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Infinite Horizon Deterministic Discrete-Time Optimal Control

Systemuk = µk(xk) xk

) µk

xk+1 = f(xk, uk)
“Destination” t

t (cost-free and absorbing) :

An optimal control/regulation problem
or

An arbitrary space shortest path problem

Cost: g(xk, uk) ≥ 0 VI converges to

System: xk+1 = f (xk , uk ), k = 0, 1, where xk ∈ X , uk ∈ U(xk ) ⊂ U

Policies: π = {µ0, µ1, . . .}, µk (x) ∈ U(x), ∀ x

Cost g(x , u) ≥ 0. Absorbing destination: f (t , u) = t , g(t , u) = 0, ∀ u ∈ U(t)

Minimize over policies π = {µ0, µ1, . . .}

Jπ(x0) =
∞∑

k=0

g
(
xk , µk (xk )

)
where {xk} is the generated sequence using π and starting from x0

J∗(x) = infπ Jπ(x) is the optimal cost function

Classical example: Linear quadratic regulator problem; t = 0

xk+1 = Axk + Buk , g(x , u) = x ′Qx + u′Ru
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Optimality vs Stability - A Loose Connection

Loose definition: A stable policy is one that drives xk → t , either asymptotically or
in a finite number of steps

Loose connection with optimization: The trajectories {xk} generated by an optimal
policy satisfy J∗(xk ) ↓ 0 (J∗ acts like a Lyapunov function)

Optimality does not imply stability (Kalman, 1960)

Classical DP for nonnegative cost problems (Blackwell, Strauch, 1960s)
J∗ solves Bellman’s Eq.

J∗(x) = inf
u∈U(x)

{
g(x , u) + J∗

(
f (x , u)

)}
, x ∈ X , J∗(t) = 0,

and is the “smallest" (≥ 0) solution (but not unique)

If µ∗(x) attains the min in Bellman’s Eq., µ∗ is optimal

The value iteration (VI) algorithm

Jk+1(x) = inf
u∈U(x)

{
g(x , u) + Jk

(
f (x , u)

)}
, x ∈ X ,

is erratic (converges to J∗ under some conditions if started from 0 ≤ J0 ≤ J∗)

The policy iteration (PI) algorithm is erratic
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A Deterministic Shortest Path Problem

a 1 2

t b Destination
) Cost 0

a destination t

Bellman’s equation

{ }

Optimal cost over the stable policies J+(1) = b

x c Cost 0 Cost

x c Cost = b > 0 Cost Optimal cost J∗(1) = 0

(1) = 0 J(1) = min
{
b, J(1)

}
, J(t) = 0

Set of solutions ≥ 0 of Bellman’s Eq. with J(t) = 0

J∗(1) = 0 (1) = 0 J+(1) = b JOptimal cost J(1)
= 0

0
Solutions of Bellman’s Eq.

Algorithmic difficulties

The VI algorithm is attracted to J+ if started with J0(1) ≥ J+(1)

The PI algorithm is also erratic
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A Linear Quadratic Problem (t = 0)

System: xk+1 = γxk + uk (unstable case, γ > 1). Cost: g(x ,u) = u2

J∗(x) ≡ 0, optimal policy: µ∗(x) ≡ 0 (which is not stable)

Bellman Eq.→ Riccati Eq. P = γ2P/(P + 1) - J∗(x) = P∗x2, P∗ = 0 is a solution

Riccati Equation Iterates

γ2P
P+1

P0 Riccati Equation Iterates P PP1 P245◦

Quadratic cost functions

Quadratic cost functions J(x) = Px2

Region of solutions of Bellman’s Eq. P ∗ = 0 = 0 P̂ = γ2 − 1

A second solution P̂ = γ2 − 1: Ĵ(x) = P̂x2

Ĵ is the optimal cost over the stable policies

VI and PI typically converge to Ĵ (not J∗!)

