
August 1996 (Revised August 1997) Report LIDS-P-2349

Temporal Differences-Based Policy Iteration

and Applications in Neuro-Dynamic Programming1

by

Dimitri P. Bertsekas2 and Sergey Ioffe 3

Abstract

We introduce a new policy iteration method for dynamic programming problems with dis-
counted and undiscounted cost. The method is based on the notion of temporal differences, and
is primarily geared to the case of large and complex problems where the use of approximations is
essential. We develop the theory of the method without approximation, we describe how to em-
bed it within a neuro-dynamic programming/reinforcement learning context where feature-based
approximation architectures are used, we relate it to TD(λ) methods, and we illustrate its use in
the training of a tetris playing program.

1 Supported by the National Science Foundation under Grant DDM-8903385 and Grant CCR-
9103804. Thanks are due to John Tsitsiklis for several helpful discussions and to Dimitris Pa-
paioannou, who assisted with some of the experiments.

2 Department of Electrical Engineering and Computer Science, M. I. T., Cambridge, Mass.,
02139.

3 Department of Electrical Engineering and Computer Science, M. I. T., Cambridge, Mass.,
02139.

1

1. INTRODUCTION

We consider a standard discounted infinite horizon model in dynamic programming (DP for

short). We are given a discrete-time dynamic system whose state transition depends on a control.

We assume that there are n states, denoted by 1, 2, . . . , n. When at state i, the control must be

chosen from a given finite set U(i). At state i, the choice of a control u specifies the transition

probability pij(u) to the next state j. At the kth transition, we incur a cost αkg(i, u, j), where

g is a given function, and α is a discount factor with 0 < α < 1. We will later discuss extensions

of our analysis to undiscounted problems.

We are interested in policies, that is, sequences π = {µ0, µ1, . . .} where each µk is a function

mapping states into controls with µk(i) ∈ U(i) for all states i. Let us denote by ik the state at

time k. The total expected cost starting from an initial state i and using a policy π = {µ0, µ1, . . .}

is

Jπ(i) = lim
N→∞

E

[
N−1∑
k=0

αkg
(
ik, µk(ik), ik+1

) ∣∣∣ i0 = i

]
.

The optimal cost-to-go starting from state i is denoted by J∗(i); that is,

J∗(i) = min
π
Jπ(i).

We view the costs J∗(i), i = 1, . . . , n, as the components of a vector J∗, referred to as the optimal

cost-to-go vector .

A stationary policy is a policy of the form π = {µ, µ, . . .}. The corresponding cost-to-go is

denoted by Jµ(i). For brevity, we refer to {µ, µ, . . .} as the stationary policy µ. We say that µ is

optimal if Jµ(i) = J∗(i) for all states i. The vector Jµ that has components Jµ(i), i = 1, . . . , n,

is referred to as the cost-to-go vector of the stationary policy µ.

We introduce some notation. For any vector J =
(
J(1), . . . , J(n)

)
, we consider the vector

TJ obtained by applying one iteration of the DP algorithm to J ; the components of TJ are

(TJ)(i) = min
u∈U(i)

n∑
j=1

pij(u)
(
g(i, u, j) + αJ(j)

)
, i = 1, . . . , n.

Similarly, for any vector J and any stationary policy µ, we consider the vector TµJ with compo-

nents

(TµJ)(i) =
n∑
j=1

pij
(
µ(i)

)(
g
(
i, µ(i), j

)
+ αJ(j)

)
, i = 1, . . . , n.

It is well-known that the mappings T and Tµ are contraction mappings with respect to the

maximum norm. For easy reference, we summarize the main results for discounted problems in

the following proposition (see e.g., [Ber95], [Put94], [Ros83]).

2

Proposition 1: The following hold for the discounted cost problem:

(a) The optimal cost-to-go vector J∗ satisfies

J∗ = TJ∗. (1.1)

Furthermore, J∗ is the only solution of this equation.

(b) We have

lim
t→∞

T tJ = J∗,

for every vector J .

(c) A stationary policy µ is optimal if and only if

TµJ∗ = TJ∗.

(d) For a stationary policy µ, the associated cost-to-go vector Jµ satisfies

lim
t→∞

T tµJ = Jµ,

for every vector J . Furthermore,

Jµ = TµJµ,

and Jµ is the only solution of this equation.

In the policy iteration algorithm, we start with a stationary policy µ0, and we generate a

sequence of new stationary policies µ1, µ2, Given the policy µt, we perform a policy evaluation

step, that computes Jµt(i), i = 1, . . . , n, as the solution of the (linear) system of equations

J = TµtJ [cf. Prop. 1(d)], or equivalently

J(i) =
n∑
j=1

pij
(
µt(i)

)(
g
(
i, µt(i), j

)
+ αJ(j)

)
, i = 1, . . . , n, (1.2)

in the n unknowns J(1), . . . , J(n) [cf. Prop. 1(d)]. We then perform a policy improvement step,

which computes a new policy µt+1 as

µt+1(i) = arg min
u∈U(i)

n∑
j=0

pij(u)
(
g(i, u, j) + Jµt(j)

)
, i = 1, . . . , n, (1.3)

or equivalently, as the policy satisfying

Tµt+1J
µt = TJµt .

