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Ala~lraet--We consider iterative algorithms of the form 
x :=f(x) ,  executed by a parallel or distributed computing 
system. We first consider synchronous executions of such 
iterations and study their communication requirements, as 
well as issues related to processor synchronization. We also 
discuss the paraUelization of iterations of the Gauss-Seidel 
type. We then consider asynchronous implementations 
whereby each processor iterates on a different component of 
x, at its own pace, using the most recently received (but 
possibly outdated) information on the remaining components 
of x. While certain algorithms may fail to converge when 
implemented asynchronously, a large number of positive 
convergence results is available. We classify asynchronous 
algorithms into three main categories, depending on the 
amount of asynchronism they can tolerate, and survey the 
corresponding convergence results. We also discuss issues 
related to their termination. 

1. INTRODUCTION 
P A R A L L E L  A N D  D I S T R I B U T E D  computing systems have 
received broad attention motivated by several 
different types of applications. Roughly speaking, 
parallel computing systems consist of several tightly 
coupled processors that are located within a small 
distance of each other. Their main purpose is to 
execute jointly a computational task and they have 
been designed with such a purpose in mind: 
communication between processors is fast and 
reliable. Distributed computing systems are somewhat 
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different in a number of respects. Processors are 
loosely coupled with little, if any, central coordination 
and control, and interprocessor communication is 
more problematic. Communication delays can be 
unpredictable, and the communication links them- 
selves can be unreliable. Finally, while the architec- 
ture of a parallel system is usually chosen with a 
particular set of computational tasks in mind, the 
structure of distributed systems is often dictated by 
exogenous considerations. Nevertheless, there are 
several algorithmic issues that arise in both parallel 
and distributed systems and that can be addressed 
jointly. To avoid repetition, we will mostly employ in 
the sequel the term "distributed", but it should be 
kept in mind that most of the discussion applies to 
parallel systems was well. 

There are at least two contexts where distributed 
computation has played a signficant role. The first is 
the context of information acquisition, information 
extraction, and control, within spatially distributed 
systems. An example is a sensor network in which a 
set of geographically distributed sensors obtain 
information on the state of the environment and 
process it cooperatively. Another example is provided 
by data communication networks in which certain 
functions of the network (such as correct and timely 
routing of messages) have to be controlled in a 
distributed manner, through the cooperation of the 
computers residing at the nodes of the network. Other 
applications are possible in the quasistatic decentral- 
ized control of large scale systems whereby certain 
parameters (e.g. operating points for each subsystem) 
are to be optimized locally, while taking into account 
interactions with neighboring subsystems. The second 
important context for parallel or distributed computa- 
tion is the solution of very large computational 
problems in which no single processor has sufficient 
computational power to tackle the problem on its 
o w n .  

The ideas of this paper are relevant to both 
contexts, but our presentation will emphasize large 
scale numerical computation issues and iterative 
methods in particular. Accordingly, we shall consider 
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algorithms of the form x : = f ( x )  where x =  
(xl . . . . .  x,) is a vector in ~" and f : ~ "  ~ "  is an 
iteration mapping defining the algorithm. In many 
interesting applications, it is natural to consider 
distributed executions of this iteration whereby the ith 
processor updates x~ according to the formula 

x, :=~(x ,  . . . . .  x°), (1.1) 

while receiving information from other processors on 
the current values of the remaining components. 

Our discussion of distributed implementations of 
iteration (1.1) focuses on mechanisms for interproces- 
sor communication and synchronization. We also 
consider asynchronous implementations and present a 
survey of the convergence issues that arise in the face 
of asynchronism. These issues are discussed in more 
detail in Bertsekas and Tsitsiklis (1989b) where proofs 
of most of the results quoted here can be found. 

Iteration (1.1) can be executed synchronously 
whereby processors perform an iteration, communi- 
cate their results to the other processors, and then 
proceed to the next iteration. In Section 2, we 
introduce two alternative synchronous iterations, 
namely Jacobi type and Gauss-Seidel type iterations, 
and discuss briefly their parallelization. In Section 3, 
we indicate that synchronous parallel execution is 
feasible even if the underlying computing system is 
inherently asynchronous (i.e. no processor has access 
to a global clock) provided that certain synchroniza- 
tion mechanisms are in place. We review and compare 
three representative synchronization methods. We 
also discuss some basic communication problems that 
arise naturally in parallel iterations, assuming that 
processors communicate using a point-to-point com- 
munication network. Then, in Section 4, we provide a 
more detailed analysis of the required time per 
parallel iteration. In Section 5, we indicate that the 
synchronous execution of iteration (1.1) can have 
certain drawbacks, thus motivating asynchronous 
implementations whereby each processor computes at 
its own pace while receiving (possibly outdated) 
information on the values of the components updated 
by the other processors. An asynchronous implemen- 
tation of iteration (1.1) is not mathematically 
equivalent to its synchronous counterpart and an 
otherwise convergent algorithm may become diver- 
gent. It will be seen that asynchronous iterative 
algorithms can display several and different con- 
vergence behaviors, ranging from divergence to 
guaranteed convergence in the face of the worst 
possible amount of asynchronism and communication 
delays. We classify the possible behaviors in three 
broad classes; the corresponding convergence results 
are surveyed in Sections 6, 7 and 8, respectively. In 
Section 9, we address some difficulties that arise if 
we wish to terminate an asynchronous distributed 
algorithm in finite time. Finally, Section 10 contains 
our conclusions and a brief discussion of future 
research directions. 

2. JACOBI AND GAUSS-SEIDEL ITERATIONS 
Let X ~ , . . .  , Xp, be subsets of the Euclidean spaces 

~ n ~ , . . . , ~ , p ,  respectively. Let n = n ~ + - . . + n p ,  

p 

and let X c ~n be the Cartesian product X = 1-I X~. 
i - - I  

Accordingly, any x E ~" is decomposed in the form 
x = (xl . . . . .  xp), with each xi belonging to ~ni. For 
i = 1 . . . .  , p, let f, : X ~ Xi be a given function and let 
f : X ~ X  be the function defined by f ( x ) =  
(f~(x) . . . . .  fp(x)) for every x e X. We want to solve 
the fixed point problem x =f(x) .  To this end we will 
consider the iteration 

x : = f ( x ) .  

We will also consider the more general iteration 

xi :=/f~(x) i f i E l  (2.1) 
t xi otherwise, 

where I is a subset of the component index set 
( 1 , . . .  ,p}, which may change from one iteration to 
the next. 

We are interested in the distributed implementation 
of such iterations. While some of the discussion 
applies to shared memory systems, we will focus in 
this and the next two sections on a message-passing 
system with p processors, each having its own local 
memory and communicating with the other processors 
over a communication network. We assume that the 
ith processor has the responsibility of updating the ith 
component x~ according to the rule x~:=f~(x). It is 
implicitly assumed here that the ith processor knows 
the form of the function f,. In the special case where 
f ( x )  = Ax  + b, where A is an n × n matrix and b e ~", 
this amounts to assuming that the ith processor knows 
the rows of the matrix A corresponding to the 
components assigned to it. Other implementations of 
the linear iteration x := Ax  + b are also possible. For 
example, each processor could be given certain 
columns of A. We do not pursue this issue further and 
refer the reader to McBryan and Van der Velde 
(1987) and Fox et al. (1988) for discussions of 
alternative matrix storage schemes. 

For implementation of the iteration, it is seen that if 
the function ~ depends on x~ (with i ~ j ) ,  then 
processor j must be informed by processor i on the 
current value of xi. To capture such data depend- 
encies, we form a directed graph G = (N, A), called 
the dependency graph of the algorithm, with nodes 
N = (1 . . . . .  p} and with arcs A = {(i, j) I i 4:j  and 
depends on x~}. We assume that for every arc (i, j)  in 
the dependency graph there is a communication 
capability by means of which processor i can relay 
information to processor j. We also assume that 
messages are received correctly within a finite but 
otherwise arbitrary amount of time. Such communica- 
tion may be possible through a direct communication 
link joining processors i and j or it could consist of a 
multi-hop path in a communication network. The 
discussion that follows applies to both cases. 

An iteration in which all of the components of x are 
simultaneously updated [ I =  {1 . . . . .  p} in (2.1)], is 
sometimes called a Jacobi type iteration. In an 
alternative form, the components of x are updated 
one at a time, and the most recently computed values 
of the other components are used. The resulting 
iteration is often called an iteration of the 



Parallel and distributed iterative algorithms--A survey 5 

Gauss-Seidel type and is described mathematically by 

x,(t + 1) =f,(Xl(t + 1) . . . . .  x,_~(t + 1), 

xi(t) . . . . .  xv(t)), 

i = 1 . . . . .  p. (2.2) 

In a serial computing environment, Gauss-Seidel  
iterations are often preferable. As an example, 
consider the linear case where f ( x )  = Ax + b, and A 
has non-negative elements and spectral radius less 
than one. Then, the classical Stein-Rosenberg 
theorem [see e.g. Bertsekas and Tsitsiklis (1989b, p. 
152)] states that both the Gauss-Seidel  and the Jacobi 
iterations converge at a geometric rate to the unique 
fixed point o f f ;  however, in a serial setting where one 
Jacobi iteration takes as much as one Gauss-Seidel  
iteration, the rate of convergence of the Gauss-Seidel  
iteration is always faster. Surprisingly, in a parallel 
setting this conclusion is reversed, as we now describe 
in a somewhat more general context. 

Consider the sequence {xJ(t)) generated by the 
Jacobi iteration 

xJ(t + 1) =f(x~(t)), t = 0, 1 . . . .  (2.3) 

and the sequence {x~(t)} generated by the Gauss-  
Seidel iteration (2.2), started from the same initial 
condition x(0) = x J(0) = xC(0). The following result is 
proved in Tsitsiklis (1989) generalizing an earlier 
result of Smart and White (1988): 

Proposition 1. Suppose that f : ~"  ~ ~"  has a unique 
fixed point x*, and is monotone, that is, it satisfies 
f (x )  <-f(y) if x -<y. Then, if f (x(0))  -<x(0), we have 

x*<-x~(pt)<-x~(t), t = 0 , 1  . . . .  

and if x(0) <-f(x(O)), we have 

xC'(t)<-xJ(pt)<-x *, t = 0 , 1  . . . . .  

Proposition 1 establishes the faster parallel conver- 
gence of the Jacobi iteration, for certain initial 
conditions, assuming that a Gauss-Seidel  iteration 
takes as much parallel time as p Jacobi iterations. It 
has also been shown in Smart and White (1988) that if 
in addition to the assumptions of Proposition 2.1, f is 
linear (and thus satisfies the assumptions of the 
Stein-Rosenberg theorem), the rate of convergence 
of the Jacobi iteration is faster than the rate of 
convergence of the Gauss-Seidel  iteration. An 
extension of this result that applies to asynchronous 
Jacobi and Gauss-Seidel  iterations is also given in 
Bertsekas and Tsitsiklis (1989a). 