Stabilization idea: Use g(x , u) = u2 + δx2. Then J∗δ (x) = P∗δ x2 with limδ↓0 P∗δ = P̂
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Summary of Analysis I: p-Stable Policies

Idea: Add a “small" perturbation to the cost function to promote stability
Add to g a δ-multiple of a “forcing" function p with p(x) > 0 for x 6= t , p(t) = 0

The resulting “perturbed" cost function of π is

Jπ,δ(x0) = Jπ(x0) + δ
∞∑

k=0

p(xk ), δ > 0

A policy π is called p-stable if

Jπ,δ(x0) <∞, ∀ x0 with J∗(x0) <∞

The role of p:
I Ensures that p-stable policies drive xk to t (p-stable implies p(xk )→ 0)
I Differentiates stable policies by “speed of stability" (e.g., p(x) = ‖x‖ vs p(x) = ‖x‖2)

The case p(x) ≡ 1 for x 6= t is special

Then the p-stable policies are the terminating policies (reach t in a finite number of
steps for all x0 with J∗(x0) <∞)

The terminating policies are the “most stable" (they are p-stable for all p)
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Summary of Analysis II: Restricted Optimality

Ĵp(x): optimal cost Jπ over the p-stable π, starting at x

J+(x): optimal cost Jπ over the terminating π, starting at x

(0) = 0 J JJ J∗ Ĵ J+

Region of solutions of Bellman’s Eq.
Region of solutions of Bellman’s Eq.

Ĵp

J∗, Ĵp, and J+ are solutions of Bellman’s Eq. with J∗ ≤ Ĵp ≤ J+

VI → J+ from J0 ≥ J+VI → Ĵp from J0 ∈ Wp

Favorable case is when J∗ = J+. Then:
J∗ is the unique solution of Bellman’s Eq.

VI and PI converge to J∗ from above
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Summary of Analysis III: p-Convergence Regions for VI

Ĵ J+

Ĵp
Ĵp′

p Wp

t W+

VI converges to J+

from within W+

VI converges to Ĵp
from within Wp

Wp′

VI converges to Ĵ ′
p from within

from within Wp′

W+ =
{
J | J ≥ J+, J(t) = 0

}

Wp: Functions J ≥ Ĵp with J

with J(xk) → 0 for all p-stable π with J(xk) → 0 for all p′-stable π

Wp′ : Functions J ≥ Ĵp′ with

Case J∗ = J+: VI converges to J∗ from J0 ≥ J∗ (or from J0 ≥ 0 under mild conditions)
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Original Optimal Control Problem

System: xk+1 = f (xk , uk ), k ≥ 0, where xk ∈ X , uk ∈ U(xk ) ⊂ U

Cost per stage g(x , u) ≥ 0

Destination t : f (t , u) = t , g(t , u) = 0, ∀ u ∈ U(t) (absorbing, cost free)

Policies: π = {µ0, µ1, . . .}, µk (x) ∈ U(x), ∀ x

Minimize over π

Jπ(x0) =
∞∑

k=0

g
(
xk , µk (xk )

)

Bertsekas (M.I.T.) Stable Optimal Control and Semicontractive DP 12 / 29



Composite Optimization with an Added Stability Objective

We introduce a forcing function p with

p(x) > 0, ∀ x 6= t , p(t) = 0

The δ-perturbed problem (δ > 0) for a given p
This is the same problem as the original, except the cost per stage is

g(x , u) + δp(x)

Composite/perturbed objective

Jπ,δ(x0) = Jπ(x0) + δ
∞∑

k=0

p(xk )

J∗δ : the optimal cost function of the δ-perturbed problem

We have that J∗δ solves the δ-perturbed Bellman Eq.:

J(x) = inf
u∈U(x)

{
g(x , u) + δp(x) + J

(
f (x , u)

)}
, x ∈ X
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p-Stable Policies

A policy π is called p-stable if

Jπ,δ(x) <∞, ∀ x with J∗(x) <∞

Ĵp(x): optimal cost starting from x and using a p-stable policy

Line of analysis:

p-unstable policies are “ignored" in the δ-perturbed problem

J∗δ is the optimal cost over stable policies plus O(δ) perturbation, so

lim
δ↓0

J∗δ = Ĵp

J∗δ can be used to approximate Ĵp

Ĵp solves the unperturbed Bellman Eq. (since J∗δ solves the perturbed version)
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Terminating Policies