3

The process is repeated with µt+1 used in place of µt, unless we have Jµt+1(i) = Jµt(i) for all

i, in which case the algorithm terminates with the policy µt. It is well-known that the policy

iteration algorithm generates an improving sequence of policies [that is, Jµt+1(i) ≤ Jµt(i) for all

i and t] and terminates with an optimal policy.

In this paper, we consider a new policy iteration method that is based on the notion of

temporal differences, and is primarily motivated by the case of large and complex problems

where the use of approximations is essential. We develop the theory of this method without

any approximation, and we describe how to embed it within a simulation-based context where

feature-based approximation architectures are used. We also relate the method to the TD(λ)

method due to Sutton [Sut88], and to the modified policy iteration method of Puterman [Put94].

Finally, we illustrate the use of our method in the training of a tetris playing program.

The methodology of this paper also has some conceptual value. It introduces the notion

of temporal differences into the mainstream DP framework, outside of the simulation-oriented

context used for TD(λ) methods. The parameter λ is interpreted, for the first time, as a discount

factor in the classical DP sense. As a result, the role of λ as a device for variance reduction in a

simulation-based policy evaluation process is highlighted and clarified.

2. TEMPORAL DIFFERENCES-BASED POLICY ITERATION

When the number of states is large, it is usually preferable to carry out the policy evaluation

step of the policy iteration method by using an iterative method such as value iteration. A

drawback of this approach, however, is that the value iteration algorithm may converge very

slowly. This is true for many discounted problems with a discount factor that is close to 1. We

are thus motivated to use an approach whereby the discount factor is effectively reduced in order

to accelerate the policy evaluation step.

The idea underlying the approach is that the discount factor can be reduced without altering

the cost-to-go of a given policy only if the expected value of the one-stage cost under that policy

is equal to 0. We thus introduce a transformation that asymptotically induces this one-stage cost

structure. The transformation is based on the notion of temporal differences (TD for short), which

is of major importance in the context of the simulation-based Neuro-Dynamic Programming

methods (see the survey paper [BBS95], the textbook [Ber95], or the monograph [BeT96] for

detailed discussions of these methods and references).

4

We now describe a policy iteration-like algorithm that maintains a cost function-policy pair

(Jt, µt). We can view Jt as an approximation to the cost-to-go vector Jµt . In the typical iteration,

given (Jt, µt), we calculate µt+1 by the policy improvement step

Tµt+1Jt = TJt. (2.1)

To calculate Jt+1, we define the TD associated with each transition (i, j) under µt+1:

dt(i, j) = g
(
i, µt+1(i), j

)
+ αJt(j)− Jt(i). (2.2)

We also consider a parameter λ from the range [0, 1]. We view dt(i, j) as the one-stage cost of

policy µt+1 for an αλ-discounted DP problem with the transition probabilities pij
(
µt+1(i)

)
of

the original problem, and we calculate the corresponding cost-to-go vector. This vector, denoted

by ∆t, has components given by

∆t(i) =
∞∑
m=0

E
[
(αλ)mdt(im, im+1)

∣∣ i0 = i
]
, ∀ i. (2.3)

The vector Jt+1 is then obtained by

Jt+1 = Jt + ∆t. (2.4)

We refer to the method as the λ-policy iteration method .

Note that when λ = 1, by using the TD definition (2.2) in the expression (2.3), we obtain

∆t(i) =
∞∑
m=0

E
[
αmdt(im, im+1)

∣∣ i0 = i
]

=
∞∑
m=0

E
[
αmg

(
im, µt+1(im), im+1

)
+ αm+1Jt(im+1)− αmJt(im)

∣∣ i0 = i
]

=
∞∑
m=0

E
[
αmg

(
im, µt+1(im), im+1

) ∣∣ i0 = i
]
− Jt(i)

= Jµt+1(i)− Jt(i).

Thus, by using Eq. (2.4), we see that Jt+1 = Jµt+1 , so the 1-policy iteration method coincides

with the standard policy iteration method . However, for λ < 1, the two methods are different,

and in fact it can be seen from Eqs. (2.2)-(2.4) that the 0-policy iteration method coincides with

the value iteration method for the original problem.

For an alternative interpretation of the iteration (2.3) and (2.4), consider a modified policy

iteration approach whereby, given µt+1 and Jt, we evaluate Jµt+1 approximately using M value

iterations starting with Jt, and let Ĵt,M be the resulting function; that is,

Ĵt,M = TMJt.