The preceding comparison of Jacobi and Gauss-  
Seidel iterations assumes that a Jacobi iteration is 
executed in one time step, and that the Gauss-Seidel  
iteration cannot be parallelized (so that a full update 
of all the components xl . . . . .  xp requires p time 
steps). This is the case when the number of available 
processors is p and the dependency graph describing 
the structure of the iteration is complete (every 
component depends on every other component),  so 
that no two components can be updated in parallel. A 
Gauss-Seidel  iteration can still converge faster, 
however, if it can be parallelized to the point where it 
requires the same number of time steps as the 

FIG. 1. A dependency graph. 

corresponding Jacobi iteration; this can happen if the 
number of available processors is less than p and the 
dependency graph is sufficiently sparse, as we now 
illustrate. 

Consider the dependency graph of Fig. 1. A 
corresponding Gauss-Seidel  iteration is described by 

xl(t + 1) =fl(xl( t ) ,  x3(t)) 

xz(t + 1) =f2(xl(t + 1), x2(t)) 

x3(t + 1) ----f3(x2(t + 1), X3(t), x4(t)) 
Xn(t + 1) =f4(x2(t + 1), x4(t)) 

and its structure is shown in Fig. 2. We notice here 
that x3(t+ 1) and x4(t+ 1) can be computed in 
parallel. In particular, a sweep, that is, an update of 
all four components, can be performed in only three 
stages. On the other hand, a different ordering of the 
components leads to an iteration of the form 

xl(t + 1) =fl(xl( t ) ,  x3(t)) 

x3(t + 1) =f3(x2(t), x3(t), x4(t)) 

x4(l + 1) =f4(x2(t), x4(t)) 
x2(t + 1) =f2(x~(t + 1), x2(t)) 

which is illustrated in Fig. 3. We notice here that 
x~(t + 1), x3(t + 1), and x4(t + 1) can be computed in 
parallel, and a sweep requires only two stages. 

The above example motivates the problem of 
choosing an ordering of the components for which a 
sweep requires the least number of stages. The 
solution of this problem, given in Bertsekas and 
Tsitsiklis (1989b, p. 23) is as follows: 

Proposition 2. The following are equivalent: 
(i) There exists an ordering of the variables such 

that a sweep of the corresponding Gauss-Seidel  
algorithm can be performed in K parallel steps. 

(ii) We can assign colors to the nodes of the 
dependency graph so that at most K different colors 

FIG. 2. The data dependencies in a Gauss-Seidei iteration. 
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FIG. 3. The data dependencies in a Gauss-Seidel iteration 
for a different updating order. 

are used and so that each subgraph obtained by 
restricting to the set of nodes with the same color has 
no directed cycles. 

A well known special case of the above proposition 
arises when the dependency graph G is symmetric; 
that is, the presence of an arc (i, j ) e  A also implies 
the presence of the arc (j, i). In this case there is no 
need to distinguish between directed and undirected 
cycles, and the coloring problem of Proposition 2 
reduces to coloring the nodes of the dependency 
graph so that no two neighboring nodes have the same 
color. 

Unfortunately, the coloring problem of Proposition 
2 is intractable (NP-hard). On the other hand, in 
several practical situations the dependency graph G 
has a very simple structure and the coloring problem 
can be solved by inspection. Furthermore, it can be 
shown that if the dependency graph is a tree or a 
two-dimensional grid, only two colors suffice, so a 
Gauss-Seidel sweep can be done in two steps, with 
roughly half the components of x being updated in 
parallel at each step. In this case, while with n 
processors the Jacobi method is as fast or faster than 
Gauss-Seidel,  the reverse is true when using n/2 
processors (or more generally, any number of 
processors with which a Gauss-Seidel  step can be 
completed in the same time as the Jacobi iteration). 

Even with unstructured dependency graphs, reason- 
ably good colorings can be found using simple 
heuristics; see Zenios and Lasken (1988) and Zenios 
and Mulvey (1988), for examples. Let us also point 
out that the parallelization of Gauss-Seidel  methods 
by means of coloring is very common in the context of 
the numerical solution of partial differential equa- 
tions; see, for example, Ortega and Voigt (1985) and 
the references therein. 

A related approach for parallelizing Gauss-Seidel  
iterations, which is fairly easy to implement, is 
discussed in Barbosa (1986) and Barbosa and Gafni 
(1987). In this approach, a new sweep is allowed to 
start before the previous one has been completed and 
for this reason, one obtains, in general, somewhat 
greater parallelism than that obtained by the coloring 
approach. 

We finally note that the order in which the variables 
are updated in a Gauss-Seidel  sweep may have a 
significant effect on the convergence rate of the 
iteration. Thus, completing a Gauss-Seidel  sweep in a 
minimum number of steps is not the only considera- 
tion in selecting the grouping of variables to be 

updated in parallel; the corresponding rate of 
convergence must also be taken into account. 

3. SYNCHRONIZATION AND COMMUNICATION 
ISSUES 

We say that an execution of iteration (2.1) is 
synchronous if it can be described mathematically by 
the formula 

xi(t + 1) = ~ f / (x l ( t )  . . . . .  Xp(t)) i f / e  T i 
[x~(t) otherwise. (3.1) 

Here, t is an integer-valued variable used to index 
different iterations, not necessarily representing real 
time, and T i is an infinite subset of the index set 
(0, 1 , . . . } .  Thus, T i is the set of time indices at which 
x~ is updated. With different choices of T ~ one obtains 
different algorithms, including Jacobi and Gauss-  
Seidel type of methods. We will later contrast 
synchronous iterations with asynchronous iterations, 
where instead of the current component values xj(t), 
earlier values xj(t - d) are used in (3.1), with d being 
a possibly positive and unpredictable "communication 
delay" that depends on i, j and t. 

3.1. Synchronization methods 
Synchronous execution is certainly possible if the 

processors have access to a global clock, and if 
messages can be reliably transmitted from one 
processor to another between two consecutive "ticks" 
of the clock. Barring the existence of a global clock, 
synchronous execution can be still accomplished by 
using synchronization protocols called synchronizers. 
We refer the reader to Awerbuch (1985) for a 
comparative complexity analysis of a class of 
synchronizers and we continue with a brief discussion 
of three representative synchronization methods. 
These methods will be described for the case of Jacobi 
type iterations, but they can be easily adapted for the 
case of Gauss-Seidel  iterations as well. 

(a) Global synchronization. Here the processors 
proceed to the (t + 1)st iteration, also referred to as 
phase, only after every processor i has completed the 
tth iteration and has received the value of x/(t) from 
every j such that (j, i) e A. Global synchronization can 
be implemented by a variety of techniques, a simple 
one being the following: the processors are arranged 
as a spanning tree, with a particular processor chosen 
to be the root of the tree. Once processor i has 
computed xi(t), has received the value of x/(t) for 
every j such that (j, i) • A, and has received a phase 
termination message from all its "children" in the 
tree, it sends a phase termination message to its 
"father" in the tree. Phase termination messages thus 
propagate towards the root. Once the root has 
received a phase termination message from all of its 
children, it knows that the current phase has been 
completed and sends a phase initiation message to its 
children, which is propagated along the spanning tree. 
Once a processor receives such a message it can 
proceed to the next phase. (See Fig. 4 for an 
illustration.) 

(b ) Local synchronization. Global synchronization 
can be seen to be rather wasteful in terms of the time 
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FIG. 4. Illustration of the global synchronization method. 

required per iteration. An alternative is to allow the 
ith processor to proceed with the (t + 1)st iteration as 
soon as it has received all the messages xj(t) it needs. 
Thus, processor i moves ahead on the basis of local 
information alone, obviating the need for propagating 
messages along a spanning tree. 

It is easily seen that the iterative computation can 
only proceed faster when local synchronization is 
employed. Furthermore,  this conclusion can also be 
reached even if a more efficient global synchronization 
method were possible whereby all processors start the 
( t + l ) s t  iteration immediately after all messages 
generated by the tth iteration have been delivered. 
(We refer to this hypothetical and practically 
unachievable situation as the ideal global synchroniza- 
tion.) Let us assume that the time required for one 
computation and the communication delays are 
bounded above by a finite constant and are bounded 
below by a positive constant. Then it is easily shown 
that the time spent for a number K of iterations under 
ideal global synchronization is at most a constant 
multiple of the corresponding time when local 
synchronization is employed. 

The advantage of local synchronization is better 
seen if communication delays do not obey any a priori 
bound. For example, let us assume that the 
communication delay of every message is an 
independent exponentially distributed random vari- 
able with mean one. Furthermore,  suppose for 
simplicity, that each processor sends messages to 
exactly d other processors, where d is some constant 
(i.e. the outdegree of each node of the dependency 
graph is equal to d). With global synchronization, the 
real time spent for one iteration is roughly equal to 
the maximum of dp independent exponential random 
variables and its expectation is, therefore, of the order 
of log (dp). Thus, the expected time needed for K 
iterations is of the order of K log (pd). On the other 
hand, with local synchronization, it turns out that the 
expected time for K iterations is of the order of 
iogp + K log d [joint work with C. H. Papadimitriou; 
see Bertsekas and Tsitsiklis (1989b, p. 104)]. If K is 
large, then local synchronization is faster by a factor 
roughly equal to log (pd)/log d. Its advantage is more 

pronounced if d is much smaller than p, as is the case 
in most practical applications. Some related analysis 
and experiments can be found in Dubois and Briggs 
(1982). 

(c) Synchronization via rollback. This method, 
introduced by Jefferson (1985), has been primarily 
applied to the simulation of discrete-event systems. It 
can also be viewed as a general purpose synchroniza- 
tion method but it is likely to be inferior to the 
preceding two methods in applications involving 
solution of systems of equations. Consider a situation 
where the message xj(t) transmitted from some 
processor j to some other processor i is most likely to 
take a fixed default value known to i. In such a case, 
processor i may go ahead with the computation of 
x~(t+ 1) without waiting for the value of xj(t), by 
making the assumption that xj(t) will take the default 
value. In case that a message comes later which 
falsifies the assumption that xj(t) has the default value, 
then a rollback occurs; that is, the computation of 
xi(t + 1) is invalidated and is performed once more, 
taking into account the correct value of xj(t). 
Furthermore, if a processor has sent messages based 
on computations which are later invalidated, it sends 
antimessages which cancel the earlier messages. A 
reception of such an antimessage by some other 
processor k could invalidate some of k 's  computations 
and could trigger the transmission of further 
antimessages by k. This process has the potential of 
explosive generation of antimessages that could drain 
the available communication resources. On the other 
hand, it is hoped that the number of messages and 
antimessages would remain small in problems of 
practical interest, although insufficient analytical 
evidence is available at present. Some probabilistic 
analyses of the performance of this method can be 
found in Lavenberg et al. (1983) and Mitra and 
Mitrani (1984). 

