
Automatica, Vol. 27, No. 1, pp. 3-21, 1991
Printed in Great Britain.

0005-1098/91 $3.00 + 0.00
Pergamon Press plc

(~ 1990 International Federation of Automatic Control

Survey Paper

Some Aspects of Parallel and Distributed
Iterative Algorithms A Survey*t

D I M I T R I P. BERTSEKAS:~§ and J O H N N. TSITSIKLIS~

Iterative methods suitable for use in parallel and distributed computing
systems are surveyed. Both synchronous and asynchronous implementa-
tions are discussed. A number of theoretical issues regarding the validity of
asynchronous algorithms are addressed.

Key Words--Computational methods; distributed data processing; iterative methods; parallel
processing; asynchronous algorithms; parallel algorithms; distributed algorithms.

Ala~lraet--We consider iterative algorithms of the form
x :=f(x) , executed by a parallel or distributed computing
system. We first consider synchronous executions of such
iterations and study their communication requirements, as
well as issues related to processor synchronization. We also
discuss the paraUelization of iterations of the Gauss-Seidel
type. We then consider asynchronous implementations
whereby each processor iterates on a different component of
x, at its own pace, using the most recently received (but
possibly outdated) information on the remaining components
of x. While certain algorithms may fail to converge when
implemented asynchronously, a large number of positive
convergence results is available. We classify asynchronous
algorithms into three main categories, depending on the
amount of asynchronism they can tolerate, and survey the
corresponding convergence results. We also discuss issues
related to their termination.

1. INTRODUCTION
P A R A L L E L A N D D I S T R I B U T E D computing systems have
received broad attention motivated by several
different types of applications. Roughly speaking,
parallel computing systems consist of several tightly
coupled processors that are located within a small
distance of each other. Their main purpose is to
execute jointly a computational task and they have
been designed with such a purpose in mind:
communication between processors is fast and
reliable. Distributed computing systems are somewhat

* Received 10 November 1988; revised 12 February 1990;
received in final form 11 March 1990. The original version
of this paper was presented at the IFAC/IMACS Symposium
on Distributed Intelligence Systems which was held in Varna,
Bulgaria during June 1988. The published Proceedings of this
IFAC Meeting may be ordered from: Pergamon Press plc,
Headington Hill Hall, Oxford OX3 0BW, U.K. This paper
was recommended for publication in revised form by Editor
K. J. Astr6m.

t Research supported by the NSF under Grants ECS-
8519058 and ECS-8552419, with matching funds from
Bellcore, Du Pont and IBM, and by the ARO under Grant
DAALO3-86-K-O171.

~:Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA
02139, U.S.A.

§Author to whom all correspondence should be
addressed.

different in a number of respects. Processors are
loosely coupled with little, if any, central coordination
and control, and interprocessor communication is
more problematic. Communication delays can be
unpredictable, and the communication links them-
selves can be unreliable. Finally, while the architec-
ture of a parallel system is usually chosen with a
particular set of computational tasks in mind, the
structure of distributed systems is often dictated by
exogenous considerations. Nevertheless, there are
several algorithmic issues that arise in both parallel
and distributed systems and that can be addressed
jointly. To avoid repetition, we will mostly employ in
the sequel the term "distributed", but it should be
kept in mind that most of the discussion applies to
parallel systems was well.

There are at least two contexts where distributed
computation has played a signficant role. The first is
the context of information acquisition, information
extraction, and control, within spatially distributed
systems. An example is a sensor network in which a
set of geographically distributed sensors obtain
information on the state of the environment and
process it cooperatively. Another example is provided
by data communication networks in which certain
functions of the network (such as correct and timely
routing of messages) have to be controlled in a
distributed manner, through the cooperation of the
computers residing at the nodes of the network. Other
applications are possible in the quasistatic decentral-
ized control of large scale systems whereby certain
parameters (e.g. operating points for each subsystem)
are to be optimized locally, while taking into account
interactions with neighboring subsystems. The second
important context for parallel or distributed computa-
tion is the solution of very large computational
problems in which no single processor has sufficient
computational power to tackle the problem on its
o w n .

The ideas of this paper are relevant to both
contexts, but our presentation will emphasize large
scale numerical computation issues and iterative
methods in particular. Accordingly, we shall consider

4 D . P . BERTSEKAS and J. N. TSITSIKLIS

algorithms of the form x : = f (x) where x =
(xl x,) is a vector in ~" and f : ~ " ~ " is an
iteration mapping defining the algorithm. In many
interesting applications, it is natural to consider
distributed executions of this iteration whereby the ith
processor updates x~ according to the formula

x, :=~(x , x°), (1.1)

while receiving information from other processors on
the current values of the remaining components.

Our discussion of distributed implementations of
iteration (1.1) focuses on mechanisms for interproces-
sor communication and synchronization. We also
consider asynchronous implementations and present a
survey of the convergence issues that arise in the face
of asynchronism. These issues are discussed in more
detail in Bertsekas and Tsitsiklis (1989b) where proofs
of most of the results quoted here can be found.

Iteration (1.1) can be executed synchronously
whereby processors perform an iteration, communi-
cate their results to the other processors, and then
proceed to the next iteration. In Section 2, we
introduce two alternative synchronous iterations,
namely Jacobi type and Gauss-Seidel type iterations,
and discuss briefly their parallelization. In Section 3,
we indicate that synchronous parallel execution is
feasible even if the underlying computing system is
inherently asynchronous (i.e. no processor has access
to a global clock) provided that certain synchroniza-
tion mechanisms are in place. We review and compare
three representative synchronization methods. We
also discuss some basic communication problems that
arise naturally in parallel iterations, assuming that
processors communicate using a point-to-point com-
munication network. Then, in Section 4, we provide a
more detailed analysis of the required time per
parallel iteration. In Section 5, we indicate that the
synchronous execution of iteration (1.1) can have
certain drawbacks, thus motivating asynchronous
implementations whereby each processor computes at
its own pace while receiving (possibly outdated)
information on the values of the components updated
by the other processors. An asynchronous implemen-
tation of iteration (1.1) is not mathematically
equivalent to its synchronous counterpart and an
otherwise convergent algorithm may become diver-
gent. It will be seen that asynchronous iterative
algorithms can display several and different con-
vergence behaviors, ranging from divergence to
guaranteed convergence in the face of the worst
possible amount of asynchronism and communication
delays. We classify the possible behaviors in three
broad classes; the corresponding convergence results
are surveyed in Sections 6, 7 and 8, respectively. In
Section 9, we address some difficulties that arise if
we wish to terminate an asynchronous distributed
algorithm in finite time. Finally, Section 10 contains
our conclusions and a brief discussion of future
research directions.

2. JACOBI AND GAUSS-SEIDEL ITERATIONS
Let X ~ , . . . , Xp, be subsets of the Euclidean spaces

~ n ~ , . . . , ~ , p , respectively. Let n = n ~ + - . . + n p ,

p

and let X c ~n be the Cartesian product X = 1-I X~.
i - - I

Accordingly, any x E ~" is decomposed in the form
x = (xl xp), with each xi belonging to ~ni. For
i = 1 , p, let f, : X ~ Xi be a given function and let
f : X ~ X be the function defined by f (x) =
(f~(x) fp(x)) for every x e X. We want to solve
the fixed point problem x =f(x) . To this end we will
consider the iteration

x : = f (x) .

We will also consider the more general iteration

xi :=/f~(x) i f i E l (2.1)
t xi otherwise,

where I is a subset of the component index set
(1 , . . . ,p}, which may change from one iteration to
the next.

We are interested in the distributed implementation
of such iterations. While some of the discussion
applies to shared memory systems, we will focus in
this and the next two sections on a message-passing
system with p processors, each having its own local
memory and communicating with the other processors
over a communication network. We assume that the
ith processor has the responsibility of updating the ith
component x~ according to the rule x~:=f~(x). It is
implicitly assumed here that the ith processor knows
the form of the function f,. In the special case where
f (x) = Ax + b, where A is an n × n matrix and b e ~",
this amounts to assuming that the ith processor knows
the rows of the matrix A corresponding to the
components assigned to it. Other implementations of
the linear iteration x := Ax + b are also possible. For
example, each processor could be given certain
columns of A. We do not pursue this issue further and
refer the reader to McBryan and Van der Velde
(1987) and Fox et al. (1988) for discussions of
alternative matrix storage schemes.

For implementation of the iteration, it is seen that if
the function ~ depends on x~ (with i ~ j) , then
processor j must be informed by processor i on the
current value of xi. To capture such data depend-
encies, we form a directed graph G = (N, A), called
the dependency graph of the algorithm, with nodes
N = (1 p} and with arcs A = {(i, j) I i 4:j and
depends on x~}. We assume that for every arc (i, j) in
the dependency graph there is a communication
capability by means of which processor i can relay
information to processor j. We also assume that
messages are received correctly within a finite but
otherwise arbitrary amount of time. Such communica-
tion may be possible through a direct communication
link joining processors i and j or it could consist of a
multi-hop path in a communication network. The
discussion that follows applies to both cases.

An iteration in which all of the components of x are
simultaneously updated [I = {1 p} in (2.1)], is
sometimes called a Jacobi type iteration. In an
alternative form, the components of x are updated
one at a time, and the most recently computed values
of the other components are used. The resulting
iteration is often called an iteration of the

Parallel and distributed iterative algorithms--A survey 5

Gauss-Seidel type and is described mathematically by

x,(t + 1) =f,(Xl(t + 1) x,_~(t + 1),

xi(t) xv(t)),

i = 1 p. (2.2)

In a serial computing environment, Gauss-Seidel
iterations are often preferable. As an example,
consider the linear case where f (x) = Ax + b, and A
has non-negative elements and spectral radius less
than one. Then, the classical Stein-Rosenberg
theorem [see e.g. Bertsekas and Tsitsiklis (1989b, p.
152)] states that both the Gauss-Seidel and the Jacobi
iterations converge at a geometric rate to the unique
fixed point o f f ; however, in a serial setting where one
Jacobi iteration takes as much as one Gauss-Seidel
iteration, the rate of convergence of the Gauss-Seidel
iteration is always faster. Surprisingly, in a parallel
setting this conclusion is reversed, as we now describe
in a somewhat more general context.

Consider the sequence {xJ(t)) generated by the
Jacobi iteration

xJ(t + 1) =f(x~(t)), t = 0, 1 (2.3)

and the sequence {x~(t)} generated by the Gauss-
Seidel iteration (2.2), started from the same initial
condition x(0) = x J(0) = xC(0). The following result is
proved in Tsitsiklis (1989) generalizing an earlier
result of Smart and White (1988):

Proposition 1. Suppose that f : ~" ~ ~" has a unique
fixed point x*, and is monotone, that is, it satisfies
f (x) <-f(y) if x -<y. Then, if f (x(0)) -<x(0), we have

x*<-x~(pt)<-x~(t), t = 0 , 1

and if x(0) <-f(x(O)), we have

xC'(t)<-xJ(pt)<-x *, t = 0 , 1

Proposition 1 establishes the faster parallel conver-
gence of the Jacobi iteration, for certain initial
conditions, assuming that a Gauss-Seidel iteration
takes as much parallel time as p Jacobi iterations. It
has also been shown in Smart and White (1988) that if
in addition to the assumptions of Proposition 2.1, f is
linear (and thus satisfies the assumptions of the
Stein-Rosenberg theorem), the rate of convergence
of the Jacobi iteration is faster than the rate of
convergence of the Gauss-Seidel iteration. An
extension of this result that applies to asynchronous
Jacobi and Gauss-Seidel iterations is also given in
Bertsekas and Tsitsiklis (1989a).