The forcing function p̄(x) = 1 for all x 6= t is special

Then the p̄-stable policies are the terminating policies (reach t in a finite number of
steps for all relevant x0)

A terminating policy is p-stable with respect to every p

A hierarchy of policies and restricted optimal cost functions

J∗(x): optimal cost starting from x

Ĵp(x): optimal cost starting from x and using a p-stable policy

J+(x) = Ĵ p̄(x): optimal cost starting from x and using a terminating policy

(0) = 0 J JJ J∗ Ĵ J+≥ Ĵp

Region of restricted optimal cost functions
Region of restricted optimal cost functions
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Result for the Favorable Case: J∗ = J+

(0) = 0 J J
VI behaves well VI behaves well
VI behaves well PI behaves well

Ĵ J∗ = J+

Unique Solution of Bellman’s Eq.
Unique Solution of Bellman’s Eq.

True in the linear quadratic case under the classical controllability/observability
conditions (even though there is no optimal terminating policy)

Generally, for J∗ = J+ there must exist at least one terminating policy (a form of
controllability)

Main Result (DPB 2015)

Let J =
{

J ≥ 0 | J(t) = 0
}

J∗ is the unique solution of Bellman’s Eq. within J
A sequence {Jk} generated by VI starting from J0 ∈ J and J0 ≥ J∗ converges to
J∗. (Under a “compactness condition" converges to J∗ starting from every J0 ∈ J .)

A sequence {Jµk } generated by PI converges to J∗. (An optimistic version of PI
also works.)
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Result for the Unfavorable Case: J∗ 6= J+

(0) = 0 J JJ J∗ Ĵ J+

Region of solutions of Bellman’s Eq.
Region of solutions of Bellman’s Eq.

Ĵp

J∗, Ĵp, and J+ are solutions of Bellman’s Eq. with J∗ ≤ Ĵp ≤ J+

VI → J+ from J0 ≥ J+VI → Ĵp from J0 ∈ Wp

Assumption: Ĵp(x) <∞ for all x with J∗(x) <∞ (true if there exists a p-stable policy)

Main result (DPB 2017)
Let
Wp =

{
J ≥ Ĵp | J(xk )→ 0, ∀ {xk} generated from (π, x0) w/ π: p-stable, J∗(x0) <∞

}
Wp can be viewed as the set of Lyapounov functions for the p-stable policies

Ĵp is the unique solution of Bellman’s Eq. withinWp

J+ is the unique solution of Bellman’s Eq. withinW+ =
{

J ≥ J+ | J(t) = 0
}

A sequence {Jk} generated by VI starting from J0 ∈ Wp converges to Ĵp

There are versions of PI that converge to Ĵp
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Optimal Stopping with State Space <n, t = 0

(0) = 0

x γ

‖ (1 − γ)c

c Cost ‖x‖ (1

‖ γx (1

x c Cost c Cost

At state x 6= 0 we have two choices
Stop (cost c > 0, move to 0)

Continue [cost ‖x‖, move to γx , where γ ∈ (0, 1)]

Bellman’s Eq.: J(x) = min
{

c, ‖x‖+ J(γx)
}
, x 6= 0

All policies are stable! The solutions of Bellman’s equation are:

J∗(x) = min
{

c, 1
1−γ ‖x‖

}
and J+(x) = c for all x 6= 0

An infinity of solutions in between, such as J(x) = J∗(x) for x in some cone and
J(x) = J+(x) for x in the complementary cone
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Case X = <: Four Solutions of Bellman’s Eq (J∗, J+, two symmetric
versions of Ĵ)

(0) = 0 (0) = 0 (0) = 0x γ x γ x γ

) J+(x)

x c Cost x c Cost x c Cost

Ĵ(x)) J∗(x) J

Regions of Convergence of VI

If limx→0 J0(x) = 0 and J0 ≥ J∗, VI converges to J∗ (also if 0 ≤ J0 ≤ J∗)