3.2. Single and multinode broadcasting 
Regardless of whether the implementation is 

synchronous or not, it is necessary to exchange some 
information between the processors after each 
iteration. The interprocessor communication time can 
be substantial when compared to the time devoted to 
computations, and it is important to carry out the 
message exchanges as efficiently as possible. There are 
a number of generic communication problems that 
arise frequently in iterative and other algorithms. We 
describe a few such tasks related to message 
broadcasting. 

In the first communication task, we want to send 
the same message from a given processor to every 
other processor (we call this a single node broadcast). 
In a generalized version of this problem, we want to 
do a single node broadcast simultaneously from all 
nodes (we call this a multinode broadcast). A typical 
example where a multinode broadcast is needed arises 
in the iteration x := f (x ) .  If we assume that there 
is a separate processor assigned to component xi, 
i = 1 , . . . ,  p, and that the function f, depends on all 
components xj, j = 1 . . . . .  p, then, at the end of an 
iteration, there is a need for every processor to send 



8 D . P .  BERTSEKAS and  J. N. TSITSlKLIS 

SINGLE NODE BROADCAST SINGLE NODE ACCUMULATION 

o o 

(a) (b) 

FIG. 5. (a) A single node broadcast uses a tree that is rooted at a given node (which is node 1 in the figure). 
The time next to each link is the time that transmission of the packet on the link begins. (b) A single node 
accumulation problem involving summation of n scalars al . . . . .  a, (one per processor) at the given node 
(which is node 1 in the figure). The time next to each link is the time at which transmission of the 
"combined" packet on the link begins, assuming that the time for scalar addition is negligible relative to the 

time required for packet transmission. 

the value of its component to every other processor, 
which is a multinode broadcast. 

Clearly, to solve the single node broadcast problem, 
it is sufficient to transmit the given node's message 
along a spanning tree rooted at the given node, that 
is, a spanning tree of the network together with a 
direction on each link of the tree such that there is a 
unique path from the given node (called the root) to 
every other node. With an optimal choice of such a 
spanning tree, a single node broadcast takes 
O(r)-time,t where r is the diameter of the network, as 
shown in Fig. 5(a). To solve the multinode broadcast 
problem, we need to specify one spanning tree per 
root node. The difficulty here is that some links may 
belong to several spanning trees; this complicates the 
timing analysis, because several messages can arrive 
simultaneously at a node, and require transmission on 
the same link with a queueing delay resulting. 

There are two important communication problems 
that are dual to the single and multinode broadcasts, 
in the sense that the spanning tree(s) used to solve 
one problem can also be used to solve the dual in the 
same amount of communication time. In the first 
problem, called single node accumulation, we want to 
send to a given node a message from every other 
node; we assume, however, that messages can be 
"combined" for transmission on any communication 
link, with a "combined" transmission time equal to 
the transmission time of a single message. This 
problem arises, for example, when we want to form at 
a given node a sum consisting of one term for each 

tThe notation h(y)=O(g(y)) ,  where y is a positive 
integer, means that for some c I >0, c2>0, and yo>0, we 
have cllg(y)l <- h(y) <- c21g(y)l for all y >--Yo. 

node, as in an inner product calculation [see Fig. 
5(b)]; we can view addition of scalars at a node 
as "combining" the corresponding messages into a 
single message. The second problem, which is dual 
to a multinode broadcast, is called multinode 
accumulation, and involves a separate single node 
accumulation at each node. It can be shown that a 
single node (or multinode) accumulation problem can 
be solved in the same time as a single node 
(respectively multinode) broadcast problem, by 
realizing that an accumulation algorithm can be 
viewed as a broadcast algorithm running in reverse 
time, as illustrated in Fig. 5. As shown in Fig. 4, 
global synchronization can be accomplished by a 
single node broadcast followed by a single node 
accumulation. 

Algorithms for solving the broadcast problems just 
described, together with other related communication 
problems, have been developed for several popular 
architectures (Nassimi and Sahni, 1980; Saad and 
Shultz, 1987; McBryan and Van der Velde, 1987; 
Ozveren, 1987; Bertsekas et al., 1989; Bertsekas and 
Tsitsiklis, 1989b; Johnsson and Ho, 1989). Table 1 
gives the order of magnitude of the time needed to 
solve each of these problems using an optimal 
algorithm. The underlying assumption for the results 
of this table is that each message requires unit time for 
transmission on any link of the interconnection 
network, and that each processor can transmit and 
receive a message simultaneously on all of its incident 
links. Specific algorithms that attain these times are 
given in Bertsekas et al. (1989) and Bertsekas and 
Tsitsiklis (1989b, Section 1.3.4). In most cases these 
algorithms are optimal in that they solve the problem 
in the minimum possible number of time steps. Figure 
6 illustrates a multinode broadcast algorithm for a ring 
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t ! 

(a) 

Stage 1 Stage 2 Stage 3 

(b)  

FIG. 6. (a) A ring of p nodes having as links the pairs (i, i + 1) for i = 1, 2 . . . . .  p - 1, and (p, 1). (b) A 
multinode broadcast on a ring with p nodes can be performed in [(p - 1)/2] stages as follows: at stage 1, 
each node sends its own packet to its clockwise and counterclockwise neighbors. At stage 
2 . . . . .  [(p - 1)/2], each node sends to its clockwise neighbor the packet received from its counterclockwise 
neighbor at the previous stage; also, at stages 2 . . . . .  [(p -2 ) /2 ] ,  each node sends to its counterclockwise 
neighbor the packet received from its clockwise neighbor at the previous stage. The figure illustrates this 

process for p = 6. 

with p processors, which attains the min imum number  
of steps. 

Using the results of Table 1, it is also shown in 
Bertsekas and Tsitsiklis (1989b) that if a hypercube is 
used, then most of the basic operations of numerical  
linear algebra, i.e. inner  product,  mat r ix-vector  
multiplication, matr ix-matr ix  multiplication, power of 
a matrix, etc., can be executed in parallel in the same 
order of time as when communicat ion is instan- 
taneous. In some cases this is also possible when the 
processors are connected with a less powerful 
interconnection network such as a square mesh. Thus,  
communicat ion affects only the "mult iplying constant"  
as opposed to the order of time needed to carry out 
these operations. Nonetheless,  with a large number  of 
processors, the effect of communicat ion delays on 
linear algebra operations can be very substantial.  

4. ITERATION COMPLEXITY 
We now try to assess the potential  benefit from 

parallelization of the i teration x : = f ( x ) .  In particular, 
we will estimate the order of growth of the required 
time per iteration, as the dimension n increases. Our  
analysis is geared towards large problems and the 
issue of speedup of iterative methods using a large 
number  of processors. We will make the following 

assumptions: 

(a) All components  of x are updated at each 
iteration. (This corresponds to a Jacobi iteration. 
If a Gauss-Seidel  i teration is used instead, the 
time per i teration cannot  increase, since by 
updating only a subset of the components ,  the 
computat ion per i teration will be reduced and the 
communicat ion problem will be simplified. Based 
on this, it can be seen that the order  of required 
time will be unaffected if in place of a Jacobi 
iteration, we perform a Gauss-Seidel  sweep with 

TABLE 1. SOLUTION TIMES OF OPTIMAL ALGORITHMS FOR THE 

BROADCAST AND ACCUMULATION PROBLEMS USING A RING, A 

BINARY BALANCED TREE, A d-DIMENSIONAL MESH (WITH THE 
SAME NUMBER OF PROCESSORS ALONG EACH DIMENSION), AND A 

HYPERCUBE WITH p PROCESSORS. THE TIMES GIVEN FOR THE 

RING ALSO HOLD FOR A LINEAR ARRAY 

Problem Ring Tree Mesh Hypercube 

Single node broadcast 
(or single node 
accumulation) O(p) O(logp) O(p TM) O(logp) 

Multinode broadcast 
(or multinode 
accumulation) O(p ) O(p ) O(p ) O(p /log p ) 
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a number of steps which is fixed and independent 
of the dimension n.) 

(b) There are n processors, each updating a single 
scalar component of x at each iteration. (One may 
wish to use fewer than n processors, say p, each 
updating an n/p-dimensional component of x, in 
order to economize on communication. We argue 
later, however, that under our assumptions, 
choosing p < n cannot improve the order of time 
required per iteration, although it may reduce this 
time by a constant factor. In practice, of course, 
the number of available processors is often much 
less than n, and it is interesting to consider 
optimal utilization of a limited number of 
processors in the context of iterative methods. In 
this paper, however, we will not address this 
issue, prefering to concentrate on the potential 
and limitations of iterative computation using 
massively parallel machines with an abundant 
number of processors.) 

(c) Following the execution of their assigned portion 
of the iteration, the processors exchange the 
updated values of their components by means of a 
communication algorithm such as a multinode 
broadcast. The subsequent synchronization takes 
negligible time. (This can be justified by noting 
that local synchronization can be accomplished as 
part of the communication algorithm and thus 
requires no additional time. Furthermore, global 
synchronization can be done by means of a single 
node broadcast followed by a single node 
accumulation. Thus the time required for global 
synchronization grows with n no faster than a 
multinode broadcast time. Therefore, if the 
communication portion of the iteration is done by 
a multinode broadcast, the global synchronization 
time can be ignored when estimating the order of 
required time per iteration.) 

We estimate the time per iteration as 

TCOMP "~- TMNB, 

where TcoMP is the time to compute the updated 
components f~(x), and TMNa is the time to exchange 
the updated component values between the processors 
as necessary. If there is overlap of the computation 
and communication phases due to some form of 
pipelining, the time per iteration will be smaller than 
T¢OMP + TMNB but its order of growth with n will not 
change. We consider several hypotheses for TcoMP 
and TMNB, corresponding to different types of 
computation and communication hardware, and 
structures of the functions f,. In particular, we 
consider the following cases, motivated primarily by 
the case where the system of equations x = f ( x )  is 
linear: 

Small TcoMa: (= O(1)). One example for this case is 
when the iteration functions f~ are linear and 
correspond to a very sparse system (the maximum 
node degree of the dependency graph is O(1)). 

Another example is when the system solved is linear 
and dense, but each processor has vector processing 
capability allowing it to compute inner products in 
O(1) time. 

Medium TcoMP: (= O(logn)) .  An example for this 
case is when the system solved is linear and dense, 
and each processor can compute an inner product in 
O(log n) time. It can be shown that this is possible if 
each processor is itself a message-passing parallel 
processor with log n diameter. 