The preceding comparison of Jacobi and Gauss-
Seidel iterations assumes that a Jacobi iteration is
executed in one time step, and that the Gauss-Seidel
iteration cannot be parallelized (so that a full update
of all the components xl xp requires p time
steps). This is the case when the number of available
processors is p and the dependency graph describing
the structure of the iteration is complete (every
component depends on every other component), so
that no two components can be updated in parallel. A
Gauss-Seidel iteration can still converge faster,
however, if it can be parallelized to the point where it
requires the same number of time steps as the

FIG. 1. A dependency graph.

corresponding Jacobi iteration; this can happen if the
number of available processors is less than p and the
dependency graph is sufficiently sparse, as we now
illustrate.

Consider the dependency graph of Fig. 1. A
corresponding Gauss-Seidel iteration is described by

xl(t + 1) =fl(xl(t) , x3(t))

xz(t + 1) =f2(xl(t + 1), x2(t))

x3(t + 1) ----f3(x2(t + 1), X3(t), x4(t))
Xn(t + 1) =f4(x2(t + 1), x4(t))

and its structure is shown in Fig. 2. We notice here
that x3(t+ 1) and x4(t+ 1) can be computed in
parallel. In particular, a sweep, that is, an update of
all four components, can be performed in only three
stages. On the other hand, a different ordering of the
components leads to an iteration of the form

xl(t + 1) =fl(xl(t) , x3(t))

x3(t + 1) =f3(x2(t), x3(t), x4(t))

x4(l + 1) =f4(x2(t), x4(t))
x2(t + 1) =f2(x~(t + 1), x2(t))

which is illustrated in Fig. 3. We notice here that
x~(t + 1), x3(t + 1), and x4(t + 1) can be computed in
parallel, and a sweep requires only two stages.

The above example motivates the problem of
choosing an ordering of the components for which a
sweep requires the least number of stages. The
solution of this problem, given in Bertsekas and
Tsitsiklis (1989b, p. 23) is as follows:

Proposition 2. The following are equivalent:
(i) There exists an ordering of the variables such

that a sweep of the corresponding Gauss-Seidel
algorithm can be performed in K parallel steps.

(ii) We can assign colors to the nodes of the
dependency graph so that at most K different colors

FIG. 2. The data dependencies in a Gauss-Seidei iteration.

6 D . P . BERTSEKAS and J. N. TSITS1KLIS

FIG. 3. The data dependencies in a Gauss-Seidel iteration
for a different updating order.

are used and so that each subgraph obtained by
restricting to the set of nodes with the same color has
no directed cycles.

A well known special case of the above proposition
arises when the dependency graph G is symmetric;
that is, the presence of an arc (i, j) e A also implies
the presence of the arc (j, i). In this case there is no
need to distinguish between directed and undirected
cycles, and the coloring problem of Proposition 2
reduces to coloring the nodes of the dependency
graph so that no two neighboring nodes have the same
color.

Unfortunately, the coloring problem of Proposition
2 is intractable (NP-hard). On the other hand, in
several practical situations the dependency graph G
has a very simple structure and the coloring problem
can be solved by inspection. Furthermore, it can be
shown that if the dependency graph is a tree or a
two-dimensional grid, only two colors suffice, so a
Gauss-Seidel sweep can be done in two steps, with
roughly half the components of x being updated in
parallel at each step. In this case, while with n
processors the Jacobi method is as fast or faster than
Gauss-Seidel, the reverse is true when using n/2
processors (or more generally, any number of
processors with which a Gauss-Seidel step can be
completed in the same time as the Jacobi iteration).

Even with unstructured dependency graphs, reason-
ably good colorings can be found using simple
heuristics; see Zenios and Lasken (1988) and Zenios
and Mulvey (1988), for examples. Let us also point
out that the parallelization of Gauss-Seidel methods
by means of coloring is very common in the context of
the numerical solution of partial differential equa-
tions; see, for example, Ortega and Voigt (1985) and
the references therein.

A related approach for parallelizing Gauss-Seidel
iterations, which is fairly easy to implement, is
discussed in Barbosa (1986) and Barbosa and Gafni
(1987). In this approach, a new sweep is allowed to
start before the previous one has been completed and
for this reason, one obtains, in general, somewhat
greater parallelism than that obtained by the coloring
approach.

We finally note that the order in which the variables
are updated in a Gauss-Seidel sweep may have a
significant effect on the convergence rate of the
iteration. Thus, completing a Gauss-Seidel sweep in a
minimum number of steps is not the only considera-
tion in selecting the grouping of variables to be

updated in parallel; the corresponding rate of
convergence must also be taken into account.

3. SYNCHRONIZATION AND COMMUNICATION
ISSUES

We say that an execution of iteration (2.1) is
synchronous if it can be described mathematically by
the formula

xi(t + 1) = ~ f / (x l (t) Xp(t)) i f / e T i
[x~(t) otherwise. (3.1)

Here, t is an integer-valued variable used to index
different iterations, not necessarily representing real
time, and T i is an infinite subset of the index set
(0, 1 , . . . } . Thus, T i is the set of time indices at which
x~ is updated. With different choices of T ~ one obtains
different algorithms, including Jacobi and Gauss-
Seidel type of methods. We will later contrast
synchronous iterations with asynchronous iterations,
where instead of the current component values xj(t),
earlier values xj(t - d) are used in (3.1), with d being
a possibly positive and unpredictable "communication
delay" that depends on i, j and t.

3.1. Synchronization methods
Synchronous execution is certainly possible if the

processors have access to a global clock, and if
messages can be reliably transmitted from one
processor to another between two consecutive "ticks"
of the clock. Barring the existence of a global clock,
synchronous execution can be still accomplished by
using synchronization protocols called synchronizers.
We refer the reader to Awerbuch (1985) for a
comparative complexity analysis of a class of
synchronizers and we continue with a brief discussion
of three representative synchronization methods.
These methods will be described for the case of Jacobi
type iterations, but they can be easily adapted for the
case of Gauss-Seidel iterations as well.

(a) Global synchronization. Here the processors
proceed to the (t + 1)st iteration, also referred to as
phase, only after every processor i has completed the
tth iteration and has received the value of x/(t) from
every j such that (j, i) e A. Global synchronization can
be implemented by a variety of techniques, a simple
one being the following: the processors are arranged
as a spanning tree, with a particular processor chosen
to be the root of the tree. Once processor i has
computed xi(t), has received the value of x/(t) for
every j such that (j, i) • A, and has received a phase
termination message from all its "children" in the
tree, it sends a phase termination message to its
"father" in the tree. Phase termination messages thus
propagate towards the root. Once the root has
received a phase termination message from all of its
children, it knows that the current phase has been
completed and sends a phase initiation message to its
children, which is propagated along the spanning tree.
Once a processor receives such a message it can
proceed to the next phase. (See Fig. 4 for an
illustration.)

(b) Local synchronization. Global synchronization
can be seen to be rather wasteful in terms of the time

Para l le l and d i s t r i bu t ed i t e r a t ive a l g o r i t h m s - - A survey 7

Root

. a l t v •

Root

Phale initiation
mes~lga propagates
from the root
to the leaves

FIG. 4. Illustration of the global synchronization method.

required per iteration. An alternative is to allow the
ith processor to proceed with the (t + 1)st iteration as
soon as it has received all the messages xj(t) it needs.
Thus, processor i moves ahead on the basis of local
information alone, obviating the need for propagating
messages along a spanning tree.

It is easily seen that the iterative computation can
only proceed faster when local synchronization is
employed. Furthermore, this conclusion can also be
reached even if a more efficient global synchronization
method were possible whereby all processors start the
(t + l) s t iteration immediately after all messages
generated by the tth iteration have been delivered.
(We refer to this hypothetical and practically
unachievable situation as the ideal global synchroniza-
tion.) Let us assume that the time required for one
computation and the communication delays are
bounded above by a finite constant and are bounded
below by a positive constant. Then it is easily shown
that the time spent for a number K of iterations under
ideal global synchronization is at most a constant
multiple of the corresponding time when local
synchronization is employed.

The advantage of local synchronization is better
seen if communication delays do not obey any a priori
bound. For example, let us assume that the
communication delay of every message is an
independent exponentially distributed random vari-
able with mean one. Furthermore, suppose for
simplicity, that each processor sends messages to
exactly d other processors, where d is some constant
(i.e. the outdegree of each node of the dependency
graph is equal to d). With global synchronization, the
real time spent for one iteration is roughly equal to
the maximum of dp independent exponential random
variables and its expectation is, therefore, of the order
of log (dp). Thus, the expected time needed for K
iterations is of the order of K log (pd). On the other
hand, with local synchronization, it turns out that the
expected time for K iterations is of the order of
iogp + K log d [joint work with C. H. Papadimitriou;
see Bertsekas and Tsitsiklis (1989b, p. 104)]. If K is
large, then local synchronization is faster by a factor
roughly equal to log (pd)/log d. Its advantage is more

pronounced if d is much smaller than p, as is the case
in most practical applications. Some related analysis
and experiments can be found in Dubois and Briggs
(1982).

(c) Synchronization via rollback. This method,
introduced by Jefferson (1985), has been primarily
applied to the simulation of discrete-event systems. It
can also be viewed as a general purpose synchroniza-
tion method but it is likely to be inferior to the
preceding two methods in applications involving
solution of systems of equations. Consider a situation
where the message xj(t) transmitted from some
processor j to some other processor i is most likely to
take a fixed default value known to i. In such a case,
processor i may go ahead with the computation of
x~(t+ 1) without waiting for the value of xj(t), by
making the assumption that xj(t) will take the default
value. In case that a message comes later which
falsifies the assumption that xj(t) has the default value,
then a rollback occurs; that is, the computation of
xi(t + 1) is invalidated and is performed once more,
taking into account the correct value of xj(t).
Furthermore, if a processor has sent messages based
on computations which are later invalidated, it sends
antimessages which cancel the earlier messages. A
reception of such an antimessage by some other
processor k could invalidate some of k 's computations
and could trigger the transmission of further
antimessages by k. This process has the potential of
explosive generation of antimessages that could drain
the available communication resources. On the other
hand, it is hoped that the number of messages and
antimessages would remain small in problems of
practical interest, although insufficient analytical
evidence is available at present. Some probabilistic
analyses of the performance of this method can be
found in Lavenberg et al. (1983) and Mitra and
Mitrani (1984).

3.2. Single and multinode broadcasting
Regardless of whether the implementation is

synchronous or not, it is necessary to exchange some
information between the processors after each
iteration. The interprocessor communication time can
be substantial when compared to the time devoted to
computations, and it is important to carry out the
message exchanges as efficiently as possible. There are
a number of generic communication problems that
arise frequently in iterative and other algorithms. We
describe a few such tasks related to message
broadcasting.

In the first communication task, we want to send
the same message from a given processor to every
other processor (we call this a single node broadcast).
In a generalized version of this problem, we want to
do a single node broadcast simultaneously from all
nodes (we call this a multinode broadcast). A typical
example where a multinode broadcast is needed arises
in the iteration x := f (x) . If we assume that there
is a separate processor assigned to component xi,
i = 1 , . . . , p, and that the function f, depends on all
components xj, j = 1 p, then, at the end of an
iteration, there is a need for every processor to send

8 D . P . BERTSEKAS and J. N. TSITSlKLIS

SINGLE NODE BROADCAST SINGLE NODE ACCUMULATION

o o

(a) (b)

FIG. 5. (a) A single node broadcast uses a tree that is rooted at a given node (which is node 1 in the figure).
The time next to each link is the time that transmission of the packet on the link begins. (b) A single node
accumulation problem involving summation of n scalars al a, (one per processor) at the given node
(which is node 1 in the figure). The time next to each link is the time at which transmission of the
"combined" packet on the link begins, assuming that the time for scalar addition is negligible relative to the

time required for packet transmission.

the value of its component to every other processor,
which is a multinode broadcast.

