plex and primal-dual methods by a substantial margin on standard benchmark
problems [9], [16], [17] and by an overwhelming margin on large problems [16],[17].
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FIGURE 2: Illustration of the first approach for overcoming the
difficulty of Fig. 1. The idea is to reduce the dual cost by
changing simultaneously the prices of several nodes.

A second approach for overcoming the difficulty shown in Fig. I, that is more
amenable to parallelization, is based on performing single node price changes
exclusively. Some of these price changes may worsen the dual cost by small
amounts, but Fig. 3 illustrates that if the price changes are properly regulated,
the algorithm can eventually approach the optimal solution.
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dual cost
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FIGURE 3: Relaxation approach whereby single node price changes
are perfonned exclusively even if this leads to deterioration
of the dual cost. If the size of the price changes is properly
regulated, the method can approach the optimal solution.

This second approach was first proposed for the classical assignment problem
in 1979 by the author in an unpublished report [6], and was also briefly
described in the conference paper [8]. The corresponding method, called the
auction algorithm, is the subject of the present paper. Among the many
methods for the assignment problem [2] -[4], [7], [24], [26], [27], [28], [32] -[34]
[37], [38], [46] the auction algorithm seems to be the only one that has a natu-
rally parallel character and is well suited for implementation on a massively
parallel machine. It also admits an intuitively appealing economic interpreta-
tion, althou~ we make no claim about its utility as a model for market price
adjustment. (See [23], [43], [44] for work on the assignment problem with an
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economic modeling orientation. In particular, [23] describes an algorithm
which involves ideas of competitive bidding, but differs substantially from
ours; for example it does not use the idea of (-complementary slackness
described later in this paper.)

In addition to the idea of independent single node price changes which is
responsible for the parallel character of the method, the auction algorithm
embodies several ideas that were new at the time of its original proposal and
have recently found considerable extension and use in network algorithms and
computational complexity analysis. These include the notion of (-complementa-
ry slackness «(-CS) and the idea of (-scaling.

In Section 2, we define (-CS as a condition whereby the usual complemen-
tary slackness relation for assignment of a person to an object can be violated
by a small «() amount. A key fact is that a feasible assignment satisfying (-CS
is optimal if ( is sufficiently small. This idea was generalized and was used
algorithmically for linear network flow problems in [16], and for nonlinear net-
work flow problems in [18]. A related idea was also used in a different context
in the analysis of [45]. (-CS is central in the extension of the auction algorithm
to general linear network flow problem, first given in [11], [12], and further
analyzed later in [14], [30], [31].

The idea of (-scaling is similar to the idea of gradually reducing the penalty
parameter in penalty function methods in order to alleviate ill-conditioning,
and is essential for obtaining computational efficiency and polynomial com-
plexity. In the pure form of the auction algorithm, ( is kept constant, and the
complexity (with the use of some simple data structures [19]) can be shown to
be O(NAC/(). It is necessary to take ( sufficiently small (less than IIN assum-
ing object valu~s are integer), in order that the assignment obtained by the
algorithm be optimal (see Proposition 1 in Section 3). As a result, the pure
form of the algorithm has pseudopolynomial complexity, and its computational
performance can be poor as shown by an example given in Section 3. (-scaling
corrects this by applying the auction algorithm with successively smaller values.
of ( starting with a large value and ending with a value less than I/N. The
final prices and assignment corresponding to each value of ( are used to obtain
"good" starting prices and assignment for the next smaller value. (-scaling was
noted in [6] as a method for improving the performance of the auction algo-
rithm, and was tested computationally in 1979 and again in 1985 with
encouraging results (unpublished work). It was first analyzed in the context of
the more general min-cost flow problem in [29] where polynomial complexity
results were given that were more fully established in [30], [31]. Another scaling
procedure that is closer in spirit to traditional scaling methods in network flow
problems [21], [25], [41], [39], and can serve as an alternative to (-scaling was
later proposed and analyzed in [14], using some of the ideas of [29] and also of
[21]. The method of analysis of [14], [30], [31] can be used to show that the
auction algorithm with (-scaling as well as the more traditional cost scaling
method has complexity O(NAlog(NC»; see [19]. This is relatively straightfor-
ward, but requires replication of large portions of the analysis in these refer-
ences, and so will not be given. The computational results of the present paper
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suggest that the auction algorithm with (-scaling in competitive with the best
known implementations of assignment methods even without the benefit of
parallelism. When implemented in a parallel machine, the auction algorithm
should converge much faster.