Large TcoMP: (= O(n)). An example for this case is 
when the system solved is linear and dense, and each 
processor computes inner products serially in O(n) 
time. 

Also the following are considered for the 
communication time TMNB: 

Small TMNB: (= O(1)). An example for this case is 
when special very fast communication hardware is 
used, making the time for the multinode broadcast 
negligible relative to TcoMP or relative to the 
communication software overhead at the message 
sources. Another example is when the processors are 
connected by a network that matches the form of the 
dependency graph, so that all necessary communica- 
tion involves directly connected nodes. For example 
when solving partial differential equations, the 
dependency graph is often a grid resulting from 
discretization of physical space. Then, with processors 
arranged in an appropriate grid, communication can 
be done very fast. 

Medium TMN B" ( = O(n/log n)). An example for this 
case is when the multinode broadcast is performed 
using a hypercube network (cf. Table 1). 

Large TMNB: (= O(n)). An example for this case is 
when the multinode broadcast is performed using a 
ring network or a linear array (cf. Table 1). 

Table 2 gives the time per iteration TcoMP + TMNB 
for the different combinations of cases. In the worst 
case, the time per iteration is O(n), and this time is 
faster by a factor n than the time needed to execute 
serially the linear iteration x : = A x  + b when the 
matrix A is fully dense. In this case, the speedup is 
proportional to the number of processors n and the 
benefit from parallelization is very substantial. This 
thought, however, must be tempered by the 
realization that the parallel solution time still increases 
at least linearly with n, unless the number of iterations 
needed to solve the problem within practical accuracy 
decreases with n - - a n  unlikely possibility. 

TABLE 2. TIME PER ITERATION X : = f ( x )  UNDER A VARIETY OF 
ASSUMFFIONS FOR THE COMPUTATION TIME PER ITERATION 
TcoMP AND THE COMMUNICATION TIME PER ITERATION TMN B. 
IN THE CELLS ABOVE THE DIAGONAL, THE COMPUTATION TIME IS 
THE BOTTLENECK, AND IN THE CELLS BELOW THE DIAGONAL. 

THE COMMUNICATION TIME IS THE BOTTLENECK 

TCOMP: O(1) TCOMP: O(Iog n) TcoMp: O(n) 

TMNB: O(1) O(1) O(Iog n) O(n) 
TMNn: O(n/logb) O(n/logn) O(n/Iogn) O(n) 

TMNa: O(n) O(n) O(n) O(n) 
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In the best case of Table 2, the time per iteration is 
bounded irrespectively of the dimension n, offering 
hope that with special computing and communication 
hardware, some extremely large practical problems 
can be solved in reasonable time. 

Another  interesting case, which is not covered by 
Table 2, arises in connection with the linear iteration 
x :-- Ax + b, where A is an n x n fully dense matrix. It 
can be shown that this iteration can be executed in a 
hypercube network of n 2 processors in O(log n) time 
[see, for example, Bertsekas and Tsitsiklis (1989b)]. 
While it is hard to imagine at present hypercubes of n 2 
processors solving large n x n systems, this case 
provides a theoretical limit for the time per iteration 
for unstructured linear systems in message-passing 
machines. 

Consider now the possibility of using p < n  
processors, each updating an hip-dimensional com- 
ponent of x. The computation time per iteration will 
then increase by a factor n/p, so the question arises 
whether it is possible to improve the order of growth 
of the communication time in the cases where TMNB is 
the iteration time bottleneck. The cases of medium 
and large TMNB are of principal interest here. In these 
cases the corresponding times measured in message 
transmission time units are O(p/logp) and O(p) ,  
respectively. Because, however, each message in- 
volves nip values, its transmission time grows linearly 
with n/p, so the corresponding time TMNB becomes 
O(n/logp) and O(n), respectively. Thus the order of 
time per iteration is not improved by choosing p < n, 
at least under the hypotheses of this section. 

5. ASYNCHRONOUS ITERATIONS 
Asynchronous iterations have been introduced by 

Chazan and Miranker (1969) (under the name chaotic 
relaxation) for the solution of linear equations. In an 
asynchronous implementation of the iteration x := 
f(x), processors are not required to wait to receive all 
messages generated during the previous iteration. 
Rather, each processor is allowed to keep iterating on 
its own component at its own pace. If the current 
value of the component updated by some other 
processor is not available, then some outdated value 
received at some time in the past is used instead. 
Furthermore, processors are not required to com- 
municate their results after each iteration but only 
once in a while. We allow some processors to compute 
faster and execute more iterations than others, we 
allow some processors to communicate more fre- 
quently than others, and we allow the communication 
delays to be substantial and unpredictable. We also 
allow the communication channels to deliver messages 
out of order, i.e. in a different order than the one they 
were transmitted. 

There are several potential advantages that may be 
gained from asynchronous execution [see Kung (1976) 
for a related discussion]. 

(a) Reduction of the synchronization penalty. There 
is no overhead such as the one associated with the 
global synchronization method. In particular, a 

processor can proceed with the next iteration without 
waiting for all other processors to complete the 
current iteration, and without waiting for a synchroni- 
zation algorithm to execute. Furthermore,  in certain 
cases, there are even advantages over the local 
synchronization method as we now discuss. Suppose 
that an algorithm happens to be such that each 
iteration leaves the value of xl unchanged. With local 
synchronization, processor i must still send messages 
to every processor j with (i, j )  • A because processor j 
will not otherwise proceed to the next iteration. 
Consider now a somewhat more realistic case where 
the algorithm is such that a typical iteration is very 
likely to leave xi unchanged. Then each processor j 
with (i, j )  • A will be often found in a situation where 
it waits for rather uninformative messages stating that 
the value of xl has not changed. In an asynchronous 
execution, processor j does not wait for messages from 
processor i and the progress of the algorithm is likely 
to be faster. A similar argument can be made for the 
case where x~ changes only slightly between iterations. 
Notice that the situation is similar to the case of 
synchronization via rollback, except that in an 
asynchronous algorithm processors do not roll back 
even if they iterate on the basis of outdated and later 
invalidated information. 

(b) Ease of restarting. Suppose that the processors 
are engaged in the solution of an optimization 
problem and that suddenly one of the parameters of 
the problem changes. (Such a situation is common and 
natural in the context of data networks or in the 
quasistatic control of large scale systems.) In a 
synchronous execution, all processors should be 
informed, abort the computation, and then reinitiate 
(in a synchronized manner) the algorithm. In an 
asynchronous implementation no such reinitialization 
is required. Rather, each processor incorporates the 
new parameter value in its iterations as soon as it 
learns the new value, without waiting for all 
processors to become aware of the parameter  change. 
When all processors learn the new parameter  value, 
the algorithm becomes the correct (asynchronous) 
iteration. 

(c) Reduction of the effect of bottlenecks. Suppose 
that the computational power of processor i suddenly 
deteriorates drastically. In a synchronous execution 
the entire algorithm would be slowed down. In an 
asynchronous execution, however, only the progress 
of x~ and of the components strongly influenced by x~ 
would be affected; the remaining components would 
still retain the capacity of making unhampered 
progress. Thus the effects of temporary malfunctions 
tend to be localized. The same argument applies to 
the case where a particular communication channel is 
suddenly slowed down. 

(d) Convergence acceleration due to a Gauss-Seidel 
effect. With a Gauss-Seidel  execution, convergence 
often takes place with fewer updates of each 
component, the reason being that new information is 
incorporated faster in the update formulas. On the 
other hand Gauss-Seidel  iterations are generally less 
parallelizable. Asynchronous algorithms have the 
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potential of displaying a Gauss-Seidel  effect because 
newest information is incorporated into the computa-  
tions as soon as it becomes available, while retaining 
maximal parallelism as in Jacobi-type algorithms. 

A major  potential drawback of asynchronous 
algorithms is that they cannot  be described mathe- 
matically by the i teration x( t+ 1)=f(x(t)) .  Thus,  
even if this i teration is convergent,  the corresponding 
asynchronous iteration could be divergent, and indeed 
this is sometimes the case. Even if the convergence of 
the asynchronous iteration can be established, the 
corresponding analysis is often difficult. Nevertheless, 
there is a large number  of results stating that certain 
classes of important  algorithms retain their desirable 
convergence properties in the face of asynchronism: 
they will be surveyed in Sections 6-8.  Another  
difficulty relates to the fact that an asynchronous 
algorithm may have converged (within a desired 
accuracy) but  the algorithm does not  terminate 
because no processor is aware of this fact. We address 
this issue in Section 9. 

We now present our model  of asynchronous 
computation. Let the set X and the function f be as 
described in Section 2. Let t be an integer variable 
used to index the events of interest in the computing 
system. Although t will be referred to as a t ime 
variable, it may have little relation with "real t ime".  
Let x~(t) be the value of xl residing in the memory of 
the ith processor at t ime t. We assume that there is a 
set of times T ~ at which x~ is updated. To account for 
the possibility that the ith processor may not  have 
access to the most recent values of the components  of 
x, we assume that 

xi(t + 1) =f,(xl(r~(t))  . . . . .  x,(ri(t))),  Vt • T i, (5.1) 

where rj(t) are times satisfying 

O<-- r~(t)<--t, Vt->O. 

At  all times t ~ T ~, xi(t) is left unchanged and 

x,(t + 1)=x i ( t ) ,  Vt E T'. (5.2) 

We assume that the algorithm is initialized with some 
x(0) ~ X. 

The above mathematical  description can be used as 
a model of asynchronous iterations executed by either 
a message-passing distributed system or a shared- 
memory parallel computer.  For an illustration of the 
latter case, see Fig. 7. 

The difference t - r ) ( t )  is equal to zero for a 
synchronous execution. The larger this difference is, 
the larger is the amount  of asynchronism in the 
algorithm. Of course, for the algorithm to make any 
progress at all we should not  allow r~(t) to remain 
forever small. Furthermore,  no processor should be 
allowed to drop out of the computat ion and stop 
iterating. For this reason, certain assumptions need to 
be imposed. There are two different types of 
assumptions which we state below. 

Assumption 1. (Total asynchronism). The sets T ~ are 
infinite and if {t~} is a sequence of elements of T ~ 

which tends to infinity, then lim r)(tk) = ~ for every/' .  