Clearly, to solve the single node broadcast problem,
it is sufficient to transmit the given node's message
along a spanning tree rooted at the given node, that
is, a spanning tree of the network together with a
direction on each link of the tree such that there is a
unique path from the given node (called the root) to
every other node. With an optimal choice of such a
spanning tree, a single node broadcast takes
O(r)-time,t where r is the diameter of the network, as
shown in Fig. 5(a). To solve the multinode broadcast
problem, we need to specify one spanning tree per
root node. The difficulty here is that some links may
belong to several spanning trees; this complicates the
timing analysis, because several messages can arrive
simultaneously at a node, and require transmission on
the same link with a queueing delay resulting.

There are two important communication problems
that are dual to the single and multinode broadcasts,
in the sense that the spanning tree(s) used to solve
one problem can also be used to solve the dual in the
same amount of communication time. In the first
problem, called single node accumulation, we want to
send to a given node a message from every other
node; we assume, however, that messages can be
"combined" for transmission on any communication
link, with a "combined" transmission time equal to
the transmission time of a single message. This
problem arises, for example, when we want to form at
a given node a sum consisting of one term for each

tThe notation h(y)=O(g(y)) , where y is a positive
integer, means that for some c I >0, c2>0, and yo>0, we
have cllg(y)l <- h(y) <- c21g(y)l for all y >--Yo.

node, as in an inner product calculation [see Fig.
5(b)]; we can view addition of scalars at a node
as "combining" the corresponding messages into a
single message. The second problem, which is dual
to a multinode broadcast, is called multinode
accumulation, and involves a separate single node
accumulation at each node. It can be shown that a
single node (or multinode) accumulation problem can
be solved in the same time as a single node
(respectively multinode) broadcast problem, by
realizing that an accumulation algorithm can be
viewed as a broadcast algorithm running in reverse
time, as illustrated in Fig. 5. As shown in Fig. 4,
global synchronization can be accomplished by a
single node broadcast followed by a single node
accumulation.

Algorithms for solving the broadcast problems just
described, together with other related communication
problems, have been developed for several popular
architectures (Nassimi and Sahni, 1980; Saad and
Shultz, 1987; McBryan and Van der Velde, 1987;
Ozveren, 1987; Bertsekas et al., 1989; Bertsekas and
Tsitsiklis, 1989b; Johnsson and Ho, 1989). Table 1
gives the order of magnitude of the time needed to
solve each of these problems using an optimal
algorithm. The underlying assumption for the results
of this table is that each message requires unit time for
transmission on any link of the interconnection
network, and that each processor can transmit and
receive a message simultaneously on all of its incident
links. Specific algorithms that attain these times are
given in Bertsekas et al. (1989) and Bertsekas and
Tsitsiklis (1989b, Section 1.3.4). In most cases these
algorithms are optimal in that they solve the problem
in the minimum possible number of time steps. Figure
6 illustrates a multinode broadcast algorithm for a ring

Parallel and distributed iterative algorithms--A survey 9

t !

(a)

Stage 1 Stage 2 Stage 3

(b)

FIG. 6. (a) A ring of p nodes having as links the pairs (i, i + 1) for i = 1, 2 p - 1, and (p, 1). (b) A
multinode broadcast on a ring with p nodes can be performed in [(p - 1)/2] stages as follows: at stage 1,
each node sends its own packet to its clockwise and counterclockwise neighbors. At stage
2 [(p - 1)/2], each node sends to its clockwise neighbor the packet received from its counterclockwise
neighbor at the previous stage; also, at stages 2 [(p -2) /2] , each node sends to its counterclockwise
neighbor the packet received from its clockwise neighbor at the previous stage. The figure illustrates this

process for p = 6.

with p processors, which attains the min imum number
of steps.

Using the results of Table 1, it is also shown in
Bertsekas and Tsitsiklis (1989b) that if a hypercube is
used, then most of the basic operations of numerical
linear algebra, i.e. inner product, mat r ix-vector
multiplication, matr ix-matr ix multiplication, power of
a matrix, etc., can be executed in parallel in the same
order of time as when communicat ion is instan-
taneous. In some cases this is also possible when the
processors are connected with a less powerful
interconnection network such as a square mesh. Thus,
communicat ion affects only the "mult iplying constant"
as opposed to the order of time needed to carry out
these operations. Nonetheless, with a large number of
processors, the effect of communicat ion delays on
linear algebra operations can be very substantial.

4. ITERATION COMPLEXITY
We now try to assess the potential benefit from

parallelization of the i teration x : = f (x) . In particular,
we will estimate the order of growth of the required
time per iteration, as the dimension n increases. Our
analysis is geared towards large problems and the
issue of speedup of iterative methods using a large
number of processors. We will make the following

assumptions:

(a) All components of x are updated at each
iteration. (This corresponds to a Jacobi iteration.
If a Gauss-Seidel i teration is used instead, the
time per i teration cannot increase, since by
updating only a subset of the components , the
computat ion per i teration will be reduced and the
communicat ion problem will be simplified. Based
on this, it can be seen that the order of required
time will be unaffected if in place of a Jacobi
iteration, we perform a Gauss-Seidel sweep with

TABLE 1. SOLUTION TIMES OF OPTIMAL ALGORITHMS FOR THE

BROADCAST AND ACCUMULATION PROBLEMS USING A RING, A

BINARY BALANCED TREE, A d-DIMENSIONAL MESH (WITH THE
SAME NUMBER OF PROCESSORS ALONG EACH DIMENSION), AND A

HYPERCUBE WITH p PROCESSORS. THE TIMES GIVEN FOR THE

RING ALSO HOLD FOR A LINEAR ARRAY

Problem Ring Tree Mesh Hypercube

Single node broadcast
(or single node
accumulation) O(p) O(logp) O(p TM) O(logp)

Multinode broadcast
(or multinode
accumulation) O(p) O(p) O(p) O(p /log p)

10 D . P . BERTSEKAS and J. N. TSITSIKLIS

a number of steps which is fixed and independent
of the dimension n.)

(b) There are n processors, each updating a single
scalar component of x at each iteration. (One may
wish to use fewer than n processors, say p, each
updating an n/p-dimensional component of x, in
order to economize on communication. We argue
later, however, that under our assumptions,
choosing p < n cannot improve the order of time
required per iteration, although it may reduce this
time by a constant factor. In practice, of course,
the number of available processors is often much
less than n, and it is interesting to consider
optimal utilization of a limited number of
processors in the context of iterative methods. In
this paper, however, we will not address this
issue, prefering to concentrate on the potential
and limitations of iterative computation using
massively parallel machines with an abundant
number of processors.)

(c) Following the execution of their assigned portion
of the iteration, the processors exchange the
updated values of their components by means of a
communication algorithm such as a multinode
broadcast. The subsequent synchronization takes
negligible time. (This can be justified by noting
that local synchronization can be accomplished as
part of the communication algorithm and thus
requires no additional time. Furthermore, global
synchronization can be done by means of a single
node broadcast followed by a single node
accumulation. Thus the time required for global
synchronization grows with n no faster than a
multinode broadcast time. Therefore, if the
communication portion of the iteration is done by
a multinode broadcast, the global synchronization
time can be ignored when estimating the order of
required time per iteration.)

We estimate the time per iteration as

TCOMP "~- TMNB,

where TcoMP is the time to compute the updated
components f~(x), and TMNa is the time to exchange
the updated component values between the processors
as necessary. If there is overlap of the computation
and communication phases due to some form of
pipelining, the time per iteration will be smaller than
T¢OMP + TMNB but its order of growth with n will not
change. We consider several hypotheses for TcoMP
and TMNB, corresponding to different types of
computation and communication hardware, and
structures of the functions f,. In particular, we
consider the following cases, motivated primarily by
the case where the system of equations x = f (x) is
linear:

Small TcoMa: (= O(1)). One example for this case is
when the iteration functions f~ are linear and
correspond to a very sparse system (the maximum
node degree of the dependency graph is O(1)).

Another example is when the system solved is linear
and dense, but each processor has vector processing
capability allowing it to compute inner products in
O(1) time.

Medium TcoMP: (= O(logn)) . An example for this
case is when the system solved is linear and dense,
and each processor can compute an inner product in
O(log n) time. It can be shown that this is possible if
each processor is itself a message-passing parallel
processor with log n diameter.

Large TcoMP: (= O(n)). An example for this case is
when the system solved is linear and dense, and each
processor computes inner products serially in O(n)
time.

Also the following are considered for the
communication time TMNB:

Small TMNB: (= O(1)). An example for this case is
when special very fast communication hardware is
used, making the time for the multinode broadcast
negligible relative to TcoMP or relative to the
communication software overhead at the message
sources. Another example is when the processors are
connected by a network that matches the form of the
dependency graph, so that all necessary communica-
tion involves directly connected nodes. For example
when solving partial differential equations, the
dependency graph is often a grid resulting from
discretization of physical space. Then, with processors
arranged in an appropriate grid, communication can
be done very fast.

Medium TMN B" (= O(n/log n)). An example for this
case is when the multinode broadcast is performed
using a hypercube network (cf. Table 1).

Large TMNB: (= O(n)). An example for this case is
when the multinode broadcast is performed using a
ring network or a linear array (cf. Table 1).

Table 2 gives the time per iteration TcoMP + TMNB
for the different combinations of cases. In the worst
case, the time per iteration is O(n), and this time is
faster by a factor n than the time needed to execute
serially the linear iteration x : = A x + b when the
matrix A is fully dense. In this case, the speedup is
proportional to the number of processors n and the
benefit from parallelization is very substantial. This
thought, however, must be tempered by the
realization that the parallel solution time still increases
at least linearly with n, unless the number of iterations
needed to solve the problem within practical accuracy
decreases with n - - a n unlikely possibility.

TABLE 2. TIME PER ITERATION X : = f (x) UNDER A VARIETY OF
ASSUMFFIONS FOR THE COMPUTATION TIME PER ITERATION
TcoMP AND THE COMMUNICATION TIME PER ITERATION TMN B.
IN THE CELLS ABOVE THE DIAGONAL, THE COMPUTATION TIME IS
THE BOTTLENECK, AND IN THE CELLS BELOW THE DIAGONAL.

THE COMMUNICATION TIME IS THE BOTTLENECK

TCOMP: O(1) TCOMP: O(Iog n) TcoMp: O(n)

TMNB: O(1) O(1) O(Iog n) O(n)
TMNn: O(n/logb) O(n/logn) O(n/Iogn) O(n)

TMNa: O(n) O(n) O(n) O(n)

Para l le l and d i s t r i bu t ed i t e ra t ive a l g o r i t h m s - - A survey 11

In the best case of Table 2, the time per iteration is
bounded irrespectively of the dimension n, offering
hope that with special computing and communication
hardware, some extremely large practical problems
can be solved in reasonable time.

Another interesting case, which is not covered by
Table 2, arises in connection with the linear iteration
x :-- Ax + b, where A is an n x n fully dense matrix. It
can be shown that this iteration can be executed in a
hypercube network of n 2 processors in O(log n) time
[see, for example, Bertsekas and Tsitsiklis (1989b)].
While it is hard to imagine at present hypercubes of n 2
processors solving large n x n systems, this case
provides a theoretical limit for the time per iteration
for unstructured linear systems in message-passing
machines.

Consider now the possibility of using p < n
processors, each updating an hip-dimensional com-
ponent of x. The computation time per iteration will
then increase by a factor n/p, so the question arises
whether it is possible to improve the order of growth
of the communication time in the cases where TMNB is
the iteration time bottleneck. The cases of medium
and large TMNB are of principal interest here. In these
cases the corresponding times measured in message
transmission time units are O(p/logp) and O(p) ,
respectively. Because, however, each message in-
volves nip values, its transmission time grows linearly
with n/p, so the corresponding time TMNB becomes
O(n/logp) and O(n), respectively. Thus the order of
time per iteration is not improved by choosing p < n,
at least under the hypotheses of this section.