The ideas of (-CS and (-scaling are likely to prove useful in other contexts.
For example they play an important role in an extension of the auction algo-
rithm that solves transportation problems [13], and also in the recent assign-
ment algorithm of [27]. The latter algorithm, which is not naturally paralleli-
zable, has complexity O(NIIJ Alog(NC» where N is the number of persons to be
assigned, A is the number of person -object pairs than can be assigned to
each other, and C is the maximum absolute object value. For reasonably small
values of C, this is the best complexity bound for assignment problems. We
note also that the auction algorithm can be modified to obtain an
O(NIIJ Alog(N C» complexity. This modification, due to [I], employs (-scaling,
and within a scaling phase, it first uses the auction algorithm to assign
N -l?~N~) persons, and then uses a Hungarian-like method to assign the

remaInIng persons.
The purpose of the present paper is to describe the auction algorithm, to

interpret it as a dual Jacobi-like relaxation method, and to provide computa-
tional results. While a version of the auction algorithm can be derived from its
rnin-cost flow generalization of [11], [12], this derivation is neither obvious nor
straightforward; indeed one must introduce modifications to the basic form of
the (-relaxation method of [II], [12] in order. to be able to derive the auction
algorithm as a special case. (The reverse is also true. The min-cost flow prob-
lem can be converted into a transportation problem ([40], p. 149), which can
be converted to an assignment problem by replacing single sources and single
sinks of the transportation problem with multiple copies of persons and
objects respectively in the assignment problem. By applying the auction algo-
rithm to this assignment problem, one can derive a generic form of the (-
relaxation .method of [II], [12].) The conceptually useful interpretation as a
Jacobi-like relaxation method is also nontrivial to obtain starting from the
general network flow framework. It is therefore worthwhile to derive the auc-
tion algorithm from basic principles, and Section 2 is devoted to this purpose.
The validity of the algorithm is established in Section 3, and the computational
results are given in Section 5. The auction algorithm can also be implemented
in a totally asynchronous (chaotic) distributed environment; this appears to be
a generic characteristic of relaxation methods for both linear and nonline;ar
network flow problems. We describe briefly and somewhat informally in Sec-
tion 4 how this can be done, and we refer to [II], [12], [19] for discussion and
analysis of totally asynchronous implementations in the context of the general
rnin-cost flow problem.
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2. ASSIGNMENT BY MEANS OF AN AUCTION
Consider N persons wishing to deside among themselves N objects. We

number persons and objects as 1, 2, ..., N. For each person i there is a
nonempty subset A (i) of objects that can be assigned to i. An assignment S is

a (possibly empty) set of person-object pairs (i,j) such that j EA (i) for all
(i,j)ES, for each person i there is at most one pair (i,j)ES, and for each object

j there is at most one pair (i,j)ES. In the context of a given assignment S, we

say that person i is assigned if there exists an object j such that (i,j)ES; other-

wise we say that i is unassigned We use similar terminology for objects. A

complete assignment is an assignment containing N pairs (i.e. every person is

assigned to a distinct object). There is a given integer value ail that a person i

ass~ia.tes with an object j EA (i). We want to find a complete assignment that

maXIIll1Zes

~ aij
(i,j)eS

over all complete assignments S. We call this the primal assignment problem
and note its well-known equivalence to a linear programming (linear network
flow) problem as shown in Fig. 4.