5

By using the definition (2.2) of TD, we have

Ĵt,M (i) = αMJt(iM) +
M−1∑
k=0

E
[
αkg

(
ik, µt+1(ik), ik+1

) ∣∣ i0 = i
]

= Jt(i) +
M−1∑
k=0

E
[
αkdt(ik, ik+1)

∣∣ i0 = i
]
.

(2.5)

Suppose now that λ is chosen from [0, 1), and that the number M of value iterations is random

and geometrically distributed with parameter λ; that is,

Prob(M = m) = (1− λ)λm−1, m = 1, 2, . . . (2.6)

Then, using Eqs. (2.3), (2.4), (2.5), and (2.6), we have

E[Ĵt,M (i)] = (1− λ)
∞∑
m=1

λm−1Jt,m(i)

= Jt(i) + (1− λ)
∞∑
m=1

λm−1

m−1∑
k=0

E
[
αkdt(ik, ik+1) | i0 = i

]
= Jt(i) +

∞∑
m=0

E
[
(αλ)mdt(im, im+1)

∣∣ i0 = i
]

= Jt(i) + ∆t(i)

= Jt+1(i).

Thus, Jt+1 can be interpreted as the expected outcome of a modified policy iteration that starts

with Jt and involves a number M of value iterations that is geometrically distributed with mean

E[M] = 1/(1− λ). This interpretation is helpful in understanding the nature of the convergence

properties of the λ-policy iteration method to be discussed.

The motivation for the λ-policy iteration method is that the αλ-discounted policy evaluation

step [cf. Eqs. (2.3)-(2.4)] can be much easier when λ < 1 than when λ = 1. In particular, when

value iteration is used for policy evaluation, the convergence rate is faster when λ < 1 than when

λ = 1. Similarly, when policy evaluation is performed using Monte-Carlo simulation, as in some

of the NDP methods to be discussed in the next section, the variance of the cost samples that

are averaged by simulation is typically smaller when λ < 1 than when λ = 1, as can be seen from

the definition of ∆t [the variance of the random TD terms in the summation is reduced with λ,

cf. Eq. (2.3)]. As a result, the number of cost samples that are required to evaluate by simulation

the cost function of a given policy within a given accuracy may be much smaller when λ < 1

than when λ = 1.

On the negative side, we will show shortly that the asymptotic convergence rate of the se-

quence Jt produced by the λ-policy iteration method deteriorates as λ becomes smaller. However,

6

this disadvantage may not be very significant within a context where cost function approximations

are used, as will be discussed later (see Sections 3 and 4).

The following proposition introduces a basic mapping that underlies the λ-policy iteration

method, and provides some basic results. The proposition applies to both cases where α < 1 and

α = 1.

Proposition 2: Given λ ∈ [0, 1), Jt, and µt+1, consider the mapping Mt defined by

MtJ = (1− λ)Tµt+1Jt + λTµt+1J. (2.7)

Assume that Tµt+1 is a contraction mapping of modulus β with respect to some norm ‖ · ‖.

(a) The mapping Mt is a contraction mapping of modulus βλ with respect to the norm ‖ · ‖.

(b) For any integer m ≥ 1 and vector J , there holds

Mm
t J = (1− λ)

(
Tµt+1Jt + λT 2

µt+1Jt + · · ·+ λm−1Tmµt+1Jt
)

+ λmTmµt+1J. (2.8)

(c) The vector Jt+1 generated next by the λ-policy iteration method [cf. Eqs. (2.3)-(2.4)] is the

unique fixed point of Mt. Furthermore,

Jt+1 = (1− λ)
∞∑
m=0

λmTm+1
µt+1 Jt. (2.9)

Proof: (a) For any two vectors J and J , using the definition (2.7) of Mt, we have

‖MtJ −MtJ‖ =
∥∥λ(Tµt+1J − Tµt+1J)

∥∥ = λ‖Tµt+1J − Tµt+1J‖ ≤ βλ‖J − J‖.

(b) The relation (2.8) holds for m = 1 by the definition (2.7) of Mt. It can be proved for all

m ≥ 1 by using a straightforward induction. In particular, we have

Mm+1
t J = Mt(Mm

t J) = (1− λ)Tµt+1Jt + λTµt+1(Mm
t J),

and after the expression (2.8) is used in the above equation, we obtain Eq. (2.8) with m replaced

by m+ 1.

(c) From the definition (2.3)-(2.4) of Jt+1, we have

Jt+1 − Jt = dt + αλPµt+1(Jt+1 − Jt), (2.10)

where Pµt+1 is the transition probability matrix corresponding to the policy µt+1, and dt is the

vector of expected TD, with components given by

dt(i) =
∑
j

pij
(
µt+1(i)

)
dt(i, j), ∀ i.

7

Using the definition (2.2) of the TD, we have

dt = Tµt+1Jt − Jt, (2.11)

so Eq. (2.10) yields
Jt+1 = Tµt+1Jt + αλPµt+1(Jt+1 − Jt)

= Tµt+1Jt + λ(Tµt+1Jt+1 − Tµt+1Jt)

= (1− λ)Tµt+1Jt + λTµt+1Jt+1

= MtJt+1.