5. ASYNCHRONOUS ITERATIONS
Asynchronous iterations have been introduced by

Chazan and Miranker (1969) (under the name chaotic
relaxation) for the solution of linear equations. In an
asynchronous implementation of the iteration x :=
f(x), processors are not required to wait to receive all
messages generated during the previous iteration.
Rather, each processor is allowed to keep iterating on
its own component at its own pace. If the current
value of the component updated by some other
processor is not available, then some outdated value
received at some time in the past is used instead.
Furthermore, processors are not required to com-
municate their results after each iteration but only
once in a while. We allow some processors to compute
faster and execute more iterations than others, we
allow some processors to communicate more fre-
quently than others, and we allow the communication
delays to be substantial and unpredictable. We also
allow the communication channels to deliver messages
out of order, i.e. in a different order than the one they
were transmitted.

There are several potential advantages that may be
gained from asynchronous execution [see Kung (1976)
for a related discussion].

(a) Reduction of the synchronization penalty. There
is no overhead such as the one associated with the
global synchronization method. In particular, a

processor can proceed with the next iteration without
waiting for all other processors to complete the
current iteration, and without waiting for a synchroni-
zation algorithm to execute. Furthermore, in certain
cases, there are even advantages over the local
synchronization method as we now discuss. Suppose
that an algorithm happens to be such that each
iteration leaves the value of xl unchanged. With local
synchronization, processor i must still send messages
to every processor j with (i, j) • A because processor j
will not otherwise proceed to the next iteration.
Consider now a somewhat more realistic case where
the algorithm is such that a typical iteration is very
likely to leave xi unchanged. Then each processor j
with (i, j) • A will be often found in a situation where
it waits for rather uninformative messages stating that
the value of xl has not changed. In an asynchronous
execution, processor j does not wait for messages from
processor i and the progress of the algorithm is likely
to be faster. A similar argument can be made for the
case where x~ changes only slightly between iterations.
Notice that the situation is similar to the case of
synchronization via rollback, except that in an
asynchronous algorithm processors do not roll back
even if they iterate on the basis of outdated and later
invalidated information.

(b) Ease of restarting. Suppose that the processors
are engaged in the solution of an optimization
problem and that suddenly one of the parameters of
the problem changes. (Such a situation is common and
natural in the context of data networks or in the
quasistatic control of large scale systems.) In a
synchronous execution, all processors should be
informed, abort the computation, and then reinitiate
(in a synchronized manner) the algorithm. In an
asynchronous implementation no such reinitialization
is required. Rather, each processor incorporates the
new parameter value in its iterations as soon as it
learns the new value, without waiting for all
processors to become aware of the parameter change.
When all processors learn the new parameter value,
the algorithm becomes the correct (asynchronous)
iteration.

(c) Reduction of the effect of bottlenecks. Suppose
that the computational power of processor i suddenly
deteriorates drastically. In a synchronous execution
the entire algorithm would be slowed down. In an
asynchronous execution, however, only the progress
of x~ and of the components strongly influenced by x~
would be affected; the remaining components would
still retain the capacity of making unhampered
progress. Thus the effects of temporary malfunctions
tend to be localized. The same argument applies to
the case where a particular communication channel is
suddenly slowed down.

(d) Convergence acceleration due to a Gauss-Seidel
effect. With a Gauss-Seidel execution, convergence
often takes place with fewer updates of each
component, the reason being that new information is
incorporated faster in the update formulas. On the
other hand Gauss-Seidel iterations are generally less
parallelizable. Asynchronous algorithms have the

12 D . P . BERTSEKAS and J. N. TSITSIKLIS

potential of displaying a Gauss-Seidel effect because
newest information is incorporated into the computa-
tions as soon as it becomes available, while retaining
maximal parallelism as in Jacobi-type algorithms.

A major potential drawback of asynchronous
algorithms is that they cannot be described mathe-
matically by the i teration x(t+ 1)=f(x(t)) . Thus,
even if this i teration is convergent, the corresponding
asynchronous iteration could be divergent, and indeed
this is sometimes the case. Even if the convergence of
the asynchronous iteration can be established, the
corresponding analysis is often difficult. Nevertheless,
there is a large number of results stating that certain
classes of important algorithms retain their desirable
convergence properties in the face of asynchronism:
they will be surveyed in Sections 6-8. Another
difficulty relates to the fact that an asynchronous
algorithm may have converged (within a desired
accuracy) but the algorithm does not terminate
because no processor is aware of this fact. We address
this issue in Section 9.

We now present our model of asynchronous
computation. Let the set X and the function f be as
described in Section 2. Let t be an integer variable
used to index the events of interest in the computing
system. Although t will be referred to as a t ime
variable, it may have little relation with "real t ime".
Let x~(t) be the value of xl residing in the memory of
the ith processor at t ime t. We assume that there is a
set of times T ~ at which x~ is updated. To account for
the possibility that the ith processor may not have
access to the most recent values of the components of
x, we assume that

xi(t + 1) =f,(xl(r~(t)) x,(ri(t))), Vt • T i, (5.1)

where rj(t) are times satisfying

O<-- r~(t)<--t, Vt->O.

At all times t ~ T ~, xi(t) is left unchanged and

x,(t + 1)=x i (t) , Vt E T'. (5.2)

We assume that the algorithm is initialized with some
x(0) ~ X.

The above mathematical description can be used as
a model of asynchronous iterations executed by either
a message-passing distributed system or a shared-
memory parallel computer. For an illustration of the
latter case, see Fig. 7.

The difference t - r) (t) is equal to zero for a
synchronous execution. The larger this difference is,
the larger is the amount of asynchronism in the
algorithm. Of course, for the algorithm to make any
progress at all we should not allow r~(t) to remain
forever small. Furthermore, no processor should be
allowed to drop out of the computat ion and stop
iterating. For this reason, certain assumptions need to
be imposed. There are two different types of
assumptions which we state below.

Assumption 1. (Total asynchronism). The sets T ~ are
infinite and if {t~} is a sequence of elements of T ~

which tends to infinity, then lim r)(tk) = ~ for every/' .

Assumption 2. (Partial asynchronism). There exists a
positive constant B such that:
(a) For every t-> 0 and every i, at least one of the
elements of the set {t, t + 1 t + B - 1} belongs
to T i.
(b) There holds

t - B < r ~ (t) - < t , Vi, j, V t E T i. (5.3)

(c) There holds z~(t) = t, for all i and t • T(

The constant B of Assumption 2, to be called the
asynchronism measure, bounds the amount by which
the information available to a processor can be
outdated. Notice that a Jacobi-type synchronous
iteration is the special case of partial asynchronism in
which B = 1. Notice also that Assumption (c) states
that the information available to processor i regarding
its own component is never outdated. Such an
assumption is natural in most contexts, but could be
violated in certain types of shared memory parallel
computing systems if we allow more than one
processor to update the same component of x. It turns

Read Read Read Start Time at the
component x 1 component x 2 component x 3 writing processor

f [~] ~' / [~] / l~eq~? ~rcomp°nent x 2 ~ Llpdating x2

~= [] t Z [] I - 1 / 1 - 1 I--1 I--1 D F1 E3

.~ r-I Eli D S I-1 I-q r-q D r--1 [] t=l 2 3 4 5 6 7 8 9 10
Time =

FIG. 7. Illustration of a component u~date in a shared memory multiprocessor. Here x 2 is viewed as being
2 2 updated at time t = 9 (9 • T2), with r~(9) = 1, r2(9) = 2, and r4(9) = 4. The updated value of x2 is entered at

the corresponding register at t = 10. Several components can be simultaneously in the process of being
updated, and the values of r~(t) can be unpredictable.

Parallel and distr ibuted iterative a l g o r i t h m s - - A survey 13

out that if we relax Assumption 2(c), the convergence
of certain asynchronous algorithms is destroyed
(Lubachevsky and Mitra, 1986; Bertsekas and
Tsitsiklis, 1989b, p. 506 and p. 517). Parts (a) and (b)
of Assumption 2 are typically satisfied in practice.

Asynchronous algorithms can exhibit three differ-
ent types of behavior (other than guaranteed
divergence):

(a) Convergence under total asynchronism.
(b) Convergence under partial asynchronism, for
every value of B, but possible divergence under totally
asynchronous execution.
(c) Convergence under partial asynchronism if B is
small enough, and possible divergence if B is large
enough.

The mechanisms by which convergence is estab-
lished in each one of the above three cases are
fundamentally different and we address them in the
subsequent three sections, respectively.

6. TOTALLY ASYNCHRONOUS ALGORITHMS
Totally asynchronous convergence results have been

obtainedt by Chazan and Miranker (1969) for linear
iterations, Miellou (1975a), Baudet (1978), E1 Tarazi
(1982), Miellou and Spiteri (1985) for contracting
iterations, Miellou (1975b) and Bertsekas (1982) for
monotone iterations, and Bertsekas (1983) for general
iterations. Related results can be also found in Uresin
and Dubois (1986, 1988, 1990). The following general
result is from Bertsekas (1983).

Proposition 3. Let X = N X~ = ~I ~",. Suppose that
i - -1 i ~ 1

for each i e{1 p}, there exists a sequence
{X~(k)} of subsets of X~ such that:

(a) X~(k + 1) ~ X~(k), for all k -> 0.
p

(b) The sets X (k) = 1-I X~(k) have the property
i - - I

f (x) • X (k + 1), for all x • X.
(c) Every limit point of a sequence {x(k)} with the
property x (k) e X (k) for all k, is a fixed point off .

Then, under Assumption 1 (total asynchronism),
and if x(0) • X(0), every limit point of the sequence
{x(t)} generated by the asynchronous iteration
(5.1)-(5.2) is a fixed point off .

Proof. We show by induction that for each k->0,
there is a time tk such that:

(a) x(t) • X (k) for all t -> tk.
(b) For all i and t • T ~ with t>-tk, we have

x~(t) ~ X(k) , where

x~(t) = (xl(ril(t)), xz(~iz(t)) xn(zi(t))), V t • T i.

[In words: after some time, all solution estimates
will be in X(k) and all estimates used in iteration
(5.1) will come from X(k).]

t Actually, some of these papers only consider partially
asynchronous iterations, but their convergence results readily
extend to cover the case of total asynchronism.

The induction hypothesis is true for k = 0, since the
initial estimate is assumed to be in X(0). Assuming it
is true for a given k, we will show that there exists a
time tk+~ with the required properties. For each
i = 1 , . . . , n, let t ~ be the first element of T ~ such that
t ~-> tk. Then by condition (b) in the statement of the
proposition, we have f (x i (f)) • X (k + 1) and

x~(t' + 1) ---f,(x~(t')) • S , (k + 1).

Similarly, for every t • T ~, t ~ t ~, we have xi(t + 1) •
X~(k + 1). Between elements of T ~, x~(t) does not
change. Thus,

x~(t) • Xi(k + 1), Vt-> t i + 1.

Let t~, = max {f} + 1. Then, using the Cartesian
i

product structure of X(k) we have

x (t) • X (k + l), Vt->t~.

Finally, since by Assumption 1, we have r~(t)---~ oo as
t---~oo, t • T ~, we can choose a time tk+l>--t'k that is
sufficiently large so that T~(t) ~ t;, for all i, j and t • T ~
with t -> tk+l. We then have, xj(r~(t)) • Xj(k + 1), for
all t • T ~ with t>--tk+~ and all j = l , . . . , n , which
implies that

xi(t) = (xl(ril(t)), xz(ri2(t)) x,(ri,(t))) • X (k + 1).