Assumption 2. (Partial asynchronism). There exists a 
positive constant B such that: 
(a) For every t-> 0 and every i, at least one of the 
elements of the set {t, t + 1 . . . . .  t + B - 1} belongs 
to T i. 
(b) There holds 

t - B < r ~ ( t ) - < t ,  Vi, j, V t E T  i. (5.3) 

(c) There holds z~(t) = t, for all i and t • T(  

The constant B of Assumption 2, to be called the 
asynchronism measure, bounds the amount  by which 
the information available to a processor can be 
outdated. Notice that a Jacobi-type synchronous 
iteration is the special case of partial asynchronism in 
which B = 1. Notice also that Assumption (c) states 
that the information available to processor i regarding 
its own component  is never outdated. Such an 
assumption is natural  in most contexts, but  could be 
violated in certain types of shared memory parallel 
computing systems if we allow more than one 
processor to update the same component  of x. It turns 

Read Read Read Start Time at the 
component x 1 component x 2 component x 3 writing processor 

f [ ~ ]  ~' / [~] / l~eq~? ~rcomp°nent x 2 ~  Llpdating x2 

~= [ ]  t Z  [ ]  I - 1 / 1 - 1  I--1 I--1 D F1 E3 

.~ r-I Eli D S I-1 I-q r-q D r--1 [ ]  t=l 2 3 4 5 6 7 8 9 10 
Time = 

FIG. 7. Illustration of a component u~date in a shared memory multiprocessor. Here x 2 is viewed as being 
2 2 updated at time t = 9 (9 • T2), with r~(9) = 1, r2(9 ) = 2, and r4(9) = 4. The updated value of x2 is entered at 

the corresponding register at t = 10. Several components can be simultaneously in the process of being 
updated, and the values of r~(t) can be unpredictable. 
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out that if we relax Assumption 2(c), the convergence 
of certain asynchronous algorithms is destroyed 
(Lubachevsky and Mitra, 1986; Bertsekas and 
Tsitsiklis, 1989b, p. 506 and p. 517). Parts (a) and (b) 
of Assumption 2 are typically satisfied in practice. 

Asynchronous algorithms can exhibit three differ- 
ent types of behavior (other than guaranteed 
divergence): 

(a) Convergence under total asynchronism. 
(b) Convergence under partial asynchronism, for 
every value of B, but possible divergence under totally 
asynchronous execution. 
(c) Convergence under partial asynchronism if B is 
small enough, and possible divergence if B is large 
enough. 

The mechanisms by which convergence is estab- 
lished in each one of the above three cases are 
fundamentally different and we address them in the 
subsequent three sections, respectively. 

6. TOTALLY ASYNCHRONOUS ALGORITHMS 
Totally asynchronous convergence results have been 

obtainedt by Chazan and Miranker (1969) for linear 
iterations, Miellou (1975a), Baudet (1978), E1 Tarazi 
(1982), Miellou and Spiteri (1985) for contracting 
iterations, Miellou (1975b) and Bertsekas (1982) for 
monotone iterations, and Bertsekas (1983) for general 
iterations. Related results can be also found in Uresin 
and Dubois (1986, 1988, 1990). The following general 
result is from Bertsekas (1983). 

Proposition 3. Let X = N X~ = ~I ~",. Suppose that 
i - -1  i ~ 1  

for each i e{1 . . . . .  p}, there exists a sequence 
{X~(k)} of subsets of X~ such that: 

(a) X~(k + 1) ~ X~(k), for all k -> 0. 
p 

(b) The sets X ( k ) =  1-I X~(k) have the property 
i - - I  

f (x )  • X (k  + 1), for all x • X. 
(c) Every limit point of a sequence {x(k)} with the 
property x ( k ) e X ( k )  for all k, is a fixed point off .  

Then, under Assumption 1 (total asynchronism), 
and if x(0) • X(0), every limit point of the sequence 
{x(t)} generated by the asynchronous iteration 
(5.1)-(5.2) is a fixed point off .  

Proof. We show by induction that for each k->0, 
there is a time tk such that: 

(a) x(t) • X (k )  for all t -> tk. 
(b) For all i and t • T  ~ with t>-tk, we have 

x~(t) ~ X(k) ,  where 

x~(t) = (xl(ril(t)), xz(~iz(t)) . . . . .  xn(zi(t))), V t •  T i. 

[In words: after some time, all solution estimates 
will be in X(k )  and all estimates used in iteration 
(5.1) will come from X(k).] 

t Actually, some of these papers only consider partially 
asynchronous iterations, but their convergence results readily 
extend to cover the case of total asynchronism. 

The induction hypothesis is true for k = 0, since the 
initial estimate is assumed to be in X(0). Assuming it 
is true for a given k, we will show that there exists a 
time tk+~ with the required properties. For each 
i = 1 , . . . ,  n, let t ~ be the first element of T ~ such that 
t ~-> tk. Then by condition (b) in the statement of the 
proposition, we have f (x i ( f ) )  • X ( k  + 1) and 

x~(t' + 1) ---f,(x~(t')) • S , (k  + 1). 

Similarly, for every t • T ~, t ~ t ~, we have xi(t + 1) • 
X~(k + 1). Between elements of T ~, x~(t) does not 
change. Thus, 

x~(t) • Xi(k + 1), Vt-> t i + 1. 

Let t~, = max {f} + 1. Then, using the Cartesian 
i 

product structure of X(k)  we have 

x ( t ) • X ( k  + l), Vt->t~. 

Finally, since by Assumption 1, we have r~(t)---~ oo as 
t---~oo, t •  T ~, we can choose a time tk+l>--t'k that is 
sufficiently large so that T~(t) ~ t;, for all i, j and t • T ~ 
with t -> tk+l. We then have, xj(r~(t)) • Xj(k + 1), for 
all t • T  ~ with t>--tk+~ and all j = l , . . . , n ,  which 
implies that 

xi(t) = (xl(ril(t)), xz( ri2(t)) . . . . .  x,(  ri,(t))) • X ( k  + 1). 

The induction is complete. Q.E.D. 
The key idea behind Proposition 3 is that eventually 

x(t) enters and stays in the set X(k);  furthermore, due 
to condition (b) in Proposition 3, it eventually moves 
into the next set X ( k + l ) .  The most restrictive 
assumption in the proposition is the requirement that 
each X(k )  is the Cartesian product of sets Xi(k). 
Successful application of Proposition 3 depends on the 
ability to properly define the sets X~(k) with the 
required properties. This is possible for two general 
classes of iterations which will be discussed shortly. 

Notice that Proposition 3 makes no assumptions on 
the nature of the sets X~(k). For this reason, it can be 
applied to problems involving continuous variables, as 
well as discrete iterations involving finite-valued 
variables. Furthermore, the result extends in the 
obvious way to the case where each Xi(k) is a subset 
of an infinite-dimensional space (instead of being a 
subset of ~n,) or to the case where f has multiple fixed 
points. 

Interestingly enough, the sufficient conditions for 
asynchronous convergence provided by Proposition 3, 
are also known to be necessary for two special cases: 
(i) if n~ = 1 for each i and the mapping f is linear 
(Chazan and Miranker, 1969), and (ii) if the set X is 
finite (Uresin and Dubois, 1990). 

Several authors have also studied asynchronous 
iterations with zero delays, that is, under the 
assumption r~(t) = t for every t • T~: see for example 
Robert et al. (1975); Robert (1976, 1987, 1988). Note 
that this is a special case of our asynchronous model, 
but is more general than the synchronous Jacobi and 
Gauss-Seidel iterations of Section 2, because the sets 
T ~ are allowed to be arbitrary. General necessary and 
sufficient convergence conditions for the zero-delay 
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case can be found in Tsitsiklis (1987) where it is shown 
that asynchronous convergence is guaranteed if and 
only if there exists a Lyapunov-type function which 
testifies to this. 

6.1. Maximum norm contractions 
Consider a norm on ~"  defined by 

IIx, ll, 
IIxll = m a x - - ,  (6.1) 

i wl 

where x~ • ~"'  is the ith component of x, II "[[i is a 
norm on ~"' ,  and wi is a positive scalar, for each i. 
Suppose that f has the following contraction property: 
there exists some o~ e [0, 1) such that 

IIf(x)-x*ll<-oLIIx-x*ll, Yx~X, (6.2) 

where x* is a fixed point off .  Given a vector x(0) ~ X  
with which the algorithm is initialized, let 

gi(k) = {x, ~ ~ " '  I IIx, - x ? l l ,  --- o ?  I Ix(0)  - x * l l } .  

It is easily verified that these sets satisfy the conditions 
of Proposition 3 and convergence to x* follows. 

Iteration mappings f with the contraction property 
(6.2) are very common. We list a few examples: 

(a) Linear iterations of the form f ( x ) = A x  + b, 
where A is an n × n matrix such that p(IAI) < 1. Here,  
IA[ is the matrix whose entries are the absolute values 
of the corresponding entries of A, and o(IA(), the 
spectral radius of IAI, is the largest of the magnitudes 
of the eigenvalues of IA] (Chazan and Miranker, 
1969). This result follows from a corollary of the 
Perron-Frobenius theorem that states that P( IAI)<  1 
if and only if A is a contraction mapping with respect 
to a weighted maximum norm of the form (6.1), for a 
suitable choice of the weights. As a special case, we 
obtain totally asynchronous convergence of the 
iteration ~ : =  ~P for computing a row vector ~r 
consisting of the invariant probabilities of an 
irreducible, discrete-time, finite-state, Markov chain. 
Here, P is the transition probability matrix of the 
chain and one of the components of ~ is held fixed 
throughout the algorithm (Bertsekas and Tsitsiklis, 
1989b). Another special case, the case of periodic 
asynchronous iterations, is considered in Donnelly 
(1971). Let us mention here that the condition 
o(IAI) < 1 is not only sufficient but also necessary for 
totally asynchronous convergence (Chazan and Mir- 
anker, 1969). 

(b) Gradient iterations of the form f ( x ) = x -  
y VF(x), where y is a small positive stepsize 
parameter, F : ~ n ~  is a twice continuously 
differentiable cost function whose Hessian matrix is 
bounded and satisfies the diagonal dominance 
condition 

[V2F(x)l -< V~F(x) - fl, Vi, Vx ~ X. (6.3) 
ivsi 

Here, fl is a positive constant and VEF stands for 
(OZF)/(ax, axj) (Bertsekas, 1983; Bertsekas and 
Tsitsiklis, 1989b). 

Example 1. Consider the iteration x : = x - y A x ,  

where A is the positive definite matrix given by 

A =  1 l + e  1 , 

1 1 l + e  

and 7, • are positive constants. This iteration can be 
viewed as the gradient iteration x : =  x - 7  VF(x) for 
minimizing the quadratic function F(x) = ½x'Ax and is 
known to converge synchronously if the stepsize y is 
sufficiently small. If • > 1 ,  then the diagonal 
dominance condition of (6.3) holds and totally 
asynchronous convergence follows, when the stepsize 
7 is sufficiently small. On the other hand, when 
0 <  • < 1, the condition of (6.3) fails to hold for all 
7 > 0 .  In fact, in that case, it is easily shown that 
p(ll  - 7AI) > 1 for every Y > 0, and totally asynchro- 
nous convergence fails to hold, according to the 
necessary conditions quoted earlier. An illustrative 
sequence of events under which the algorithm 
diverges is the following. Suppose that the processors 
start with a common vector x(0) = (c, c, c) and that 
each processor executes a very large number to of 
updates of its own component without informing the 
others. Then, in effect, processor 1 solves the 
equation 0 = (aF/axl)(xl ,  c, c) = (1 + e)xl + c + c, to 
obtain xl(to) ~ -2c / (1  + e), and the same conclusion 
is obtained for the other processors as well. Assume 
now that the processors exchange their results at time 
to and repeat the above described scenario. We will 
then obtain xi(2to) ~ -2xi(to)/(1 + •)  ~ (-2)2c/(1 + 
• )2. Such a sequence of events can be repeated ad 
infinitum, and it is clear that the vector x(t) will 
diverge if • < 1. 