Thus, Jt+1 is the fixed point of Mt. The expression (2.9) follows from Eq. (2.8) by taking the

limit as m→∞. Q.E.D.

The following proposition shows the validity of the λ-policy iteration method and provides

its convergence rate.

Proposition 3: Assume that λ ∈ [0, 1), and let (Jt, µt) be the sequence generated by the

λ-policy iteration algorithm. Then Jt converges to J∗. Furthermore, for all t greater than some

index t, we have

‖Jt+1 − J∗‖∞ ≤
α(1− λ)
1− αλ

‖Jt − J∗‖∞, (2.12)

where ‖ · ‖∞ denotes the maximum norm.

Proof: Let us first assume that TJ0 ≤ J0. We show by induction that for all t, we have

J∗ ≤ TJt+1 ≤ Jt+1 ≤ TJt ≤ Jt. (2.13)

To this end, we fix t and we assume that TJt ≤ Jt. We will show that J∗ ≤ TJt+1 ≤ Jt+1 ≤ TJt,

and then Eq. (2.13) will follow from the hypothesis TJ0 ≤ J0.

Using the fact Tµt+1Jt = TJt [cf. Eq. (2.1)] and the definition of Mt [cf. Eq. (2.7)], we have

MtJt = Tµt+1Jt = TJt ≤ Jt.

It follows from the monotonicity of Tµt+1 , which implies monotonicity of Mt, that for all positive

integers m, we have Mm+1
t Jt ≤Mm

t Jt ≤ TJt ≤ Jt, so by taking the limit as m→∞, we obtain

Jt+1 ≤ TJt ≤ Jt. (2.14)

From the definition of Mt, we have

MtJt+1 = Tµt+1Jt + λ(Tµt+1Jt+1 − Tµt+1Jt)

= Tµt+1Jt+1 + (1− λ)(Tµt+1Jt − Tµt+1Jt+1),

8

Using the already shown relation Jt−Jt+1 ≥ 0 and the monotonicity of Tµt+1 , we obtain Tµt+1Jt−

Tµt+1Jt+1 ≥ 0, so that

Tµt+1Jt+1 ≤MtJt+1.

Since MtJt+1 = Jt+1, it follows that

TJt+1 ≤ Tµt+1Jt+1 ≤ Jt+1. (2.15)

Finally, the above relation and the monotonicity of Tµt+1 imply that for all positive integers

m, we have Tmµt+1Jt+1 ≤ Tµt+1Jt+1, so by taking the limit as m→∞, we obtain

J∗ ≤ Jµt+1 ≤ Tµt+1Jt+1. (2.16)

From Eqs. (2.14)-(2.16), we see that the induction proof of Eq. (2.13) is complete.

From Eq. (2.13), it follows that the sequence Jt converges to some limit Ĵ with J∗ ≤ Ĵ .

Using the definition (2.7) of Mt, and the facts Jt+1 = MtJt+1 and Tµt+1Jt = TJt, we have

Jt+1 = MtJt+1 = TJt + λ(Tµt+1Jt+1 − Tµt+1Jt),

so by taking the limit as t → ∞ and by using the fact Jt+1 − Jt → 0, we obtain Ĵ = T Ĵ . Thus

Ĵ is a solution of Bellman’s equation, and it follows that Ĵ = J∗.

To show the result without the assumption TJ0 ≤ J0, note that we can replace J0 by a

vector Ĵ0 = J0+se, where e = (1, . . . , 1) is the unit vector and s is a scalar that is sufficiently large

so that we have T Ĵ0 ≤ Ĵ0; it can be seen that for any scalar s ≥ (1−α)−1 maxi
(
TJ0(i)− J0(i)

)
,

the relation T Ĵ0 ≤ Ĵ0 holds. Consider the λ-policy iteration algorithm started with (Ĵ0, µ0), and

let (Ĵt, µ̂t) be the generated sequence. Then it can be verified by induction that for all t we have

Ĵt − Jt =
(
α(1− λ)
1− αλ

)t
s, µ̂t = µt.

Since Ĵt − Jt → 0 and we have already shown that Ĵt → J∗, it follows that Jt → J∗ as well.

Since Jt → J∗, it follows that for all t larger than some index t, µt+1 is an optimal policy,

so that Tµt+1J
∗ = TJ∗ = J∗. By using this fact, Eq. (2.9), and the linearity of Tµt+1 , we obtain

for all t ≥ t,

‖Jt+1 − J∗‖∞ =

∥∥∥∥∥(1− λ)
∞∑
m=0

λmTm+1
µt+1 Jt − J∗

∥∥∥∥∥
∞

= (1− λ)

∥∥∥∥∥
∞∑
m=0

λmTm+1
µt+1 (Jt − J∗)

∥∥∥∥∥
∞

≤ (1− λ)
∞∑
m=0

λmαm+1 ‖Jt − J∗‖∞

=
α(1− λ)
1− αλ

‖Jt − J∗‖∞.