PERSONS OBJECTS

1 1

~~~~~~:1.jI a. .
IJ

2-"'0.~~ "O ~
FIGURE 4: Formulation of the primal assignment problem as a linear

programming/ network flow problem. The nodes are the
persons and the objects, and an arc (i,j) connects every
person i and object j such that j belong to A (i). Denoting
the flow of arc (i,j) by h the corresponding linear pro-
gramming woblem is:
maximize ~ ~ a..f.

~ ~ IJ};J
i=1 jeA(i)

N

subject to
~ iiJ=l, i=I,...

'eA (i)

~ h=l, j=I,...,N
(ilieA(i)}

O~f,ill

For each object j, it is useful to introduce a dual variable Pj called the price
ofj. We call the vector with coordinatespj, j = 1, ...,N a price vector. For a
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given price vector p the scalar

'lTi = maxjeA(i) {aij -Pj} (1)

is called the profit margin of person i corresponding to p. It is helpful to think
of Pj as the amount of money that a person must pay when assigned to }.
Therefore, for a given price vector p, aij -Pj may be thought of as the benefit
person i associates with being assigned to object}. In this context the name
"profit margin" for'ITi as given by (1) becomes meaningful.

A dual problem to the assignment problem is
N N

minimize ~ 'IT i + ~ P j
i=1 j=1

subject to'ITi + Pj ~ aij, Vi, and} E A (i)

For a given price vector p, the cost of this problem is minimized when 'lTi
equals the maximum value of aij -Pj over} EA (i), i.e. the profit margin of i
corresponding to P as given by (1). Therefore an equivalent form of the dual
problem is the unconstrained minimization problem

minirnl7:e q (p) (2)

subject to no constraints on p

where p is the vector of object prices Pj, and

q(p)=IjmaxjEA(j) {ajj-pj}+Ijpj (3)

From linear programming theory it is known that a complete assignment
S={(i,jj)li=I,... ,N} and a price vectorp are simultaneously primal and
dual optimal respectively if and only if

'R'j = m~EA(j) {ajk -Pk} = aij -Pj, for each (i,j) E S.

This is known as the complementary slackness condition and states that at an
optimum each person is assigned to a "best" object, i.e. to one attaining the
maximum in the definition of profit margin (1).

A relaxation of the complementary slackness condition is to allow persons to
be assigned to objects that come within ( of attaining the maximum in (1).
Formally we say that an assignment S (not necessarily complete) and a price
vector p satisfy (-complementary slackness «(-CS) if

'R'j -(= ~EA(j) {ajk -Pk} -(~ajj -Pj, for each (i,j) E S, (4)

where'R'j is given by (1), and ( is a nonnegative constant.
We now describe formally the auction algorithm. We fix (>0, and we start

with some assignment (possibly empty) and price vector satisfying (-CS. The
algorithm proceeds iteratively and terminates when a complete assignment is
obtained. At the start of the generic iteration we have an assignment S and a
price vector p satisfying (-CS. At the end of the iteration, S and p are updated
while maintaining the (-CS condition. There are two phases in each iteration,
the bidding phase, and the assignment phase described below:



112 The auction algorithm:

Bidding Phase: For each person i that is unassigned under the assignment S:
Compute the "current value" of each object j E A (i) given by

(5)
Vii = aii -Pi

Find a "best" object j- having maximum value

vii- = maxieA(i) Vii'

and find the best value offered by objects other that j*

(6)
00, Of, fOf computational

Wij* = max:jEA (i), j1=J" Vij

(If j* is the only object in A (i) we define Wij* to be
purposes, a number that is much smaller than Vij*')

Compute the "bid" of person i for object j* given by

boo. = p o. +voo. -W°" +(=aoo. -woo. +~ (7)IJ J IJ IJ IJ IJ "

(We characterize this situation by saying that person i bid for object j*, and
that object j* received a bid from person i. The algorithm works if the bid has
any value between Pi. + ( and Pj. + Vij. -w~. + (, but it tends to work fastest
for the maximal choice (7). Note that from ~5)-(7) we have bij. ~Pj. +(.)

Assignment Phase: For each object j: let P (j) be the set of persons from which
j received a bid in the bidding phase of the iteration. If P (j) is nonempty
increase Pj to the highest bid

Pj: = maxieP(j) b;j, (8)'

remove from the assignment S any pair (i,j) (if one exists), and add to S the
pair (i.,j) where i. is some person in P(j) attaining the maximum above.