The induction is complete. Q.E.D.
The key idea behind Proposition 3 is that eventually

x(t) enters and stays in the set X(k); furthermore, due
to condition (b) in Proposition 3, it eventually moves
into the next set X (k + l) . The most restrictive
assumption in the proposition is the requirement that
each X(k) is the Cartesian product of sets Xi(k).
Successful application of Proposition 3 depends on the
ability to properly define the sets X~(k) with the
required properties. This is possible for two general
classes of iterations which will be discussed shortly.

Notice that Proposition 3 makes no assumptions on
the nature of the sets X~(k). For this reason, it can be
applied to problems involving continuous variables, as
well as discrete iterations involving finite-valued
variables. Furthermore, the result extends in the
obvious way to the case where each Xi(k) is a subset
of an infinite-dimensional space (instead of being a
subset of ~n,) or to the case where f has multiple fixed
points.

Interestingly enough, the sufficient conditions for
asynchronous convergence provided by Proposition 3,
are also known to be necessary for two special cases:
(i) if n~ = 1 for each i and the mapping f is linear
(Chazan and Miranker, 1969), and (ii) if the set X is
finite (Uresin and Dubois, 1990).

Several authors have also studied asynchronous
iterations with zero delays, that is, under the
assumption r~(t) = t for every t • T~: see for example
Robert et al. (1975); Robert (1976, 1987, 1988). Note
that this is a special case of our asynchronous model,
but is more general than the synchronous Jacobi and
Gauss-Seidel iterations of Section 2, because the sets
T ~ are allowed to be arbitrary. General necessary and
sufficient convergence conditions for the zero-delay

14 D . P . BERTSEKAS and J. N. TSITSIKLIS

case can be found in Tsitsiklis (1987) where it is shown
that asynchronous convergence is guaranteed if and
only if there exists a Lyapunov-type function which
testifies to this.

6.1. Maximum norm contractions
Consider a norm on ~" defined by

IIx, ll,
IIxll = m a x - - , (6.1)

i wl

where x~ • ~"' is the ith component of x, II "[[i is a
norm on ~"' , and wi is a positive scalar, for each i.
Suppose that f has the following contraction property:
there exists some o~ e [0, 1) such that

IIf(x)-x*ll<-oLIIx-x*ll, Yx~X, (6.2)

where x* is a fixed point off . Given a vector x(0) ~ X
with which the algorithm is initialized, let

gi(k) = {x, ~ ~ " ' I IIx, - x ? l l , --- o ? I Ix(0) - x * l l } .

It is easily verified that these sets satisfy the conditions
of Proposition 3 and convergence to x* follows.

Iteration mappings f with the contraction property
(6.2) are very common. We list a few examples:

(a) Linear iterations of the form f (x) = A x + b,
where A is an n × n matrix such that p(IAI) < 1. Here,
IA[is the matrix whose entries are the absolute values
of the corresponding entries of A, and o(IA(), the
spectral radius of IAI, is the largest of the magnitudes
of the eigenvalues of IA] (Chazan and Miranker,
1969). This result follows from a corollary of the
Perron-Frobenius theorem that states that P(IAI)< 1
if and only if A is a contraction mapping with respect
to a weighted maximum norm of the form (6.1), for a
suitable choice of the weights. As a special case, we
obtain totally asynchronous convergence of the
iteration ~ : = ~P for computing a row vector ~r
consisting of the invariant probabilities of an
irreducible, discrete-time, finite-state, Markov chain.
Here, P is the transition probability matrix of the
chain and one of the components of ~ is held fixed
throughout the algorithm (Bertsekas and Tsitsiklis,
1989b). Another special case, the case of periodic
asynchronous iterations, is considered in Donnelly
(1971). Let us mention here that the condition
o(IAI) < 1 is not only sufficient but also necessary for
totally asynchronous convergence (Chazan and Mir-
anker, 1969).

(b) Gradient iterations of the form f (x) = x -
y VF(x), where y is a small positive stepsize
parameter, F : ~ n ~ is a twice continuously
differentiable cost function whose Hessian matrix is
bounded and satisfies the diagonal dominance
condition

[V2F(x)l -< V~F(x) - fl, Vi, Vx ~ X. (6.3)
ivsi

Here, fl is a positive constant and VEF stands for
(OZF)/(ax, axj) (Bertsekas, 1983; Bertsekas and
Tsitsiklis, 1989b).

Example 1. Consider the iteration x : = x - y A x ,

where A is the positive definite matrix given by

A = 1 l + e 1 ,

1 1 l + e

and 7, • are positive constants. This iteration can be
viewed as the gradient iteration x : = x - 7 VF(x) for
minimizing the quadratic function F(x) = ½x'Ax and is
known to converge synchronously if the stepsize y is
sufficiently small. If • > 1 , then the diagonal
dominance condition of (6.3) holds and totally
asynchronous convergence follows, when the stepsize
7 is sufficiently small. On the other hand, when
0 < • < 1, the condition of (6.3) fails to hold for all
7 > 0 . In fact, in that case, it is easily shown that
p(ll - 7AI) > 1 for every Y > 0, and totally asynchro-
nous convergence fails to hold, according to the
necessary conditions quoted earlier. An illustrative
sequence of events under which the algorithm
diverges is the following. Suppose that the processors
start with a common vector x(0) = (c, c, c) and that
each processor executes a very large number to of
updates of its own component without informing the
others. Then, in effect, processor 1 solves the
equation 0 = (aF/axl)(xl , c, c) = (1 + e)xl + c + c, to
obtain xl(to) ~ -2c / (1 + e), and the same conclusion
is obtained for the other processors as well. Assume
now that the processors exchange their results at time
to and repeat the above described scenario. We will
then obtain xi(2to) ~ -2xi(to)/(1 + •) ~ (-2)2c/(1 +
•)2. Such a sequence of events can be repeated ad
infinitum, and it is clear that the vector x(t) will
diverge if • < 1.

(c) The projection algorithm (as well as several
other algorithms) for variational inequalities. Here,

p

X = l-I Xi = ~" is a closed convex set, f : X ~ ~" is a
i = l

given function, and we are looking for a vector x* e X
such that

(x-x*)'f(x*)>-o, Vx~X.

The projection algorithm is given by x := Ix - 7f(x)] +,
where [.]+ denotes orthogonal projection on the set
X. Totally asynchronous convergence to x* is
obtained under the assumption that the mapping
x ~ x - y f (x) is a maximum norm contraction
mapping, and this is always the case if the Jacobian of
f satisfies a diagonal dominance condition (Bertsekas
and Tsitsiklis, 1989b). Special cases of variational
inequalities include constrained convex optimization,
solution of systems of nonlinear equations, traffic
equilibrium problems under a user-optimization
principle, and Nash games. Let us point out here that
an asynchronous algorithm for solving a traffic
equilibrium problem can be viewed as a model of a
traffic network in operation whereby individual users
optimize their individual routes given the current
condition of the network. It is natural to assume that
such user-optimization takes place asynchronously.
Similarly, in a game theoretic context, we can think of
a set of players who asynchronously adapt their
strategies so as to improve their individual payoffs,

Para l le l and d i s t r i bu t ed i t e ra t ive a l g o r i t h m s - - - A survey 15

and an asynchronous iteration can be used as a model
of such a situation.

(d) Waveform relaxation methods for solving a
system or ordinary differential equations under a weak
coupling assumption (Mitra, 1987), as well as for
two-point boundary value problems (Lang et al., 1986;
Spited, 1984; Bertsekas and Tsitsiklis, 1989b).

Other studies have dealt with an asynchronous
Newton algorithm (Bojanczyk, 1984), an agreement
problem (Li and Basar, 1987), diagonally dominant
linear programming problems (Tseng, 1990), and a
variety of infinite-dimensional problems such as
partial differential equations, and variational in-
equalities (Spiteri, 1984, 1986; Miellou and Spiteri,
1985; Anwar and E1 Tarazi, 1985).

In the case of maximum norm contraction mappings,
there are some convergence rate estimates available
which indicate that the asynchronous iteration
converges faster than its synchronous counterpart,
especially if the coupling between the different
components of x is relatively weak. Let us suppose
that an update by a processor takes one time unit and
that the communication delays are always equal to D
time units, where D is a positive integer. With a
synchronous algorithm, there is one iteration every
D + 1 time units and the "error" I Ix (t) -x* l l can be
bounded by Co: '~0+1), where C is some constant
[depending on x(0)] and oc is the contraction factor of
(6.2). We now consider an asynchronous execution
whereby, at each time step, an iteration is performed
by each processor i and the result is immediately
transmitted to the other processors. Thus the values of
xj (j ~ i) which are used by processor i are always
outdated by D time units. Concerning the function f,
we assume that there exists some scalar fl such that
0 < t i < tr and

IIf,(x) - x ? l l ,

<-max{o[llxi-x:lli, tilrl]]a?llx]-x:llj}, Vi. (6.4)

It is seen that a small value of ti corresponds to a
situation where the coupling between different
components of x is weak. Under condition (6.4), the
convergence rate estimate for the synchronous
iteration cannot be improved, but the error
Ilx(t)-x*ll for the asynchronous iteration can be
shown (Bertsekas and Tsitsiklis, 1989b) to be bounded
above by Cp', where C is some constant and p is the
positive solution of the equation p = max {ol, t iP-°}.
It is not hard to see that p < o l 1/(°+l) and the
asynchronous algorithm converges faster. The ad-
vantage of the asynchronous algorithm is more
pronounced when fl is very small (very weak coupling)
in which case p approaches ol. The latter is the
convergence rate that would have been obtained if
there were no communication delays at all. We
conclude that, for weakly coupled problems, asyn-
chronous iterations are slowed down very little by
communication delays, in sharp contrast with their
synchronous counterparts.

6.2. Monotone mappings
Consider a function f : ~ n ~ n which is con-

tinuous, monotone [that is, if x -<y then f (x) - f (y)] ,
and has a unique fixed point x*. Furthermore, assume
that there exist vectors u, v, such that u <-f(u)<-
f (v) <- v. If we let fk be the composition of k copies of
f and X (k) = {x [f~(u) -<x-<fk(v)} , then Proposition
3 applies and establishes totally asynchronous
convergence. The above stated conditions on f are
satisfied by the iteration mapping corresponding to the
successive approximation (value iteration) algorithm
for discounted and certain undiscounted infinite
horizon dynamic programming problems (Bertsekas,
1982).

An important special case is the asynchronous
Bel lman-Ford algorithm for the shortest path
problem. Here we are given a directed graph
G = (N , A) , with N = { 1 n} and for each arc
(i, j) c A , a weight alj representing its length. The
problem is to compute the shortest distance x~ from
every node i to node 1. We assume that every cycle
not containing node 1 has positive length and that
there exists at least one path from every node to node
1. Then, the shortest distances correspond to the
unique fixed point of the monotone mapping
f : ~n ~_~ ~n defined by f~(x) = 0 and

f~(x)= min (a~j + xj), i:/: l.
{j [(i,j)~m}

The Bel lman-Ford algorithm consists of the iteration
x : = f (x) and can be shown to converge asynchro-
nously (Tajibnapis, 1977; Bertsekas, 1982). We now
compare the synchronous and the asynchronous
versions. We assume that both versions are initialized
with x / = oo for every i :P 1, which is the most common
choice. The synchronous iteration is known to
converge after at most n iterations. However,
assuming that the communication delays from
processor i to j are fixed to some constant Di,, and that
the computation time is negligible, it is easily shown
that the asynchronous iteration is guaranteed to
terminate earlier than the synchronous one.

Notice that the number of messages exchanged in
the synchronous Bel lman-Ford algorithm is at most
n 3. This is because there are at most n stages and at
most n messages are transmitted by each processor at
each stage. Interestingly enough, with an asynchro-
nous execution, and if the communication delays are
allowed to be arbitrary, some simple examples (due to
E. M. Gafni and R. G. Gallager; see Bertsekas and
Tsitsiklis, 1989b) show that the number of messages
exchanged until termination could be exponential in
n, even if we restrict processor i to transmit a message
only when the value of xl changes. This could be a
serious drawback but experience with the algorithm
indicates that this worst case behavior rarely occurs
and that the average number of messages exchanged is
polynomial in n. It also turns out that the expected
number of messages is polynomial in n under some
reasonable probabilistic assumptions on the execution
of the algorithm (Tsitsiklis and Stamoulis, 1990).