Q.E.D.

9

Extension to Stochastic Shortest Path Problems

Let us consider the extension of our results to undiscounted problems of the stochastic shortest

path type. Here, we assume that there is no discounting (α = 1) and, to make the cost-to-go

meaningful, we assume that there exists a cost-free termination state, denoted by 0. Once the

system reaches that state, it remains there at no further cost, that is,

p00(u) = 1, g(0, u, 0) = 0, ∀ u ∈ U(0).

We are interested in problems where reaching the termination state is inevitable, at least under

an optimal policy. Thus, the essence of the problem is how to reach the termination state with

minimum expected cost.

In order to guarantee the inevitability of termination under an optimal policy, we introduce

certain conditions that involve the notion of a proper policy ; that is, a stationary policy that

leads to the termination state with probability one, regardless of the initial state.

A stationary policy µ is said to be proper if, using this policy, there is positive probability

that the termination state will be reached after at most n stages, regardless of the initial state,

that is, if

ρµ = max
i=1,...,n

P
(
in 6= 0 | i0 = i, µ

)
< 1. (2.17)

A stationary policy that is not proper is said to be improper .

Throughout this paper and whenever we are dealing with stochastic shortest path problems,

we assume the following.

Assumption 1: There exists at least one proper policy. Furthermore, for every improper policy

µ, the corresponding cost-to-go Jµ(i) is infinite for at least one state i.

The theory of stochastic shortest path problems is developed in [BeT89] and [BeT91] (see

[Ber95] and [BeT96] for detailed treatments). It is shown in these references that the results of

Prop. 1 and the method of policy iteration have direct counterparts for stochastic shortest path

problems under Assumption 1.

The convergence and convergence rate of Prop. 3 can be generalized so that it applies to the

stochastic shortest path case. In particular, the proof of Eq. (2.12) can be adapted to show that

Jt converges to J∗ under Assumption 1 and the additional assumption TJ0 ≤ J0. Furthermore,

if ‖ · ‖ is a norm with respect to which Tµ∗ is a contraction of modulus β for all optimal policies

µ∗, we have

‖Jt+1 − J∗‖ ≤
β(1− λ)
1− βλ

‖Jt − J∗‖

10

for all sufficiently large t. In the case of a stochastic shortest path problem where all policies

are proper, the above relation holds with ‖ · ‖ being a weighted maximum norm with respect to

which T and all Tµ are contractions (see [BeT96], Section 2.2).

3. APPROXIMATE AND OPTIMISTIC λ-POLICY ITERATION

The method of this paper was motivated by large-scale problems where simulation-based ap-

proximations of the cost-to-go function become interesting, i.e., the neuro-dynamic programming

(NDP for short) or reinforcement learning context (see e.g., [BBS95], [BeT96]). When policy

evaluation is performed using Monte-Carlo simulation, the variance of the cost samples that are

averaged by simulation is typically smaller when λ < 1 than when λ = 1, as can be seen from

the definition of ∆t [cf. Eq. (2.3)]. As a result, the number of cost samples that are required

to evaluate by simulation the cost-to-go of a given policy within a given accuracy may be much

smaller when λ < 1 than when λ = 1. On the other hand, the disadvantage of the slower conver-

gence rate for smaller values of λ may not be very significant. The reason is that when the policy

evaluation step cannot be performed with high accuracy, a reasonable practical objective is to

obtain a policy whose cost is within the best “achievable” tolerance from the optimum, rather

than to obtain the optimal cost-to-go function and an optimal policy. Under these circumstances,

the asymptotic rate of convergence of Jt may not be crucial, and using λ < 1 often requires a

comparable number of policy iterations to attain the same performance level as using λ = 1. For

instance, this happens in the tetris example that we discuss in Section 4.

An approximate version of the λ-policy iteration method for a stochastic shortest path

problem works as follows. We introduce a linear approximation architecture of the general form

J̃(i, r) = r(0) +
K∑
k=1

r(k)φk(i), (3.1)

where r(k), k = 0, 1, . . . ,K, are the components of the parameter vector r, and φk are fixed, easily

computable basis functions. Each value of r provides an approximation J̃(i, r) of the optimal

cost-to-go function. Let rt be the parameter vector after t policy updates, and let µt be the

greedy policy with respect to rt; that is,

µt(i) = arg min
u∈U(i)

n∑
j=0

pij(u)
(
g(i, u, j) + J̃(j, rt)

)
, ∀ i.

11

We then simulate a batch of M trajectories, and the corresponding parameter vector rt+1 is

obtained as

rt+1 = arg min
r

M∑
m=1

Nm∑
k=0

(
J̃(im,k, r)− J̃(im,k, rt)

−
Nm−1∑
s=k

λs−kdt(im,s, im,s+1)
)2

,

(3.2)

where (im,0, im,1, . . . , im,Nm−1, im,Nm) is the sequence of states comprising the mth trajectory in

the batch, with im,Nm being equal to the termination state, and

dt(im,s, im,s+1) = g
(
im,s, µt(im,s), im,s+1

)
+ J̃(im,s+1, rt)− J̃(im,s, rt)

are the corresponding temporal differences with J̃(im,Nm , rt) being equal to the terminal cost 0.