If J0(0) = 0, for all x 6= 0, and J0 ≥ J+, VI converges to J+

If limx↓0 J0(x) = 0 and J0 ≥ Ĵ, VI converges to Ĵ

For dimensions n ≥ 2, there is an infinity of regions of convergence of VI
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Extension to Stochastic Shortest Path (SSP) Problems

Bellman’s equation: J(x) = infu∈U(x)

{
g(x ,u) + E

{
J(f (x ,u,w))

}}

Finite-State SSP (A Long History - Many Applications)
Analog of terminating policy is a proper policy: Leads to t with prob. 1 from all x

J+: Optimal cost over proper policies (assumed real-valued)

Result for case J∗ = J+ (BT, 1991): Assuming each improper policy has∞ cost
from some x , J∗ solves uniquely Bellman’s Eq. and VI works starting from any
real-valued J ≥ 0

Result for case J∗ 6= J+ (BY, 2016): J+ solves Bellman’s Eq. and VI converges to
J+ starting from any real-valued J ≥ J+

Infinite-State SSP with g ≥ 0
π is a proper policy if Jπ is bounded and π reaches t in bounded E{No of steps}
(over the initial x). Optimal cost over proper policies: J+ (assumed bounded)

Main result: J+ solves Bellman’s Eq. and VI converges to J+ starting from any
bounded J ≥ J+
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Abstract DP

Abstraction in Mathematics (according to Wikipedia)
“Abstraction in mathematics is the process of extracting the underlying essence of a
mathematical concept, removing any dependence on real world objects with which it
might originally have been connected, and generalizing it so that it has wider
applications or matching among other abstract descriptions of equivalent phenomena."

“The advantages of abstraction are:

It reveals deep connections between different areas of mathematics.

Known results in one area can suggest conjectures in a related area.

Techniques and methods from one area can be applied to prove results in a
related area."

ELIMINATE THE CLUTTER ... LET THE FUNDAMENTALS STAND OUT.
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What is Fundamental in DP? Answer: The Bellman Eq. Operator

Define a general model in terms of an abstract mapping H(x ,u, J)

Bellman’s Eq. for optimal cost:

J(x) = inf
u∈U(x)

H(x , u, J)

For the deterministic optimal control problem of this lecture

H(x , u, J) = g(x , u) + J
(
f (x , u)

)
Another example: Discounted and undiscounted stochastic optimal control

H(x , u, J) = g(x , u) + αE
{

J(f (x , u,w))
}
, α ∈ (0, 1]

Other examples: Minimax, semi-Markov, exponential risk-sensitive cost, etc

Key premise: H is the “math signature" of the problem

Important structure of H: monotonicity (always true) and contraction (may be true)

Top down development:
Math Signature –> Analysis and Methods –> Special Cases
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Semicontractive Abstract DP Models

Some policies are “well-behaved" and some are not

Example of “well-behaved" policy: A µ whose H
(
x , µ(x), J

)
is a contraction (in J),

e.g., a “stable" policy (or “proper" in the context of SSP)

Generally, “unusual" behaviors are due to policies that are not “well-behaved"

The Line of Analysis of Semicontractive DP
Introduce a class of well-behaved policies (formally called regular)

Define a restricted optimization problem over the regular policies only

Show that the restricted problem has nice theoretical and algorithmic properties

Relate the restricted problem to the original

Under reasonable conditions: Obtain interesting theoretical and algorithmic results

Under favorable conditions: Obtain powerful analytical and algorithmic results
(comparable to those for contractive models)
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Concluding Remarks

Highlights of results
Connection of stability and optimization through forcing functions, perturbed
optimization, and p-stable policies

Connection of solutions of Bellman’s Eq., p-Lyapounov functions, and p-regions of
convergence of VI

VI and PI algorithms for computing the restricted optimum (over p-stable policies)

Outstanding Issues and Extensions
How do we compute an optimal p-stable policy for a continuous-state problem (in
practice, using discretization and approximation)?

How do we check the existence of a p-stable policy (finiteness of Ĵp)?

Extensions to problems with both positive and negative costs per stage? If
J∗ 6= J+, then J∗ may not satisfy Bellman’s Eq. for finite-state stochastic problems
(J+ does).
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Thank you!
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