(c) The projection algorithm (as well as several 
other algorithms) for variational inequalities. Here, 

p 

X = l-I Xi = ~"  is a closed convex set, f : X ~ ~"  is a 
i = l  

given function, and we are looking for a vector x* e X 
such that 

(x-x*)'f(x*)>-o, Vx~X. 

The projection algorithm is given by x := Ix - 7f(x)] +, 
where [.]+ denotes orthogonal projection on the set 
X. Totally asynchronous convergence to x* is 
obtained under the assumption that the mapping 
x ~ x - y f ( x )  is a maximum norm contraction 
mapping, and this is always the case if the Jacobian of 
f satisfies a diagonal dominance condition (Bertsekas 
and Tsitsiklis, 1989b). Special cases of variational 
inequalities include constrained convex optimization, 
solution of systems of nonlinear equations, traffic 
equilibrium problems under a user-optimization 
principle, and Nash games. Let us point out here that 
an asynchronous algorithm for solving a traffic 
equilibrium problem can be viewed as a model of a 
traffic network in operation whereby individual users 
optimize their individual routes given the current 
condition of the network. It is natural to assume that 
such user-optimization takes place asynchronously. 
Similarly, in a game theoretic context, we can think of 
a set of players who asynchronously adapt their 
strategies so as to improve their individual payoffs, 
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and an asynchronous iteration can be used as a model 
of such a situation. 

(d) Waveform relaxation methods for solving a 
system or ordinary differential equations under a weak 
coupling assumption (Mitra, 1987), as well as for 
two-point boundary value problems (Lang et al., 1986; 
Spited, 1984; Bertsekas and Tsitsiklis, 1989b). 

Other studies have dealt with an asynchronous 
Newton algorithm (Bojanczyk, 1984), an agreement 
problem (Li and Basar, 1987), diagonally dominant 
linear programming problems (Tseng, 1990), and a 
variety of infinite-dimensional problems such as 
partial differential equations, and variational in- 
equalities (Spiteri, 1984, 1986; Miellou and Spiteri, 
1985; Anwar and E1 Tarazi, 1985). 

In the case of maximum norm contraction mappings, 
there are some convergence rate estimates available 
which indicate that the asynchronous iteration 
converges faster than its synchronous counterpart,  
especially if the coupling between the different 
components of x is relatively weak. Let us suppose 
that an update by a processor takes one time unit and 
that the communication delays are always equal to D 
time units, where D is a positive integer. With a 
synchronous algorithm, there is one iteration every 
D + 1 time units and the "error"  I Ix ( t ) -x* l l  can be 
bounded by Co: '~0+1), where C is some constant 
[depending on x(0)] and oc is the contraction factor of 
(6.2). We now consider an asynchronous execution 
whereby, at each time step, an iteration is performed 
by each processor i and the result is immediately 
transmitted to the other processors. Thus the values of 
xj ( j  ~ i) which are used by processor i are always 
outdated by D time units. Concerning the function f, 
we assume that there exists some scalar fl such that 
0 < t i <  tr and 

IIf,(x) - x ? l l ,  

<-max{o[llxi-x:lli, tilrl]]a?llx]-x:llj}, Vi. (6.4) 

It is seen that a small value of ti corresponds to a 
situation where the coupling between different 
components of x is weak. Under condition (6.4), the 
convergence rate estimate for the synchronous 
iteration cannot be improved, but the error 
Ilx(t)-x*ll for the asynchronous iteration can be 
shown (Bertsekas and Tsitsiklis, 1989b) to be bounded 
above by Cp', where C is some constant and p is the 
positive solution of the equation p = max {ol, t iP-°}.  
It is not hard to see that p < o l  1/(°+l) and the 
asynchronous algorithm converges faster. The ad- 
vantage of the asynchronous algorithm is more 
pronounced when fl is very small (very weak coupling) 
in which case p approaches ol. The latter is the 
convergence rate that would have been obtained if 
there were no communication delays at all. We 
conclude that, for weakly coupled problems, asyn- 
chronous iterations are slowed down very little by 
communication delays, in sharp contrast with their 
synchronous counterparts. 

6.2. Monotone mappings 
Consider a function f : ~ n ~ n  which is con- 

tinuous, monotone [that is, if x -<y  then f ( x ) - f ( y ) ] ,  
and has a unique fixed point x*. Furthermore,  assume 
that there exist vectors u, v, such that u <-f(u)<- 
f ( v )  <- v. If we let fk  be the composition of k copies of 
f and X ( k ) =  {x [ f~(u) -<x-<fk(v)} ,  then Proposition 
3 applies and establishes totally asynchronous 
convergence. The above stated conditions on f are 
satisfied by the iteration mapping corresponding to the 
successive approximation (value iteration) algorithm 
for discounted and certain undiscounted infinite 
horizon dynamic programming problems (Bertsekas, 
1982). 

An important special case is the asynchronous 
Bel lman-Ford algorithm for the shortest path 
problem. Here we are given a directed graph 
G = ( N , A ) ,  with N = { 1  . . . . .  n} and for each arc 
(i, j ) c A ,  a weight alj representing its length. The 
problem is to compute the shortest distance x~ from 
every node i to node 1. We assume that every cycle 
not containing node 1 has positive length and that 
there exists at least one path from every node to node 
1. Then, the shortest distances correspond to the 
unique fixed point of the monotone mapping 
f : ~n ~_~ ~n defined by f~(x) = 0 and 

f~(x)= min (a~j + xj), i:/: l. 
{j [ (i,j)~m} 

The Bel lman-Ford algorithm consists of the iteration 
x : = f ( x )  and can be shown to converge asynchro- 
nously (Tajibnapis, 1977; Bertsekas, 1982). We now 
compare the synchronous and the asynchronous 
versions. We assume that both versions are initialized 
with x / =  oo for every i :P 1, which is the most common 
choice. The synchronous iteration is known to 
converge after at most n iterations. However, 
assuming that the communication delays from 
processor i to j are fixed to some constant Di,, and that 
the computation time is negligible, it is easily shown 
that the asynchronous iteration is guaranteed to 
terminate earlier than the synchronous one. 

Notice that the number of messages exchanged in 
the synchronous Bel lman-Ford  algorithm is at most 
n 3. This is because there are at most n stages and at 
most n messages are transmitted by each processor at 
each stage. Interestingly enough, with an asynchro- 
nous execution, and if the communication delays are 
allowed to be arbitrary, some simple examples (due to 
E. M. Gafni and R. G. Gallager; see Bertsekas and 
Tsitsiklis, 1989b) show that the number of messages 
exchanged until termination could be exponential in 
n, even if we restrict processor i to transmit a message 
only when the value of xl changes. This could be a 
serious drawback but experience with the algorithm 
indicates that this worst case behavior rarely occurs 
and that the average number of messages exchanged is 
polynomial in n. It also turns out that the expected 
number of messages is polynomial in n under some 
reasonable probabilistic assumptions on the execution 
of the algorithm (Tsitsiklis and Stamoulis, 1990). 

A number of asynchronous convergence results 
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making essential use of monotonicity conditions are 
also available for relaxation and pr imal-dual  algo- 
rithms for linear and nonlinear network flow 
problems (Bertsekas, 1986; Bertsekas and Eckstein, 
1987, 1988; Bertsekas and El Baz, 1987; Bertsekas 
and Castanon, 1989, 1990). Experiments showing 
faster convergence for asynchronous over synchronous 
relaxation methods for assignment problems using a 
shared memory machine are given in Bertsekas and 
Castonon (1989). 

We finally note that, under the monotonicity 
assumptions of this subsection, the convergence rate 
of an asynchronous iteration is guaranteed to be at 
least as good as the convergence rate of a 
corresponding synchronous iteration, under a fair 
comparison (Bertsekas and Tsitsiklis, 1989a). 

7. PARTIALLY ASYNCHRONOUS ALGORITHMS~I 
We now consider iterations satisfying the partial 

asynchronism Assumption 2. Since old information is 
"purged" from the algorithm after at most B units, it 
is natural to describe the "state" of the algorithm at 
time t by the vector z(t) ~ X R defined by 

z ( t )  = ( x ( t ) ,  x ( t  - 1)  . . . . .  x ( t  - B + 1)) .  

We then notice that x(t + 1) can be determined [cf. 
(5.1)-(5.3)] in terms of z(t); in particular, knowledge 
of x(r ) ,  for r-< t -  B is not needed. We assume that 
the iteration mapping f is continuous and has a 
nonempty set X* c X of fixed points. Let Z* be the 
set of all vectors z * ~ X  n of the form z * =  
(x*,x*, . . . .  x*), where x* belongs to X*. We 
present a sometimes useful convergence result, which 
employs a Lyapunov-type function d defined on the 
set X B. 

Proposition 4. (Bertsekas and Tsitsiklis, 1989b) 
Suppose that there exist a positive integer t* and a 
continuous function d : X B ~  [0, ~) with the following 
properties: For every initialization z(0)~ Z* of the 
iteration and any subsequent sequence of events 
(conforming to Assumption 2) we have d(z( t*))< 
d(z(O)) and d(z(1))---d(z(O)). Then every limit point 
of a sequence {z(t)} generated by the partially 
asynchronous iteration (5.1)-(5.2) belongs to Z*. 
Furthermore, if X = ~",  if the function d is of the 
form d ( z ) =  inf I Iz -z* l l ,  where I1" II is some vector 

z*~Z* 

norm, and if the function f is of the form 
f (x)  = A x  +b, where A is a n × n  matrix and b is a 
vector in ~",  then d(z(t)) converges to zero at the 
rate of a geometric progression. 

For an interesting application of the above 
proposition, consider a mapping f : ~n ~ ~n of the 
form f ( x ) =  Ax where A is an irreducible stochastic 
matrix, and let n, = 1 for each i. In the corresponding 
iterative algorithm, each processor maintains and 
communicates a value of a scalar variable xi and once 
in a while forms a convex combination of its own 
variable with the variables received from other 
processors according to the rule 

X i  : =  ~ a # x ) .  