One may also consider optimistic variants of the λ-policy iteration method, where a param-

eter vector r̂t is calculated by solving the minimization problem in Eq. (3.2), with the number M

of games in the batch being relatively small. The new parameter vector rt+1 is then computed

by interpolation between rt and r̂t, i.e.,

rt+1 = rt + γt(r̂t − rt), (3.3)

where γt is a stepsize that satisfies 0 < γt ≤ 1 and is diminishing with t. These variants may

be viewed as incremental algorithms that resemble on-line versions of TD(λ). We note that

there are similar variants of the optimistic λ-policy iteration method with varying degrees of

incrementalism, which use multiple simulated trajectories at each iteration, and there are also

discounted cost variants.

Consider now the case where only one trajectory (i0, i1, . . . , iN−1) is generated per policy

update (M = 1). Given rt, suppose that the least squares minimization (3.2) is performed

approximately using a single gradient iteration. Then we have

rt+1 = rt + γt

N−1∑
k=0

∇J̃(ik, rt)
N−1∑
s=k

λs−kdt(is, is+1), (3.4)

where γt is the stepsize. It can also be verified that Eq. (3.4) is identical to the TD(λ) iteration

of Sutton [Sut88]. Thus, we can view TD(λ) as an approximate version of the λ-policy iteration

method where the least squares minimization (3.2) is approximated using a single trajectory, and

a single gradient iteration.

We believe that because TD(λ) is subject to the potential sources of unreliability of gradient-

like methods (ill-conditioning, difficulty with choosing the stepsize γt), it may be inherently less

12

robust than the approximate λ-policy iteration (3.2), which can be performed using efficient and

numerically stable linear algebra packages.

On the other hand, if a nonlinear approximation architecture is used in place of Eq. (3.1),

one must solve a nonlinear least squares problem in Eq. (3.2), and much of the potential advantage

over TD(λ) is lost. We also mention one more theoretical advantage of TD(λ). It is possible

to show that if the architecture is linear, the policy is fixed, and some additional technical

conditions are satisfied, TD(λ) is a convergent algorithm (see [BeT96], Section 6.3). By contrast,

no comparable result has been shown for the iteration (3.2), even when the policy is kept fixed.

4. APPLICATION TO TETRIS

Tetris is a popular video game played on a two-dimensional grid. Each square in the grid can

be full or empty, making up a “wall of bricks” with “holes.” The squares fill up as objects of

different shapes fall from the top of the grid and are added to the top of the wall, giving rise to

a “jagged top.” Each falling object can be moved horizontally and can be rotated by the player

in all possible ways, subject to the constraints imposed by the sides of the grid. There is a finite

set of standard shapes for the falling objects. The game starts with an empty grid and ends

when a square in the top row becomes full and the top of the wall reaches the top of the grid.

However, when a row of full squares is created, this row is removed, the bricks lying above this

row move one row downward, and the player scores a point. (More than one row can be created

and removed in a single step, in which case the number of points scored by the player is equal

to the number of rows removed.) The player’s objective is to maximize the score attained (total

number of rows removed) up to termination of the game.

It has been shown that for every policy the game terminates with probability 1 (see [Bur97]),

so we can model the problem of finding an optimal tetris playing strategy as a stochastic shortest

path problem, where Assumption 1 is satisfied. The control, denoted by u, is the horizontal

positioning and rotation applied to the falling object. The state consists of two components:

(1) The board position, that is, a binary description of the full/empty status of each square,

denoted by i.

(2) The shape of the current falling object, denoted by y.

As soon as the most recent object has been placed, the new component y is generated

13

according to a probability distribution p(y), independently of the preceding history of the game.

Therefore (as shown in Example 2.2 of [BeT96]), it is possible to use the reduced form of Bellman’s

equation involving a reward-to-go vector Ĵ that depends only on the component i of the state.

This equation has the form

Ĵ(i) =
∑
y

p(y) max
u

[
g(i, y, u) + Ĵ

(
f(i, y, u)

)]
, ∀ i,

where g(i, y, u) and f(i, y, u) are the number of points scored (rows removed), and the next board

position, respectively, when the state is (i, y) and control u is applied.

Unfortunately, the number of states in the tetris problem is extremely large. It is roughly

equal to m2hw, where m is the number of different shapes of falling objects, and h and w are

the height and width of the grid, respectively. In particular, for the reasonable numbers m = 7,

h = 20, and w = 10 we have over 1061 states. Thus it is essential to use approximations. The

control selection methods of NDP use a scoring function, which can be viewed as an approximation

to the optimal reward function. In particular, the NDP methods that we will discuss later,

construct scoring functions that evaluate a tetris position based on some characteristic features

of the position. Such features are easily recognizable by experienced players, and include the

current height of the wall, the presence of “holes” and “glitches” (severe irregularities) in the

first few rows, etc.