It is seen that at the end of the iteration we have a new price vector that
differs from the preceding vector in the prices of the objects that received a bid
during the iteration. We also have a new assignment that differs from the
preceding one in that each object that received a bid is now assigned to some
person that was unassigned at the start of the iteration. However, the assign-
ment at the end of the iteration need not have more pairs than the one at the
start of the iteration because it is possible that all objects that received a bid
were assigned at the start of the iteration.

An important fact is that the algorithm preserves £-CS throughout its execu-
tion, i.e. if the assignment and price vector available at the start of an itera-
tion satisfy £-CS, the same is true for the assignment and price vector obtained
at the end of the iteration. To see this suppose that object j* received a bid
from person i and was assigned to i during the iteration. Let Pj and pi be the
object prices before and after the assignment phase. Then we have [cr. (7), (8)]

p'j* = bij* -Wi)" + £ (9)

Using this equation and the fact pi ~ Pj for all j, it follows that
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aij- -pi- = aij- -hi}" = Wij- -( = maxjEA (i), j~j- {aij

~ max. ' ( ') .-t..-{a.. _ p '. } -~
:fEn I , }r} I} } "

Pi} £

This equation implies that

aij* -P'j* ~ maxjeA.(i) {aij -p'j} -( (10)

which shows that (4) continues to hold after the assignment phase of an itera-
tion for a pair (i,}*) that entered the assignment during the iteration. Consider
also any pair (i,}*) that belonged to the assignment just before an iteration,
and also belongs to the assignment after the iteration. Then}* must not have
received a bid during the iteration, so P'j* = Pj*' Therefore, (10) holds in view
of the (-CS condition that holds prior to the iteration, and the fact p'j ~ Pj for

all).
Note that both the bidding and the assignment phases are highly paralleli-

zable. In the extreme case of a fine grain parallel computing environment
where there is a processor associated with each person and a processor associ-
ated with each object, all unassigned persons/processors can compute their
bids simultaneously and communicate them to the relevant objects/processors.
Those object/processors that received at least one bid can determine the
highest bidder simultaneously and communicate the changes in the current
assignment and price vector to the relevant persons/processors.

FIGURE 5: Form of the dual cost along the price coordinatepjo From
(3) the right directional derivative of q along P j is

dj+ = I -(number of persons i withjEA (i) andpj < aij -Wij)

where Wij is given by (6). The break points are aij -Wij for all i such that
j EA (i). If Pj < aij -wij, then an unassigned person i bids for object j the
amount ail -wij + (. The price Pj after the assignment phase is increased to f
plus the highest level aij -Wij over all unassigned persons i with j EA (i).

Figure 5 indicates how each bidding and subsequent assignment phase can
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be interpreted as a Jacobi -like relaxation step for minimizing the dual func-
tion q(p) of (3). In particular, the price Pi of each object that received a bid dur-
ing the assignment phase is increased to either a value that minimizes q (P) when
all other prices are kept constant, or else exceeds the largest such value by no
more than (. To see this supp()se that at some iteration object j received a bid
and its price was raised from Pi topi. Then

pi = max{aii -willi was unassigned, jEA(i), and

j received a bid from i} + ( (11)
Pi ~ max{aii -Willi was unassigned, jEA(i), and

j did not receive a bid from i} (12)

Since whenever an object receives a bid, its price increases by at least (, we
have

P'. ~ p .+ (J J '

so from (11) and (12) we obtain

pi ~ max{a;j -w;jli was unassigned, andjEA(i)} + ( (13)

Since the algorithm maintains property (4) throughout, we have that if at the
start of the iteration person i was assigned to some k ~ j andj E A (i) then

a.. - p o ~ 7/'. ~ a.k - Pk + ( ~ w.. + (IJ J I I IJ

Usmg this relation a.nd the fact pi ~ Pj + ( we obtain

P'.~ p .+~~a..J J " IJ Wi}

and

P'j ~ max{ aij.- Wijli was assigned to some k 1=}, and} EA (i)} (14)

Combining (13) and (14) we obtain