] - 1  

Clearly, if the algorithm converges then, in the limit, 
the values possessed by different processors are equal. 
We will thus refer to the asynchronous iteration 
x : = A x  as an agreement algorithm. It can be shown 
that, under the assumption of partial asynchronism, 
the function d defined by 

d(z ( t ) )=max max x i ( ~ ) - m i n  rain x/(r) (7.1) 
i t B < r ~ t  i t B < r < - t  

has the properties assumed in Proposition 4, provided 
that at least one of the diagonal entries of A is 
positive. In particular, if the processors initially 
disagree, the "maximum disagreement" [cf. (7.1)] is 
reduced by a positive amount after at most 2nB time 
units (Tsitsiklis, 1984). Proposition 4 applies and 
establishes geometric convergence to agreement. 
Furthermore, such partially asynchronous conver- 
gence is obtained no matter how big the value of the 
asynchronism measure B is, as long as B is finite. 

The following example (Bertsekas and Tsitsiklis, 
1989b) shows that the agreement algorithm need not 
converge totally asynchronously. 

Example 2. Suppose that 

[1/2 1/2] 
A = I_1/2 1/2]" 

Here, the synchronous iteration x ( t + l ) = A x ( t )  
converges in a single step to the vector x = (y, y), 
where y = (x~ +x2)/2. Consider the following totally 
asynchronous scenario. Each processor updates its 
value at each time step. At  certain times t~, t2 . . . . .  
each processor transmits its value which is received 
with zero delay and is immediately incorporated into 
the computations of the other processor. We then 
have 

x l ( t + l )  x,(t) x2(tk) tk<--t<tk+ = ~ - + ~ - ,  ,, 

xz(t+ 1)=x'(tk) + x~(t) t~<--t<tk+,. 
2 2 ' 

(See Fig. 8 for an illustration.) Thus, 

xt(tk+,) = (1/2) 'k+' -'kx,(tk) + (1 -- (1/2) .... '*)xz(tk), 

xz(tk+,) = (1/2) 'k÷' '~Xz(t~) + (1 -- (1/2) .... '~)x,(tk). 

Subtracting these two equations we obtain 

]x/(tk+,) - x,(tk+,)l = (1 - 2(1/2) '~+'-'~) Ixz(tk) - x,(tk)l 

= (1 - Ek)Ix2(tk) -x , ( tx) l ,  

where ek = 2(1/2) 'k+'-'k. In particular, the disagree- 
ment [x2(tk)--Xl(tk)[ keeps decreasing. On the other 
hand, convergence to agreement is not guaranteed 

unless l~I ( 1 -  e k ) = 0  which is not necessarily the 
k=l 

case. For example, if we choose the differences 
tk+ l - tk  to be large enough so that ek < k 2, then we 

can use the fact I] ( l - k  2 )>0  to see that 
k 1 

convergence to agreement does not take place. 

Example 2 shows that failure to converge is possible 
if part (b) of the partial asynchronism Assumption 2 
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x~(O) 

~ x l  ( t l )  

\ / ~ - ~ - - - - -  ~(t~l 

~ . ¢ . ~ - - ' ~ -  x 1 I t2 )  

/ / . f ~ ,  ( t~)  

xl (0) / 

tT t 2 t3 

l ira sup x i ( t ) ,  i = 1,2 

l i ra i n f  x~( t ) ,  i = 1,2 
t ÷ ~ a  

~t t 

FIG. 8. Illustration of divergence in Example 2. 

fails to hold. There also exist examples demonstrating 
that parts (a) and (c) of Assumption 2 are also 
necessary for convergence. 

Example 2 illustrates best the convergence mecha- 
nism in algorithms which converge partially asynchro- 
nously for every B, but not totally asynchronously. 
The key idea is that the distance from the set of fixed 
points is guaranteed to "contract" once in a while. 
However, the contraction factor depends on B and 
approaches 1 as B gets larger. (In the context of 
Example 2, the contraction factor is 1 -  E~ which 
approaches 1 as t~+ l - tk  is increased to infinity.) As 
time goes to infinity, the distance from the set of fixed 
points is contracted an infinite number of times but 
this guarantees convergence only if the contraction 
factor is bounded away from 1, which then 
necessitates a finite but otherwise arbitrary bound on 
B. 

Partially asynchronous convergence for every value 
of B has been established for several variations and 
generalizations of the agreement algorithm (Tsitsiklis, 
1984; Bertsekas and Tsitsiklis, 1989b), as well as for a 
variety of other problems: 

(a) The iteration :t := ~rP for the computation of a 
row vector n of invariant probabilities, associated with 
an irreducible stochastic matrix P with a nonzero 
diagonal entry (Lubachevsky and Mitra, 1986). This 
result can be also obtained by letting xi = ~rl/nT, 
where n* is a positive vector satisfying n* = riP, and 
by verifying that the variables xl obey the equations of 
the agreement algorithm (Bertsekas and Tsitsiklis, 
1989b). 

(b) Relaxation algorithms involving nonexpans- 
ive mappings with respect to the maximum norm 
(Tseng et al., 1990; Bertsekas and Tsitsiklis, 1989b). 
Special cases include dual relaxation algorithms for 
strictly convex network flow problems and linear 
iterations for the solution of linear equations of the 
form A x  =b ,  where A is an irreducible matrix 
satisfying the weak diagonal dominance condition 
~, la~jl <-- a, ,  for all i. 

j~,~i 

(c) An asynchronous algorithm for load balancing 
in a computer network whereby highly loaded 
processors transfer fractions of their load to their 
lightly loaded neighbors, until the load of all 
processors becomes the same (Bertsekas and Tsits- 
iklis, 1989b). 

In all of the above cases, partially asynchronous 
convergence has been proved for all values of B, and 
examples are available which demonstrate that totally 
asynchronous convergence fails. 

We close by mentioning a particular context in 
which the agreement algorithm could be of use. 
Consider a set of processors who obtain a sequence of 
noisy observations and try to estimate certain 
parameters by means of some iterative method. This 
could be a stochastic gradient algorithm (such as the 
ones arising in recursive system identification) or some 
kind of a Monte Carlo estimation algorithm. All 
processors are employed for the estimation of the 
same parameters but their individual estimates are 
generally different because the noises corrupting their 
observations can be different. We let the processors 
communicate and combine their individual estimates 
in order to average their individual noises, thereby 
reducing the error variance. We thus let the 
processors execute the agreement algorithm, trying to 
agree on a common estimate, while simultaneously 
obtaining new observations which they incorporate 
into their estimates. There are two opposing effects 
here: the agreement algorithm tends to bring their 
estimates closer together, while new observations 
have the potential of increasing the difference of their 
estimates. Under the partial asynchronism assump- 
tion, the agreement algorithm tends to converge 
geometrically. On the other hand, in several stochastic 
algorithms (such as the stochastic approximation 
iteration 

1 
x := x - t (VF(x) + w), 

where w represents observation noise) the stepsize 1# 

AUTO 27:1-B 
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decreases to zero as time goes to infinity. We then 
have, asymptotically, a separation of time scales: the 
stochastic algorithm operates on a slower time scale 
and therefore the agreement algorithm can be 
approximated by an algorithm in which agreement is 
instantly established. It follows that the asynchronous 
nature of the agreement algorithm cannot have any 
adverse effect on the convergence of the stochastic 
algorithm. Rigorous results of this type can be found 
in Tsitsiklis (1984); Tsitsiklis et al. (1986); Kushner 
and Yin (1987a, b); Bertsekas and Tsitsiklis (1989b). 

8. PARTIALLY ASYNCHRONOUS ALGORITHMS--II 
We now turn to the study of partially asynchronous 

iterations that converge only when the stepsize is 
small. We illustrate the behavior of such algorithms in 
terms of a prototypical example. 

Let A be an n × n positive definite symmetric 
matrix and let b be a vector in ~".  We consider the 
asynchronous iteration x := x - y ( A x  - b),  where 7 is 
a small positive stepsize. We define a cost function 
F : ~n ~ ~ by F(x )  = ½x'Ax - x ' b ,  and our iteration 
is equivalent to the gradient algorithm x : = x -  
y VF(x) for minimizing F. This algorithm is known to 
converge synchronously provided that y is chosen 
small enough. On the other hand, it was shown in 
Example 1 that the gradient algorithm does not 
converge totally asynchronously. Furthermore, a 
careful examination of the argument in that example 
reveals that for every value of y there exists a B large 
enough such that the partially asynchronous gradient 
algorithm does not converge. Nevertheless, if ), is 
fixed to a small value, and if B is not excessively large 
(we roughly need B <- C / y ,  where C is some constant 
determined by the structure of the matrix A), then the 
partially asynchronous iteration turns out to be 
convergent. An equivalent statement is that for every 
value of B there exists some ~,o>0 such that if 
0 < ~, < yo then the partially asynchronous algorithm 
converges (Tsitsiklis et al., 1986; Bertsekas and 
Tsitsiklis, 1989b). The rationale behind such a result is 
the following. If the information available to 
processor i on the value of x 1 is outdated by at most B 
time units, then the difference between the value 

i xi(rj( t))  possessed by processor i and the true value 
xj(t) is of the order of 7B, because each step taken by 
processor j is of the order of 7. It follows that for y 
very small the errors caused by asynchronism become 
negligible and cannot destroy the convergence of the 
algorithm. 

The above mentioned convergence result can be 
extended to more general gradient-like algorithms for 
nonquadratic cost functions F. One only needs to 
assume that the iteration is of the form x := x - ~,s(x), 
where s (x )  is an update direction with the property 
si(x) V F ( x ) > - K [ V i F ( x ) l  2, where K is a positive 
constant, together with a Lipschitz continuity 
condition on VF, and a boundedness assumption of 
the form IIs(x)ll -< L IIVF(x)ll (Tsitsiklis et al., 1986; 
Bertsekas and Tsitsiklis, 1989b). Similar conclusions 
are obtained for gradient projection iterations for 
constrained convex optimization (Bertsekas and 

Tsitsiklis, 1989b). 
An important application of asynchronous gradient- 

like optimization algorithms arises in the context of 
optimal quasistatic routing in data networks. In a 
common formulation of the routing problem one 
is faced with a convex nonlinear multicommodity 
network flow problem (Bertsekas and Gallager, 1987) 
that can be solved using gradient projection methods. 
It has been shown that these methods also converge 
partially asynchronously, provided that a small 
enough stepsize is used (Tsitsiklis and Bertsekas, 
1986). Furthermore, such methods can be naturally 
implemented on-line by having the processors in the 
network asynchronously exchange information on the 
current traffic conditions in the system and perform 
updates trying to reduce the measure of congestion 
being optimized. An important property of such an 
asynchronous algorithm is that it adapts to changes in 
the problem being solved (such as changes on the 
amount of traffic to be routed through the network) 
without a need for aborting and restarting the 
algorithm. Some further analysis of the asynchronous 
routing algorithm can be found in Tsai (1986, 1989) 
and Tsai et al. (1986). 