A number of asynchronous convergence results

16 D . P . BERTSEKAS and J. N. TSITSIKLIS

making essential use of monotonicity conditions are
also available for relaxation and pr imal-dual algo-
rithms for linear and nonlinear network flow
problems (Bertsekas, 1986; Bertsekas and Eckstein,
1987, 1988; Bertsekas and El Baz, 1987; Bertsekas
and Castanon, 1989, 1990). Experiments showing
faster convergence for asynchronous over synchronous
relaxation methods for assignment problems using a
shared memory machine are given in Bertsekas and
Castonon (1989).

We finally note that, under the monotonicity
assumptions of this subsection, the convergence rate
of an asynchronous iteration is guaranteed to be at
least as good as the convergence rate of a
corresponding synchronous iteration, under a fair
comparison (Bertsekas and Tsitsiklis, 1989a).

7. PARTIALLY ASYNCHRONOUS ALGORITHMS~I
We now consider iterations satisfying the partial

asynchronism Assumption 2. Since old information is
"purged" from the algorithm after at most B units, it
is natural to describe the "state" of the algorithm at
time t by the vector z(t) ~ X R defined by

z (t) = (x (t) , x (t - 1) x (t - B + 1)) .

We then notice that x(t + 1) can be determined [cf.
(5.1)-(5.3)] in terms of z(t); in particular, knowledge
of x(r) , for r-< t - B is not needed. We assume that
the iteration mapping f is continuous and has a
nonempty set X* c X of fixed points. Let Z* be the
set of all vectors z * ~ X n of the form z * =
(x*,x*, x*), where x* belongs to X*. We
present a sometimes useful convergence result, which
employs a Lyapunov-type function d defined on the
set X B.

Proposition 4. (Bertsekas and Tsitsiklis, 1989b)
Suppose that there exist a positive integer t* and a
continuous function d : X B ~ [0, ~) with the following
properties: For every initialization z(0)~ Z* of the
iteration and any subsequent sequence of events
(conforming to Assumption 2) we have d(z(t*))<
d(z(O)) and d(z(1))---d(z(O)). Then every limit point
of a sequence {z(t)} generated by the partially
asynchronous iteration (5.1)-(5.2) belongs to Z*.
Furthermore, if X = ~", if the function d is of the
form d (z) = inf I Iz -z* l l , where I1" II is some vector

z*~Z*

norm, and if the function f is of the form
f (x) = A x +b, where A is a n × n matrix and b is a
vector in ~", then d(z(t)) converges to zero at the
rate of a geometric progression.

For an interesting application of the above
proposition, consider a mapping f : ~n ~ ~n of the
form f (x) = Ax where A is an irreducible stochastic
matrix, and let n, = 1 for each i. In the corresponding
iterative algorithm, each processor maintains and
communicates a value of a scalar variable xi and once
in a while forms a convex combination of its own
variable with the variables received from other
processors according to the rule

X i : = ~ a # x) .

] - 1

Clearly, if the algorithm converges then, in the limit,
the values possessed by different processors are equal.
We will thus refer to the asynchronous iteration
x : = A x as an agreement algorithm. It can be shown
that, under the assumption of partial asynchronism,
the function d defined by

d(z (t))=max max x i (~) - m i n rain x/(r) (7.1)
i t B < r ~ t i t B < r < - t

has the properties assumed in Proposition 4, provided
that at least one of the diagonal entries of A is
positive. In particular, if the processors initially
disagree, the "maximum disagreement" [cf. (7.1)] is
reduced by a positive amount after at most 2nB time
units (Tsitsiklis, 1984). Proposition 4 applies and
establishes geometric convergence to agreement.
Furthermore, such partially asynchronous conver-
gence is obtained no matter how big the value of the
asynchronism measure B is, as long as B is finite.

The following example (Bertsekas and Tsitsiklis,
1989b) shows that the agreement algorithm need not
converge totally asynchronously.

Example 2. Suppose that

[1/2 1/2]
A = I_1/2 1/2]"

Here, the synchronous iteration x (t + l) = A x (t)
converges in a single step to the vector x = (y, y),
where y = (x~ +x2)/2. Consider the following totally
asynchronous scenario. Each processor updates its
value at each time step. At certain times t~, t2
each processor transmits its value which is received
with zero delay and is immediately incorporated into
the computations of the other processor. We then
have

x l (t + l) x,(t) x2(tk) tk<--t<tk+ = ~ - + ~ - , ,,

xz(t+ 1)=x'(tk) + x~(t) t~<--t<tk+,.
2 2 '

(See Fig. 8 for an illustration.) Thus,

xt(tk+,) = (1/2) 'k+' -'kx,(tk) + (1 -- (1/2) '*)xz(tk),

xz(tk+,) = (1/2) 'k÷' '~Xz(t~) + (1 -- (1/2) '~)x,(tk).

Subtracting these two equations we obtain

]x/(tk+,) - x,(tk+,)l = (1 - 2(1/2) '~+'-'~) Ixz(tk) - x,(tk)l

= (1 - Ek)Ix2(tk) -x , (tx) l ,

where ek = 2(1/2) 'k+'-'k. In particular, the disagree-
ment [x2(tk)--Xl(tk)[keeps decreasing. On the other
hand, convergence to agreement is not guaranteed

unless l~I (1 - e k) = 0 which is not necessarily the
k=l

case. For example, if we choose the differences
tk+ l - tk to be large enough so that ek < k 2, then we

can use the fact I] (l - k 2)>0 to see that
k 1

convergence to agreement does not take place.

Example 2 shows that failure to converge is possible
if part (b) of the partial asynchronism Assumption 2

Para l le l and d i s t r i bu t ed i t e ra t ive a l g o r i t h m s - - A survey 17

x~(O)

~ x l (t l)

\ / ~ - ~ - - - - - ~(t~l

~ . ¢ . ~ - - ' ~ - x 1 I t2)

/ / . f ~ , (t~)

xl (0) /

tT t 2 t3

l ira sup x i (t) , i = 1,2

l i ra i n f x~(t) , i = 1,2
t ÷ ~ a

~t t

FIG. 8. Illustration of divergence in Example 2.

fails to hold. There also exist examples demonstrating
that parts (a) and (c) of Assumption 2 are also
necessary for convergence.

Example 2 illustrates best the convergence mecha-
nism in algorithms which converge partially asynchro-
nously for every B, but not totally asynchronously.
The key idea is that the distance from the set of fixed
points is guaranteed to "contract" once in a while.
However, the contraction factor depends on B and
approaches 1 as B gets larger. (In the context of
Example 2, the contraction factor is 1 - E~ which
approaches 1 as t~+ l - tk is increased to infinity.) As
time goes to infinity, the distance from the set of fixed
points is contracted an infinite number of times but
this guarantees convergence only if the contraction
factor is bounded away from 1, which then
necessitates a finite but otherwise arbitrary bound on
B.

Partially asynchronous convergence for every value
of B has been established for several variations and
generalizations of the agreement algorithm (Tsitsiklis,
1984; Bertsekas and Tsitsiklis, 1989b), as well as for a
variety of other problems:

(a) The iteration :t := ~rP for the computation of a
row vector n of invariant probabilities, associated with
an irreducible stochastic matrix P with a nonzero
diagonal entry (Lubachevsky and Mitra, 1986). This
result can be also obtained by letting xi = ~rl/nT,
where n* is a positive vector satisfying n* = riP, and
by verifying that the variables xl obey the equations of
the agreement algorithm (Bertsekas and Tsitsiklis,
1989b).

(b) Relaxation algorithms involving nonexpans-
ive mappings with respect to the maximum norm
(Tseng et al., 1990; Bertsekas and Tsitsiklis, 1989b).
Special cases include dual relaxation algorithms for
strictly convex network flow problems and linear
iterations for the solution of linear equations of the
form A x =b , where A is an irreducible matrix
satisfying the weak diagonal dominance condition
~, la~jl <-- a, , for all i.

j~,~i

(c) An asynchronous algorithm for load balancing
in a computer network whereby highly loaded
processors transfer fractions of their load to their
lightly loaded neighbors, until the load of all
processors becomes the same (Bertsekas and Tsits-
iklis, 1989b).

In all of the above cases, partially asynchronous
convergence has been proved for all values of B, and
examples are available which demonstrate that totally
asynchronous convergence fails.

We close by mentioning a particular context in
which the agreement algorithm could be of use.
Consider a set of processors who obtain a sequence of
noisy observations and try to estimate certain
parameters by means of some iterative method. This
could be a stochastic gradient algorithm (such as the
ones arising in recursive system identification) or some
kind of a Monte Carlo estimation algorithm. All
processors are employed for the estimation of the
same parameters but their individual estimates are
generally different because the noises corrupting their
observations can be different. We let the processors
communicate and combine their individual estimates
in order to average their individual noises, thereby
reducing the error variance. We thus let the
processors execute the agreement algorithm, trying to
agree on a common estimate, while simultaneously
obtaining new observations which they incorporate
into their estimates. There are two opposing effects
here: the agreement algorithm tends to bring their
estimates closer together, while new observations
have the potential of increasing the difference of their
estimates. Under the partial asynchronism assump-
tion, the agreement algorithm tends to converge
geometrically. On the other hand, in several stochastic
algorithms (such as the stochastic approximation
iteration

1
x := x - t (VF(x) + w),

where w represents observation noise) the stepsize 1#

AUTO 27:1-B

18 D . P . BERTSEKAS and J. N. TSITSIKLIS

decreases to zero as time goes to infinity. We then
have, asymptotically, a separation of time scales: the
stochastic algorithm operates on a slower time scale
and therefore the agreement algorithm can be
approximated by an algorithm in which agreement is
instantly established. It follows that the asynchronous
nature of the agreement algorithm cannot have any
adverse effect on the convergence of the stochastic
algorithm. Rigorous results of this type can be found
in Tsitsiklis (1984); Tsitsiklis et al. (1986); Kushner
and Yin (1987a, b); Bertsekas and Tsitsiklis (1989b).

8. PARTIALLY ASYNCHRONOUS ALGORITHMS--II
We now turn to the study of partially asynchronous

iterations that converge only when the stepsize is
small. We illustrate the behavior of such algorithms in
terms of a prototypical example.

Let A be an n × n positive definite symmetric
matrix and let b be a vector in ~". We consider the
asynchronous iteration x := x - y (A x - b), where 7 is
a small positive stepsize. We define a cost function
F : ~n ~ ~ by F(x) = ½x'Ax - x ' b , and our iteration
is equivalent to the gradient algorithm x : = x -
y VF(x) for minimizing F. This algorithm is known to
converge synchronously provided that y is chosen
small enough. On the other hand, it was shown in
Example 1 that the gradient algorithm does not
converge totally asynchronously. Furthermore, a
careful examination of the argument in that example
reveals that for every value of y there exists a B large
enough such that the partially asynchronous gradient
algorithm does not converge. Nevertheless, if), is
fixed to a small value, and if B is not excessively large
(we roughly need B <- C / y , where C is some constant
determined by the structure of the matrix A), then the
partially asynchronous iteration turns out to be
convergent. An equivalent statement is that for every
value of B there exists some ~,o>0 such that if
0 < ~, < yo then the partially asynchronous algorithm
converges (Tsitsiklis et al., 1986; Bertsekas and
Tsitsiklis, 1989b). The rationale behind such a result is
the following. If the information available to
processor i on the value of x 1 is outdated by at most B
time units, then the difference between the value

i xi(rj(t)) possessed by processor i and the true value
xj(t) is of the order of 7B, because each step taken by
processor j is of the order of 7. It follows that for y
very small the errors caused by asynchronism become
negligible and cannot destroy the convergence of the
algorithm.