We have trained a linear feature-based approximation architecture using approximate and

optimistic λ-policy iteration. After some experimentation, the following features were used:

(a) The height hk of the kth column of the wall. There are w such features, where w is the

wall’s width.

(b) The absolute difference |hk−hk+1| between the heights of the kth and the (k+1)st column,

k = 1, . . . , w − 1.

(c) The maximum wall height maxk hk.

(d) The number of holes L in the wall, that is, the number of empty positions of the wall that

are surrounded by full positions.

Thus, there are 2w+ 1 features, which together with a constant offset, require 2w+ 2 weights in

a linear architecture of the form

J̃(i, r) = r(0) +
w∑
k=1

r(k)hk +
w−1∑
k=1

r(k + w)|hk − hk+1|

+ r(2w) max
k

hk + r(2w + 1)L.

14

We tried an approximate version of the λ-policy iteration method. In particular, let rt be

the weight vector after t iterations, and let µt be the greedy policy with respect to rt. The policy

µt is evaluated using a batch of M (in the order of 100) games, and the corresponding weight

vector rt+1 is obtained as

rt+1 = arg min
r

M∑
m=1

Nm∑
k=0

(
J̃(im,k, r)− J̃(im,k, rt)

−
Nm−1∑
s=k

λs−kd(im,s, im,s+1)
)2

,

(4.1)

where (im,0, im,1, . . . , im,Nm−1, im,Nm) is the sequence of states comprising the mth game in the

batch, with im,Nm being equal to the termination state, and

d(im,s, im,s+1) = g
(
im,s, µt(im,s), im,s+1

)
+ J̃(im,s+1, rt)− J̃(im,s, rt)

are the corresponding temporal differences with J̃(im,Nm , rt) being equal to the terminal value

0. All games were started from the empty board position (things did not change much when the

initial board position was chosen more randomly).

We also tried an optimistic version of the λ-policy iteration method, whereby a weight

vector r̂t was calculated by solving the minimization problem in Eq. (4.1), with the number M

of games in the batch being relatively small (in the order of 5). The new weight vector rt+1 was

then computed by interpolation between rt and r̂t, i.e.,

rt+1 = rt + γt(r̂t − rt), (4.2)

where γt is a stepsize that satisfies 0 < γt ≤ 1 and is diminishing with t.

We now describe some of the results of the computational experimentation. The wall width

w was taken to be 10, the wall height was taken to be 20, and the types of falling objects were the

7 possible shapes that consist of 4 pieces. Each falling object was chosen with equal probability

from the 7 possible shapes, independently of the shapes of the preceding objects. The starting

set of weights in our experiments was r(2w) = 10, r(2w + 1) = 1, and r(k) = 0 for k < 2w (this

set of weights was derived from those used by Van Roy [Van95]). With the weights fixed at these

initial values, the corresponding greedy policy scores in the low tens.

The approximate λ-policy iteration method quickly gave playing policies that score in the

thousands, except when λ = 1, in which case the method failed to make satisfactory progress. We

attribute the failure for λ = 1 to the high variance of the game scores. Generally, the maximum

score achieved depended on the value of λ. Table 1 gives some illustrative results with different

values of λ. Figure 1 shows the sequence of tetris scores obtained during training for the case

15

where λ = 0, λ = 0.3, λ = 0.5, and λ = 0.7. An interesting and somewhat paradoxical observation

is that a high performance is achieved after relatively few policy iterations, but the performance

gradually drops significantly. We have no explanation for this intriguing phenomenon, which

occurred with all of the successful methods that we tried. In particular, the weights corresponding

to the high scoring policies did not have any distinguising characteristics relative to the weights

corresponding to the policies obtained at convergence.

λ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Score 2909 2818 2730 2968 3014 2786 3183 1941 2103 1054

Table 1: Average scores of the highest scoring policies obtained using differ-

ent values of λ after 15 policy/weight updates, with 100 games between policy

updates. Each data point is the average of the scores of 100 games.

0 2 4 6 8 10 12 14 16
0

2000

4000

l =
 0

.3

0 2 4 6 8 10 12 14 16
0

2000

4000

l =
 0

.5

0 2 4 6 8 10 12 14 16
0

1000

2000

Policy iteration number

l =
 0

.7

0 2 4 6 8 10 12 14 16
0

2000

4000

l =
 0

Average score of Tetris player with Approximate Policy Iteration

max = 2909.2

max = 2968.5

max = 2786.4

max = 1941.5

Figure 1: Sequence of tetris scores of the policies generated using approximate λ-policy iteration, for

four different values of λ. Each data point is the average of the scores of 100 games.

The optimistic version of the method produced similar results to the nonoptimistic version.