pj ~ max{aij -Wijli was not assigned to}, and }EA(i)}

Since there can be at most one person assigned to}, it follows from the form
of the dual cost shown in Figure 5, that p'j is no less than the smallest value of
Pj that minimizes q(P). Combining this fact with (11), we see thatpj has the
property stated in the beginning of this paragraph.

Note that our method is not quite equivalent to a coordinate descent
method which reduces the dual cost along each price coordinate, since the dual
cost (3) may deteriorate strictly after a price increase. However, the cost
deterioration is at most t:. It will be seen shortly that, for t: small enough, an
optimal solution can still be obtained thanks to the integer nature of the prob-
lem data, and the fact that t:-CS holds at termination [cf. (4)].

Figure 5 also suggests a variation of the algorithm whereby, in addition to
all unassigned persons, each assigned person i bids for his own assigned object
} the amount aij -Wij + t:. This variation has not been tested, but may
accelerate convergence m some parallel computing environments.
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The above algorithm may be viewed as a Jacobi version of the relaxation
idea since the bids of unassigned persons are calculated simultaneously, and
the prices of objects that receive a bid are raised simultaneously. An alterna-
tive is a Gauss-Seidel version whereby a single unassigned person bids for an
object, and the price rice of the object is taken into account when the next bid
by an unassigned person takes place. This version is just as valid as the Jacobi
version and in fact tends to converge a little faster, but is generally much lessparallelizable.

Another variation of the auction algorithm applies to asymmetric assignment
problems where the number of objects is larger than the number of persons,
and there is a requirement that all persons be assigned. To solve this problem,
the auction algorithm of this section need only be modified in the choice of the
initial conditions. It is sufficient to require that the initial assignment be
empty, and that all the initial object prices be zero. The algorithm terminates
when all persons have been assigned, and it can be shown that the appropriate
form of E-CS condition holds at termination. The details are left for the reader.
Additional variations of the auction algorithm are discussed in [13].

3.. PROPERTIES OF THE ALGORITHM
Suppose that the algorithm tenninates with the final (complete) assignment
Viii = I, ...,N}, the object prices Pj, and the profit margins 'lfi given by (I).
Then, by adding (4) over i,

Nt

~. 

a.. ~~. ('11' + p .

I 'li I I l;

If A * is the optimal primal value and the (equal) optimal dual value we have

using the relation above

A* ~~. a.. ~~. (71'. + p . ) -Nf= q(P)-Nf~A* -NfI I Ji I I Ji

Therefore the assignment Viii = 1, ...,N) is within Nf of being optimal.
Since ail are integer, an optimal assignment is obtained when f < I/N. Thus
we have shown:

PROPOSITION 1: A complete assignment obtained upon termination of the
rithm is within N E of being optimal, and is optimal if E < 1/ N.

The next result asserts that the algorithm terminates assuming existence of at
least one complete assignment. The proof relies on the following facts:
a) Once an object is assigned, it remains assigned throughout the remainder

of the algorithm's duration. Furthermore, except at termination, there will
always exist at least one object that has never been assigned, and has a
price equal to its initial price. This is due to the fact that a bidding and
assignment phase can result in a reassignment of an already assigned
object to a different person, but cannot result in the object becoming

unassigned.
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b) Each time an object receives a bid its price increases by at least £ [cf. (7),
(8)]. Therefore if the object receives a bid an infinite number of times, its
price increases to 00.
Each time a person i bids for an object a number of times at most equal
to the cardinality of A (i), his profit margin '1Tj as defined by (1) must
decrease by at least £. This is due to the fact that a bid by person i either
decreases '1Tj by at least £, or else leaves '1Tj unchanged because there is
more than one object j attaining the maximum in (1). However, in the