The above mentioned convergence result can be
extended to more general gradient-like algorithms for
nonquadratic cost functions F. One only needs to
assume that the iteration is of the form x := x - ~,s(x),
where s (x) is an update direction with the property
si(x) V F (x) > - K [V i F (x) l 2, where K is a positive
constant, together with a Lipschitz continuity
condition on VF, and a boundedness assumption of
the form IIs(x)ll -< L IIVF(x)ll (Tsitsiklis et al., 1986;
Bertsekas and Tsitsiklis, 1989b). Similar conclusions
are obtained for gradient projection iterations for
constrained convex optimization (Bertsekas and

Tsitsiklis, 1989b).
An important application of asynchronous gradient-

like optimization algorithms arises in the context of
optimal quasistatic routing in data networks. In a
common formulation of the routing problem one
is faced with a convex nonlinear multicommodity
network flow problem (Bertsekas and Gallager, 1987)
that can be solved using gradient projection methods.
It has been shown that these methods also converge
partially asynchronously, provided that a small
enough stepsize is used (Tsitsiklis and Bertsekas,
1986). Furthermore, such methods can be naturally
implemented on-line by having the processors in the
network asynchronously exchange information on the
current traffic conditions in the system and perform
updates trying to reduce the measure of congestion
being optimized. An important property of such an
asynchronous algorithm is that it adapts to changes in
the problem being solved (such as changes on the
amount of traffic to be routed through the network)
without a need for aborting and restarting the
algorithm. Some further analysis of the asynchronous
routing algorithm can be found in Tsai (1986, 1989)
and Tsai et al. (1986).

9. TERMINATION OF ASYNCHRONOUS
ITERATIONS

In practice, iterative algorithms are executed only
for a finite number of iterations, until some
termination condition is satisfied. In the case of
asynchronous iterations, the problem of determining
whether termination conditions are satisfied is rather
difficult because each processor possesses only partial
information on the progress of the algorithm.

We now introduce one possible approach for
handling the termination problem for asynchronous
iterations. In this approach, the problem is decom-
posed into two parts:

(a) An asynchronous iterative algorithm is modified
so that it terminates in finite time.

(b) A special procedure is used to detect termination
in finite time after it has occured.

In order to handle the termination problem, we
have to be a little more specific about the model of
interprocessor communication. While the general
model of asynchronous iterations introduced in
Section 5 can be used for both shared memory and
message-passing parallel architectures, we adopt here
a more explicit message-passing model. In particular,
we assume that each processor j sends messages with
the value of xj to every other processor i. Processor i
keeps a buffer with the most recently received value of
x,. We denote the value in this buffer at time t by
x~(t). This value was transmitted by processor j at
some earlier time T~(t) and therefore x j (t) i ---- Xj(~j(t)).i
We also assume the following:

Assumpt ion 3. (a) If t e T i and x,(t + 1) ~ x i (t) , then
processor i will eventually send a message to every
other processor.

(b) If a processor i has sent a message with the

Para l l e l and d i s t r i b u t e d i t e r a t ive a l g o r i t h m s - - A survey 19

value of xi(t) to some other processor], then
processor i will send a new message to processor j only
after the value of x~ changes (due to an update by
processor i).

(c) Messages are received in the order that they are
transmitted.

(d) Each processor sends at least one message to
every other processor.

Assumption 3(d) is only needed to get the algorithm
started. Assumption 3(b) is crucial and has the
following consequences. If the value of x(t) settles to
some final value, then there will be some time t* after
which no messages will be sent. Furthermore, all
messages transmitted before t* will eventually reach
their destinations and the algorithm will eventually
reach a quiescent state where none of the variables x~
changes and no message is in transit. We can then say
that the algorithm has terminated.

More formally, we view termination as equivalent
to the following two properties:

(i) No message is in transit.
(ii) An update by some processor i causes no change

in the value of xi.

Property (ii) is a collection of local termination
conditions. There are several algorithms for termina-
tion detection when a termination condition can be
decomposed as above (Dijkstra and Scholten, 1980;
Bertsekas and Tsitsiklis, 1989b). Thus termination
detection causes no essential difficulties, under the
assumption that the asynchronous algorithm termin-
ates in finite time.

We now turn to the more difficult problem of
converting a convergent asynchronous iterative
algorithm into a finitely terminating one. If we were
dealing with the synchronous iteration x (t+ 1)=
f (x(t)) , it would be natural to terminate the algorithm
when the condition IIx(t + 1) - x (t) l l - < • is satisfied,
where • is a small positive constant reflecting the
desired accuracy of solution, and where I1" II is a
suitable norm. This suggests the following approach
for the context of asynchronous iterations. Given the
iteration mapping f and the accuracy parameter •, we
define a new iteration mapping g : X ~ X by letting

g,(x) I f~(x) ifllf~(x) - x , I I - e,
= txi, otherwise.

We will henceforth assume that the processors are
executing the asynchronous iteration x :=g(x) . The
key question is whether this new iteration is
guaranteed to terminate in finite time. One could
argue as follows. Assuming that the original iteration
x : = f (x) is guaranteed to converge, the changes in the
vector x will eventually become arbitrarily small, in
which case we will have g (x) = x and the iteration
x := g(x) will terminate. Unfortunately, this argument
is fallacious, as demonstrated by the following
example.

Example 3. Consider the function f : = ~2 V-~ ~ 2

defined by
- x l , ifx2-> • /2 ,

fl(x) = [0, if X2 < • /2.

f2(x) = x2/2.

It is clear that the asynchronous iteration x : = f (x)
converges to x* = (0, 0): in particular, x2 is updated
according to x2:=x:/2 and tends to zero; thus, it
eventually becomes smaller than • /2. Eventually
processor 1 receives a value of x2 smaller than • /2 and
a subsequent update by the same processor sets x~ to
zero.

Let us now consider the iteration x := g(x). If the
algorithm is initialized with x2 between ¢/2 and E,
then the value of Xz will never change, and processor 1
will keep executing the nonconvergent iteration
xl : = - x ~ . Thus, the asynchronous iteration x := g(x)
is not guaranteed to terminate.

The remainder of this section is devoted to the
derivation of conditions under which the iteration
x : = g (x) is guaranteed to terminate. We introduce
some notation. Let I be a subset of the set { 1 , . . . , p}
of all processors. For each i • / , let there be given
some value 0~ • X~. We consider the asynchronous
iteration x:=f l ' ° (x) , which is the same as the
iteration x : = f (x) except that any component x , with
i • I, is set to the value 0~. Formally, the mapping f~.o
is defined by letting f~'°(x)=f~(x), if i ¢ I , and
f~'°(x) = 0~, if i • L

Proposition 5. (Bertsekas and Tsitsiklis, 1989a) Let
Assumption 3 hold. Suppose that for any I c
{1 p} and for any choice of O i • X , i • L the
asynchronous iteration x :=fl '°(x) is guaranteed to
converge. Then, the asynchronous iteration x := g(x)
terminates in finite time.

Proof. Consider the asynchronous iteration x := g(x).
Let I be the set of all indices i for which the variable
x,(t) changes only a finite number of times. For each
i • / , let 01 be the limiting value of xi(t). Since f maps
X into itself, so does g. It follows that 0i • Xi for each
i. For each i • I, processor i sends a positive but finite
number of messages [Assumptions 3(d) and (b)]. By
Assumption 3(a), the last message sent by processor i
carries the value 0~ and by Assumption 3(c) this is also
the last message received by any other processor.
Thus, for all t large enough, and for all], we will have
x~(t) = x,(r~(t)) = 0~. Thus, the iteration x := g(x)
eventually becomes identical with the iteration
x :=fl"°(x) and therefore converges. This implies that
the difference xi(t + 1) - x i (t) converges to zero for
any i ¢ I. On the other hand, because of the definition
of the mapping g, the difference x~(t + 1) -x~(t) is
either zero, or its magnitude is bounded below by
• > 0. It follows that xi(t + 1) - x,(t) eventually settles
to zero, for every i ~ L This shows that i • I for every
i¢1; we thus obtain a contradiction unless I =
{1 p}, which proves the desired result. Q.E.D.

We now identify certain cases in which the main
assumption in Proposition 5 is guaranteed to hold. We
consider first the case of monotone iterations and we

20 D . P . BERTSEKAS and J. N. TSITSIKLIS

assume that the iteration mapping f has the properties
introduced in Section 6.2. For any I and {0i I i e 1},
the mapping ft .o inherits all of the properties of f,
except that f~,o is not guaranteed to have a unique
fixed point. If this latter property can be independ-
ently verified, then the asynchronous iteration
x :=f t ' ° (x) is guaranteed to converge, and Proposition
3 applies. Let us simply say here that this property can
be indeed verified for several interesting problems.

Let us now consider the case where f satisfies the
contraction condition I I f (x) - x * l l - o: I Ix-x*l l of
(6.2). Unfortunately, it is not necessarily true that the
mappings fr, o also satisfy the same contraction
condition. In fact, the mappings f l .o are not even
guaranteed to have a fixed point. Let us strengthen
the contraction condition of (6.2) and assume that

[I f (x) - f (y) l l < - o : l l x - y l l , Vx, y e ~ " , (9.1)

where I1" II is the weighted maximum norm of (6.1)
and oL e [0, 1). We have f~ '°(x)_f~,O(y) = O i - Oi = 0
for all i e I. Thus,

1
IIf"°(x) - f " ° (y) l I = max - - IIf~(x) - f~(Y)ll~

i ~ l W i

1
-< max - - IIf,(x) -fi(Y)lli

i wi

-- Ill(x) - f (Y) l l -< o: IIx -Yll-

Hence, the mappings f t , o inherit the contraction
property (9.1). As discussed in Section 6, this
property guarantees asynchronous convergence and
therefore Proposition 5 applies again.

We conclude that the modification x := g(x) of the
asynchronous iteration x := f (x) is often, but not
always, guaranteed to terminate in finite time. It is an
interesting research question to devise economical
termination procedures for the iteration x := f (x) that
are always guaranteed to work. The snapshot
algorithm of Chandy and Lamport (1985) [see
(Bertsekas and Tsitsiklis, 1989, Section 8.2)] seems to
be one option.

10. CONCLUSIONS
Iterative algorithms are easy to parailelize and can

be executed synchronously even in inherently
asynchronous computing systems. Furthermore, for
the regular communication networks associated with
several common parallel architectures, the com-
munication requirements of iterative algorithms are
not severe enough to preclude the possibility of
massive parallelization and speedup of the computa-
tion. Iterative algorithms can also be executed
asynchronously, often without losing the desirable
convergence properties of their synchronous counter-
parts, although the mechanisms that affect conver-
gence can be quite different for different types of
algorithms. Such asynchronous execution may offer
substantial advantages in a variety of contexts.

At present, there is very strong evidence suggesting
that asynchronous iterations converge faster than their
synchronous counterparts. However, this evidence is
principally based on analysis and simulations. There is
only a small number of related experimental works
using shared memory machines. These works support

the conclusions of the analysis but more testing with a
broader variety of computer architectures is needed to
provide a comprehensive picture of the practical
behavior of asynchronous iterations. Furthermore, the
proper implementation of asynchronous algorithms in
real parallel machines can be quite challenging and
more experience is needed in this area. Finally, much
remains to be done to enlarge the already substantial
class of problems for which asynchronous algorithms
can be correctly applied.

REFERENCES
Anwar, M. N. and N. El Tarazi (1985). Asynchronous

algorithms for Poisson's equation with nonlinear boundary
conditions. Computing, 34, 155-168.