9. TERMINATION OF ASYNCHRONOUS 
ITERATIONS 

In practice, iterative algorithms are executed only 
for a finite number of iterations, until some 
termination condition is satisfied. In the case of 
asynchronous iterations, the problem of determining 
whether termination conditions are satisfied is rather 
difficult because each processor possesses only partial 
information on the progress of the algorithm. 

We now introduce one possible approach for 
handling the termination problem for asynchronous 
iterations. In this approach, the problem is decom- 
posed into two parts: 

(a) An asynchronous iterative algorithm is modified 
so that it terminates in finite time. 

(b) A special procedure is used to detect termination 
in finite time after it has occured. 

In order to handle the termination problem, we 
have to be a little more specific about the model of 
interprocessor communication. While the general 
model of asynchronous iterations introduced in 
Section 5 can be used for both shared memory and 
message-passing parallel architectures, we adopt here 
a more explicit message-passing model. In particular, 
we assume that each processor j sends messages with 
the value of xj to every other processor i. Processor i 
keeps a buffer with the most recently received value of 
x,. We denote the value in this buffer at time t by 
x~(t). This value was transmitted by processor j at 
some earlier time T~(t) and therefore x j ( t ) i  ---- Xj(~j(t)).i 
We also assume the following: 

Assumpt ion  3. (a) If t e T i and x,(t  + 1) ~ x i ( t ) ,  then 
processor i will eventually send a message to every 
other processor. 

(b) If a processor i has sent a message with the 
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value of xi(t) to some other processor ], then 
processor i will send a new message to processor j only 
after the value of x~ changes (due to an update by 
processor i). 

(c) Messages are received in the order that they are 
transmitted. 

(d) Each processor sends at least one message to 
every other processor. 

Assumption 3(d) is only needed to get the algorithm 
started. Assumption 3(b) is crucial and has the 
following consequences. If the value of x(t) settles to 
some final value, then there will be some time t* after 
which no messages will be sent. Furthermore,  all 
messages transmitted before t* will eventually reach 
their destinations and the algorithm will eventually 
reach a quiescent state where none of the variables x~ 
changes and no message is in transit. We can then say 
that the algorithm has terminated. 

More formally, we view termination as equivalent 
to the following two properties: 

(i) No message is in transit. 
(ii) An update by some processor i causes no change 

in the value of xi. 

Property (ii) is a collection of local termination 
conditions. There are several algorithms for termina- 
tion detection when a termination condition can be 
decomposed as above (Dijkstra and Scholten, 1980; 
Bertsekas and Tsitsiklis, 1989b). Thus termination 
detection causes no essential difficulties, under the 
assumption that the asynchronous algorithm termin- 
ates in finite time. 

We now turn to the more difficult problem of 
converting a convergent asynchronous iterative 
algorithm into a finitely terminating one. If we were 
dealing with the synchronous iteration x ( t+  1)=  
f (x( t )) ,  it would be natural to terminate the algorithm 
when the condition IIx(t + 1 ) - x ( t ) l l - <  • is satisfied, 
where • is a small positive constant reflecting the 
desired accuracy of solution, and where I1" II is a 
suitable norm. This suggests the following approach 
for the context of asynchronous iterations. Given the 
iteration mapping f and the accuracy parameter  •, we 
define a new iteration mapping g : X ~ X by letting 

g,(x) I f~(x) ifllf~(x) - x ,  I I -  e, 
= txi, otherwise. 

We will henceforth assume that the processors are 
executing the asynchronous iteration x :=g(x) .  The 
key question is whether this new iteration is 
guaranteed to terminate in finite time. One could 
argue as follows. Assuming that the original iteration 
x : = f ( x )  is guaranteed to converge, the changes in the 
vector x will eventually become arbitrarily small, in 
which case we will have g ( x ) = x  and the iteration 
x := g(x) will terminate. Unfortunately, this argument 
is fallacious, as demonstrated by the following 
example. 

Example 3. Consider the function f : = ~2 V-~ ~ 2  

defined by 
- x l ,  ifx2-> • /2 ,  

fl(x) = [0, if X2 < • /2.  

f2(x) = x2/2. 

It is clear that the asynchronous iteration x : = f ( x )  
converges to x* = (0, 0): in particular, x2 is updated 
according to x2:=x:/2 and tends to zero; thus, it 
eventually becomes smaller than • /2.  Eventually 
processor 1 receives a value of x2 smaller than • /2  and 
a subsequent update by the same processor sets x~ to 
zero. 

Let us now consider the iteration x := g(x). If the 
algorithm is initialized with x2 between ¢/2 and E, 
then the value of Xz will never change, and processor 1 
will keep executing the nonconvergent iteration 
xl : = - x ~ .  Thus, the asynchronous iteration x := g(x) 
is not guaranteed to terminate. 

The remainder of this section is devoted to the 
derivation of conditions under which the iteration 
x : = g ( x )  is guaranteed to terminate. We introduce 
some notation. Let I be a subset of the set { 1 , . . . ,  p} 
of all processors. For each i • / ,  let there be given 
some value 0~ • X~. We consider the asynchronous 
iteration x:=f l ' ° (x ) ,  which is the same as the 
iteration x : = f ( x )  except that any component x ,  with 
i • I, is set to the value 0~. Formally, the mapping f~.o 
is defined by letting f~'°(x)=f~(x), if i ¢ I ,  and 
f~'°(x) = 0~, if i • L 

Proposition 5. (Bertsekas and Tsitsiklis, 1989a) Let 
Assumption 3 hold. Suppose that for any I c 
{1 . . . . .  p} and for any choice of O i • X ,  i • L  the 
asynchronous iteration x :=fl '°(x) is guaranteed to 
converge. Then, the asynchronous iteration x := g(x) 
terminates in finite time. 

Proof. Consider the asynchronous iteration x := g(x). 
Let I be the set of all indices i for which the variable 
x,(t) changes only a finite number of times. For each 
i • / ,  let 01 be the limiting value of xi(t). Since f maps 
X into itself, so does g. It follows that 0i • Xi for each 
i. For each i • I, processor i sends a positive but finite 
number of messages [Assumptions 3(d) and (b)]. By 
Assumption 3(a), the last message sent by processor i 
carries the value 0~ and by Assumption 3(c) this is also 
the last message received by any other processor. 
Thus, for all t large enough, and for all ], we will have 
x~(t) = x,(r~(t)) = 0~. Thus, the iteration x := g(x) 
eventually becomes identical with the iteration 
x :=fl"°(x) and therefore converges. This implies that 
the difference xi(t + 1 ) - x i ( t )  converges to zero for 
any i ¢ I. On the other hand, because of the definition 
of the mapping g, the difference x~(t + 1) -x~( t )  is 
either zero, or its magnitude is bounded below by 
• > 0. It follows that xi(t + 1) - x,(t) eventually settles 
to zero, for every i ~ L This shows that i • I for every 
i¢1;  we thus obtain a contradiction unless I =  
{1 . . . . .  p},  which proves the desired result. Q.E.D.  

We now identify certain cases in which the main 
assumption in Proposition 5 is guaranteed to hold. We 
consider first the case of monotone iterations and we 
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assume that the iteration mapping f has the properties 
introduced in Section 6.2. For any I and {0i I i e 1}, 
the mapping ft .o inherits all of the properties of f, 
except that f~,o is not guaranteed to have a unique 
fixed point. If this latter property can be independ- 
ently verified, then the asynchronous iteration 
x :=f t ' ° (x)  is guaranteed to converge, and Proposition 
3 applies. Let us simply say here that this property can 
be indeed verified for several interesting problems. 

Let us now consider the case where f satisfies the 
contraction condition I I f ( x ) - x * l l -  o: I Ix-x*l l  of 
(6.2). Unfortunately, it is not necessarily true that the 
mappings fr, o also satisfy the same contraction 
condition. In fact, the mappings f l .o are not even 
guaranteed to have a fixed point. Let us strengthen 
the contraction condition of (6.2) and assume that 

[ I f ( x ) - f ( y ) l l < - o : l l x - y l l ,  Vx, y e ~ " ,  (9.1) 

where I1" II is the weighted maximum norm of (6.1) 
and oL e [0, 1). We have f~ '°(x)_f~,O(y)  = O i -  Oi = 0 
for all i e I. Thus, 

1 
IIf"°(x) - f " ° ( y ) l  I = max - -  IIf~(x) - f~(Y)ll~ 

i ~ l  W i 

1 
-< max - -  IIf,(x) -fi(Y)lli 

i wi 

-- Ill(x) - f (Y) l l  -< o: IIx -Yll- 

Hence, the mappings f t ,  o inherit the contraction 
property (9.1). As discussed in Section 6, this 
property guarantees asynchronous convergence and 
therefore Proposition 5 applies again. 

We conclude that the modification x := g(x)  of the 
asynchronous iteration x := f (x )  is often, but not 
always, guaranteed to terminate in finite time. It is an 
interesting research question to devise economical 
termination procedures for the iteration x := f (x )  that 
are always guaranteed to work. The snapshot 
algorithm of Chandy and Lamport (1985) [see 
(Bertsekas and Tsitsiklis, 1989, Section 8.2)] seems to 
be one option. 

10. CONCLUSIONS 
Iterative algorithms are easy to parailelize and can 

be executed synchronously even in inherently 
asynchronous computing systems. Furthermore, for 
the regular communication networks associated with 
several common parallel architectures, the com- 
munication requirements of iterative algorithms are 
not severe enough to preclude the possibility of 
massive parallelization and speedup of the computa- 
tion. Iterative algorithms can also be executed 
asynchronously, often without losing the desirable 
convergence properties of their synchronous counter- 
parts, although the mechanisms that affect conver- 
gence can be quite different for different types of 
algorithms. Such asynchronous execution may offer 
substantial advantages in a variety of contexts. 

At present, there is very strong evidence suggesting 
that asynchronous iterations converge faster than their 
synchronous counterparts. However, this evidence is 
principally based on analysis and simulations. There is 
only a small number of related experimental works 
using shared memory machines. These works support 

the conclusions of the analysis but more testing with a 
broader variety of computer architectures is needed to 
provide a comprehensive picture of the practical 
behavior of asynchronous iterations. Furthermore, the 
proper implementation of asynchronous algorithms in 
real parallel machines can be quite challenging and 
more experience is needed in this area. Finally, much 
remains to be done to enlarge the already substantial 
class of problems for which asynchronous algorithms 
can be correctly applied. 
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