latter case the price of the object j* receiving the bid will increase by at
least E, and object j* will not receive a bid again from person i until '1Tj
decreases by at least E. The conclusion is that if a person bids an infinite
number of times his profit margin must decrease to -00.

c)

PROPOSITION 2: If at least one complete assignment exists, the algorithm ter-
minates in a finite number of iterations.

PROOF: If the algorithm continues indefinitely, the prices of a proper [cf. a)
above] subset Joo of objects increases to 00, while the profit margins 'IT; of a
subset ]00 of persons decrease to -00, [cf. c) above]. Furthermore, eventually,
in view of (4), at any given time each object in Joo can only be assigned to a
person from ]00, and a person from ]00 will either be assigned to an object in
Joo or be unassigned. Also, in view of c) above, eventually only persons from
]00 will be unassigned. Therefore the cardinality of]OO is greater than the car-
dinality of Joo while, in view of (1), we have Joo :JA (i) for all i in ]00. This
contradicts the existence of a complete assignment. Q.E.D.

OBJECTSPERSONS

Here aij = C > 0 fo~ all (i,i)
except for ~3 which is 0

FIGURE 6: Example where the number of bidding phases is propor-
tional to C / £. Here at each bidding phase, one of the per-
sons I, 2, or 3 bids the price of object I or 2 up by an in-
crement £ until the time that these prices reach the level C.

It can be shown (see Fig. 6) that the computational complexity of the algo
rithm is sensitive to the maximal absolute object value

C =max{laijlli=I,..., N, jE A (i)}
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It was found experimentally that this sensitivity manifests itself often in the

practical performance of the algorithm. To improve this performance, scaling

the value of ( suggests itself. Here we multiply all costs aij with (N + 1) and

apply the algorithm with progressively lower value of ( up to the point where (

becomes 1 or smaller. The sequence of ( values used is

(k) = max{l, Ll/ff'}, k = 0, 1, where 8 and Ll are parameters with Ll > 0 and 8> 1. Scaling procedures are

discussed in more detail in [14], [30], [31]. The scaling procedure given above,

called (-scaling, was mentioned in [6] and was tested by the author in 1979 and

1985. The computational results of Section 5 show that, with proper choice of

the parameters 8 and 8, the algorithm has excellent performance even without

the benefit of parallelism.

4. AsYNCHRONOUS IMPLEMENTATION
The auction algorithm given in Section 2 may be described as synchronous
since the bidding and assignment are carried out simultaneously for all persons

and objects respectively. A totally asynchronous (chaotic) algorithm (see [5],
[10], [19], [20], [22] for computation models and convergence analysis) results if

each unassigned person makes a bid at arbitrary times on the basis of object
price information that may be outdated (because of additional bidding of

which the person is not informed). Furthermore assignment of objects may be

decided even if some potential bidders have not been heard from. We can

similarly show the same termination properties as for the synchronous version

of the algorithm subject to two conditions.
a) An unassigned person will bid for some object within finite time, and can-

not bid twice (i.e. cannot bid for a second object while waiting for a reply

regarding the disposition of an earlier bid for another obj~t).
b) Whenever one or more bids are received that raise the price of an object

then, within finite time, that price must be updated, and its value must be

communicated (not necessarily simultaneously) to all persons. Further-
more the new bidder assigned to the object must be informed that he has

been assigned simultaneously with receiving the new price.
A more careful formulation of the asynchronous model, and a proof of vali-

dity for the more general case of the minimum cost flow problem is given in

[11], [12], and [14].

5. COMPUTATIONAL RESULTS
In this section we provide the results of computational experimentation on
both a serial machine (VAX 11-750), and a parallel machine (sequent Balance
21000). A more extensive computational study is currently under way.

A code called AUCTION was used to test the performance of the algorithm