Awerbuch, B. (1985). Complexity of network synchroniza-
tion. J. ACM, 32, 804-823.

Barbosa, V. C. (1986). Concurrency in systems with
neighborhood constraints. Doctoral Dissertation, Compu-
ter Science Dept., U,C.L.A., Los Angeles, CA, U.S.A.

Barbosa, V. C. and E. M. Gafni (1987). Concurrency in
heavily loaded neighborhood-constrained systems. Proc.
7th Int. Conf. on Distributed Computing Systems.

Baudet, G. M. (1978). Asynchronous iterative methods for
multiprocessors. J. ACM, 2, 226-244.

Bertsekas, D. P. (1982). Distributed dynamic programming,
IEEE Trans. Aut. Control, AC-27, 610-616.

Bertsekas, D. P. (1983). Distributed asynchronous computa-
tion of fixed points. Math. Programm. 27, 107-120.

Bertsekas, D. P. (1986). Distributed asynchronous relaxation
methods for linear network flow problems. Technical
Report LIDS-P-1606, Laboratory for Information and
Decision Systems, M.I.T., Cambridge, MA.

Bertsekas, D. P. and D. A. Castanon (1989). Parallel
synchronous and asynchronous implementations of the
auction algorithm. Technical Report TP-308, Alphatech
Inc, Burlington, MA. Also Parallel Computing (to
appear).

Bertsekas, D. P. and D. A. Castanon (1990). Parallel
asynchronous primal-dual methods for the minimum cost
flow problem. Math. Programming (submitted).

Bertsekas, D. P. and J. Eckstein (1988). Dual coordinate
step methods for linear network flow problems. Math.
Programming, 42, 203-243.

Bertsekas, D. P. and J. Eckstein (1987). Distributed
asynchronous relaxation methods for linear network flow
problems. Proc IFAC '87, Munich, F.R.G.

Bertsekas, D. P. and D. El Baz (1987). Distributed
asynchronous relaxation methods for convex network flow
problems. SlAM J. Control Optimiz., 25, 74-84.

Bertsekas, D. P. and R. G. Gallager (1987). Data Networks.
Prentice Hall, Englewood Cliffs, NJ.

Bertsekas, D. P., C. Ozveren, G. Stamoulis, P. Tseng and J.
N. Tsitsiklis (1989). Optimal communication algorithms
for hypercubes, Technical Report LIDS-P-1847, Labora-
tory for Information and Decision Systems, M.I.T.,
Cambridge, MA. Also J. Parallel Distrib. Comput. (to
appear).

Bertsekas, D. P. and J. N. Tsitsiklis (1989a). Convergence
Rate and Termination of Asynchronous Iterative Algo-
rithms, Proc. 1989 Int. Conf. on Supercomputing,
Irakleion, Greece, 1989, pp. 461-470.

Bertsekas, D. P. and J. N. Tsitsiklis (1989b). Parallel and
Distributed Computation: Numerical Methods, Prentice-
Hall, Englewood Cliffs, NJ.

Bojanczyk, A. (1984). Optimal asynchronous Newton
method for the solution of nonlinear equations. J. ACM,
32, 792-803.

Chandy, K. M. and L. Lamport (1985). Distributed
snapshots: determining global states of distributed systems,
ACM Trart~. Comput. Syst., 3, 63-75.

Chazan, D. and W. Miranker (1969). Chaotic relaxation.
Linear Algebra and its Applications, 2, 199-222.

Donnelly, J. D. P. (1971). Periodic chaotic relaxation,
Linear Algebra and its Applications, 4, 117-128.

Parallel and distributed iterative algorithrns--A survey 21

Dijkstra, E. W. and C. S. Scholten (1980). Termination
detection for diffusing computations. Inform. Process.
Lett., 11, 1-4.

Dubois, M. and F. A. Briggs (1982). Performance of
synchronized iterative processes in multi-processor sys-
tems, IEEE Trans. Software Engng, 8, 419-431.

El Tarazi, M. N. (1982). Some convergence results for
asynchronous algorithms. Numerische Mathematik, 39,
325-340.

Fox, G., M. Johnson, G. Lyzenga, S. Otto, J. Salmon and
D. Walker (1988). Solving Problems on Concurrent
Processors, Vol. 1, Prentice-Hall, Englewood Cliffs, NJ.

Jefferson, D. R. (1985). Virtual time. ACM Trans.
Programm. Languages Syst., 7, 404-425.

Johnsson, S. L. and C. T. Ho (1989). Optimum broadcasting
and personalized communication in hypercubes. IEEE
Trans. Comput., 38, 1249-1268.

Kung, H. T. (1976). Synchronized and asynchronous parallel
algorithms for multiprocessors. In Algorithms and
Complexity. Academic Press, New York, pp. 153-200.

Kushner, H. J. and G. Yin (1987a). Stochastic approxima-
tion algorithms for parallel and distributed processing.
Stochastics, 22, 219-250.

Kushner, H. J. and G. Yin (1987b). Asymptotic proper-
ties of distributed and communicating stochastic approxim-
ation algorithms. SIAM J. Control Optimiz., 2,5, 1266-
1290.

Lang, B., J. C. Miellou and P. Sl~iteri (1986). Asynchronous
relaxation algorithms for optimal control problems. Math.
Comput. Simult., 28, 227-242.

Lavenberg, S., R. Muntz and B. Samadi (1983).
Performance analysis of a rollback method for distributed
simulation. In A. K. Agrawala and S. K. Tripathi (Eds.),
Performance 83. North Holland, Amsterdam, pp. 117-
132.

Li, S. and T. Basar (1987). Asymptotic agreement and
convergence of asynchronous stochastic algorithms. IEEE
Trans. Aut. Control, 32, 612-618.

Lubachevsky, B. and D. Mitra (1986). A chaotic
asynchronous algorithm for computing the fixed point of a
nonnegative matrix of unit spectral radius. J. ACM, 33,
130-150.

McBryan, O. A. and E. F. Van der Velde (1987).
Hypercube algorithms and implementations, SIAM J.
Scientific Statist. Comput., 8, s227-s287.

Miellou, J. C. (1975a). Algorithmes de relaxation chaotique
a retards. R.A.I.R.O., 9, R-l, 55-82.

Miellou, J. C. (1975b). Iterations chaotiques a retards,
6tudes de la convergence dans ie cas d'~spaces
partiellement ordonnes. Comptes Rendus, Academie de
Sciences de Paris, 2811, Serie A, 233-236.

Miellou, J. C. and P. Spiteri (1985). Un crit~re de
convergence pour des mrthodes generales de point fixe.
Math. Modelling Numer. Anal., 19, 645-669.

Mitra, D. (1987). Asynchronous relaxations for the
numerical solution of differential equations by parallel
processors, SIAM J. Sci. Statist. Comput., 8, s43-s58.

Mitra, D. and I. Mitrani (1984). Analysis and optimum
performance of two message-passing parallel processors
synchronized by rollback. In E. Gelenbe (Ed.),
Performance '84. North Holland, Amsterdam, 35-50.

Nassimi, D. and S. Sahni (1980). An optimal routing
algorithm for mesh-connected parallel computers, J.
ACM, 27, 6-29.

Ortega, J. M. and R. G. Voigt (1985). Solution of partial
differential equations on vector and parallel computers,
SlAM Review, 27, 149-240.

Ozveren, C. (1987). Communication aspects of parallel
processing, Technical Report LIDS-P-1721, Laboratory for
Information and Decision Systems, MIT, Cambridge, MA.

Robert, F. (1976). Contraction en norme vectorielle:
convergence d'iterations chaotiques pour des equations
non lineaires de point fixe a plusieurs variables. Linear
Algebra and its Applications, 13, 19-35.

Robert, F. (1987). Iterations discretes asynchrones, Techni-

cal Report 671M, I.M.A.G., University of Grenoble,
France.

Robert, F., M. Charnay and F. Musy (1975). Iterations
chaotiques serie-parallele pour des equations non-lineaires
de point fixe, Aplikace Matematicky, 20, 1-38.

Saad, Y. and M. H. Schultz (1987). Data Communication in
Hypercubes, Research Report YALEU/DCS/RR-428,
Yale University, New Haven, CN.

Smart, D. and J. White (1988). Reducing the parallel
solution time of sparse circuit matrices using reordered
Gaussian elimination and relaxation. Proc. 1988 ISCAS,
Espoo, Finland.

Spiteri, P. (1984). Contribution a l'rtude de grands syst~mes
non lineaires. Doctoral Dissertation, L'Universite de
Franche-Comte, Besanqon, France.

Spiteri, P. (1986). Parallel asynchronous algorithms for
solving boundary value problems. In M. Cosnard et al.
(Eds.), Parallel Algorithms and Architectures, North
Holland, Amsterdam, pp. 73-84.

Tajibnapis, W. D. (1977). A correctness proof of a topology
information maintenance protocol for a distributed
computer network. Commun. ACM, 20, 477-485.

Tsai, W. K. (1986). Optimal quasi-static routing for virtual
circuit networks subjected to stochastic inputs. Doctoral
Dissertation, Dept of Electrical Engineering and Compu-
ter Science, M.I.T., Cambridge, MA.

Tsai, W. K. (1989). Convergence of gradient projection
routing methods in an asynchronous stochastic quasi-static
virtual circuit network. IEEE Trans. Aut. Control, 34,
20-33.

Tsai, W. K., J. N. Tsitsiklis and D. P. Bertsekas (1986).
Some issues in distributed asynchronous routing in virtual
circuit data networks. Proc. 25th IEEE Conf. on Decision
and Control, Athens, Greece. 1335-1337

Tseng, P. (1990). Distributed computation for linear
programming problems satisfying a certain diagonal
dominance condition. Math. Operat. Res, 15, 33-48.

Tseng, P., D. P. Bertsekas and J. N. Tsitsiklis (1990). SIAM
J. Control Optimiz. 28. 678-710

Tsitsiklis, J. N. (1984). Problems in decentralized decision
making and computation. Ph.D. thesis, Dep of Electrical
Engineering and Computer Science, M.I.T., Cambridge,
MA.

Tsitsiklis, J. N. (1987). On the stability of asynchronous
iterative processes. Math. Syst., 20, 137-153.

Tsitsiklis, J. N. (1989). A comparison of Jacobi and
Gauss-Seidel parallel iterations. Applied Math. Lett., 2,
167-170.

Tsitsiklis, J. N. and D. P. Bertsekas (1986). Distributed
asynchronous optimal routing in data networks, IEEE
Trans. Aut. Control, AC-31, 325-332.

Tsitsiklis, J. N., D. P. Bertsekas and M. Athans (1986).
Distributed asynchronous deterministic and stochastic
gradient optimization algorithms. IEEE Trans. Aut.
Control, AC-31, 803-812.

Tsitsiklis, J. N. and G. D. Stamoulis (1990). On the average
communication complexity of asynchronous distributed
algorithms, Technical Report LIDS-P-1986, Laboratory
for Information and Decision Systems, M.I.T., Cam-
bridge, MA.

Uresin, A. and M. Dubois (1986). Generalized asynchronous
iterations. In Lecture Notes in Computer Science, 237,
Springer, Berlin, pp. 272-278.

Uresin, A. and M. Dubois (1988a). Sufficient conditions for
the convergence of asynchronous iterations. Technical
Report, Computer Research Institute, University of
Southern California, Los Angeles, California, U.S.A.

Uresin, A. and M. Dubois (1990). Parallel asynchronous
algorithms for discrete data. J. ACM, 37, 588-606.

Zenios, S. A. and R. A. Lasken (1988). Nonlinear network
optimization on a massively parallel Connection Machine.
Annals of Operations Research, 14, 147-165.

Zenios, S. A. and J. M. Mulvey (1988). Distributed
algorithms for strictly convex network flow problems,
Parallel Computing, 6, 45-56.