16

Figure 2 shows the sequence of tetris scores obtained during training for the case where 5 games

were used per policy iteration and λ = 0.6. The stepsize used was of the form a/(b+ t), where t is

the policy index. The proper value of a strongly depends on λ. In particular, smaller values of a

are required for λ close to 1, since the weight update increments tend to be larger as λ increases.

On the whole, however, it was not difficult to obtain reasonable stepsize parameter values by

trial and error.

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Policy iteration number

av
er

ag
e

sc
or

e

Average score of Tetris player with Optimistic Policy Iteration

max = 4470.4

Figure 1: Sequence of tetris scores of the policies generated using optimistic λ-policy iteration, where

λ = 0.6. Each data point is the average of the scores of 5 games. The cumulative average score is also

shown.

We finally mention two additional approaches that were used for training tetris players. The

first was a policy iteration approach, where the weights of the architecture were updated using

the TD(λ) method of Sutton [Sut88]. In this approach we kept the policy fixed for a substantial

number of games (of the order of a 100), during which we evaluated approximately the cost-

to-go of the policy using TD(λ). The policy evaluation, once completed, was used to define an

“improved” policy, in the spirit of policy iteration. We used the same linear architecture as for the

λ-policy iteration method. For a fixed policy, it is possible to show that the implementation of the

TD(λ) method that we used is convergent for our problem (see [BeT96], Section 6.3.4). Despite

17

this fact, the TD(λ) approach ran into serious difficulties, typically failing to make substantial

progress, and was abandoned in favor of the much better performing λ-policy iteration method.

This failure can probably be attributed to difficulties with large simulation noise and/or the

ill-conditioning to which gradient-like methods such as TD(λ) are susceptible.

In the second approach, the problem was altered by imposing a cost structure that provides

an incentive for not losing quickly rather than for achieving a high score. In particular, the

objective was reformulated so that maximization of the average game score, was replaced by

minimization of the total number of wall height increases in the course of placing the next N

falling objects, where N is a fixed integer (values between 10 and 100 were used). Thus, for a

given stage where the maximum wall height changes from a value of h to a value of h, the cost is

max{0, h− h}. Also, to discourage termination, a fixed terminal cost G was introduced (values

between 5 and 20 were used). Thus the problem was transformed to a stochastic shortest path

problem, where the termination occurs in at most N stages. The advantage of this formulation

is that the variance of the cost samples is significantly reduced. The two problem formulations

are substantially different, but it was reasoned that a good policy under one formulation should

also be good for the other. Note that it is essential to fix the number of stages within which

to count height increases, because otherwise a good tetris playing policy, which achieves a high

score, would perform very poorly in terms of number of height increases over a long horizon.

Based on the alternative truncated horizon problem formulation just described, an approx-

imate and an optimistic version of the λ-policy iteration method of Section 3 were tried. The

results obtained were similar but somewhat more favorable than the ones presented in Table 1.

This occurred uniformly for all values of λ. The method also worked for λ = 1 and attained a

score of 1015 using 100 games between policy updates, and 1637 using 300 games between policy

updates. A maximum score of 3554 was obtained for λ = 0.3 (using 100 games between policy

updates), which should be compared with the best score of 3183 given in Table 1 (λ = 0.6). We

were again unable to get TD(λ) to work for the truncated horizon problem formulation.

5. REFERENCES

[BBS95] Barto, A. G., Bradtke, S. J., and Singh, S. P., 1995. “Learning to Act Using Real-Time

Dynamic Programming,” Artificial Intelligence, Vol. 72, pp. 81-138.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., 1989. Parallel and Distributed Computation:

18

Numerical Methods, Prentice-Hall, Englewood Cliffs, N. J.

[BeT91] Bertsekas, D. P., and Tsitsiklis, J. N., 1991. “An Analysis of Stochastic Shortest Path

Problems,” Mathematics of Operations Research, Vol. 16, pp. 580-595.

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming, Athena

Scientific, Belmont, MA.

[Ber95] Bertsekas, D. P., 1995. Dynamic Programming and Optimal Control, Vols. I and II,

Athena Scientific, Belmont, MA.

[Bur97] Burgiel, H., 1997. “How to Lose in Tetris,” Preprint, The Geometry Center, Minneapolis,

MN.

[Put94] Puterman, M. L., 1994. Markovian Decision Problems, Wiley, N. Y.

[Ros83] Ross, S. M., 1983. Introduction to Stochastic Dynamic Programming, Academic Press,

N. Y.

[Sut88] Sutton, R. S., 1988. “Learning to Predict by the Methods of Temporal Differences,”

Machine Learning, Vol. 3, pp. 9-44.

[Van95] Van Roy, B., 1995. “Feature-Based Methods for Large Scale Dynamic Programming,”

Lab. for Info. and Decision Systems Report LIDS-TH-2289, Massachusetts Institute of Technol-

ogy, Cambridge, MA.

19