on a serial machine. The code implements (-scaling as described at the end of
Section 3 for various values of the parameters 8 and ~. The initial object prices
were set to p. = mini aij for all j; this is a common choice for dual type of
assignment ~gorithms. At the end of the kth subproblem (i.e. the problem
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couesponding to £(k -1» the assignment obtained is checked to see if condi-
tion (4) is satisfied for E = £(k). If (4) is not satisfied for a person i and the
couesponding object jj, the pair (i,jj) is removed from the assignment, so that
condition (4) is enforced at the be&nning of each subproblem.

The test problems were generated using the widely used public domain gene-
rator NETGEN [36] with the random seed number set at the value used in the
original paper [36]. The AUCfION code was compared with a version of the
relaxation code RELAX-II [16], [17] specially adapted to solve assignment
problems. This code, called RELAX-IIA, outperformed a variety of specialized
relaxation and primal-dual codes for the assignment problem based on existing
methods. On the basis of this fact and in view of the excellent performance of
the RELAX-II code for assignment problems, as documented in [16], [17], we
believe that AUCfION has been given state-of-the-art competition.

The codes compared were written in standard FORTRAN on a VAX 11-
750, and were compiled under VMS version 4.1. A rough indication of the
potential speedup of AUCfION in a parallel machine is provided by the
degree of parallelism defined as the number of unassigned persons in a bidding
phase averaged over all bidding phases.

Our results are summarized in Figures 7-10. Figure 7 gives the solution
times for five problems with equal density (1.5 %). The parameters used were
() = 8 and A = NC/2. Figure 8 gives the times for five problems where the set
A (i) has average cardinality equal to 5. The parameters used were () = 6 and
A = NC /2. Figure 9 gives the times for the five standard assignment problems
(problems 11-15 in [36]). The parameters used were () = 4 and A = NC/2. The
parallelism factor for these problems is roughly constant near 10 as Figure 10
shows. This indicates that the efficiency of the algorithm may be quite low
when implemented on a parallel machine with a large number of processors.

The auction algorithm was also independently implemented and tested on
dense assignment problems by Prof. J. Kennington and Mr. L. Hatay at
Southern Methodist University using a Sequent Balance 21000 computer -a
shared memory parallel machine. Figure 11 shows their results with a multiple
processor implementation of the auction algorithm and, in particular, the
speedup as a function of the number of CPUs employed. It is seen that the
efficiency of the algorithm for a small number of processors is quite satisfac-
tory. Note that the speedup with one processor is less that one because we are
comparing a serial with a parallel code, and, even on a single processor, the
parallel code is not as efficient as the serial code.
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FIGURE 7: Solution times for AUCTION and RELAX-IIA on VAX
11-750. All problems generated by NETGEN.

Time (secs) on VAX 11-750
14~
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FIGURE 8: Solution Times for AUCTION and RELAX-IIA on VAX
11-750. All problems generated by NETGEN.
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FIGURE 9: Solution times in sees for AUCfION and RELAX-IIA on
VAX 11-750 for standard NETGEN assignment problems.
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Parallelism Factor
14 T
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FIGURE 10: Parallelism factor for the problems of Figs. 7, 8, and 9.
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FIGURE II: Speedup of a parallel implementation of the auction algo-
rithm as a function of the number of processors used in a
Sequent Balance 21000 computer. The problem solved is a
randomly generated 800 X 800 fully dense problem with arc
cost range I -1000. The time required by the serial auction
code using a single processor is 336.13 secs.
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NOTE ADDED IN PROOF: An improved version of the AUCTION code has been
placed in the public domain and can be obtained from the author at no cost.


