Bertsekas

Reinforcement Learning and Optimal Control

ASU, CSE 691, Winter 2019

Dimitri P. Bertsekas
dimitrib@mit.edu

Lecture 9

Reinforcement Learning

1/22

0 Review of Exact and Approximate Policy Iteration

e Approximate Pl with Parametric Approximation

© Q-Leaming

0 Least Squares Training and Simulation-Based Projection

Bertsekas Reinforcement Learning 2/22

Main Results - Discounted Problems

Infinite horizon discounted problems: States i, controls u € U(i), transition probs p;(u),
cost per stage g(i, u, j), discount factor a < 1

Bellman’s equation for optimal cost J* and policy cost J,

i) = min Zpy)(g(i, u,)) + ad"(j)),

ueU(i)

)= prj(u(f)) (9(is i),) + ad ()
j=1

Value iteration convergence for optimal cost and policy cost
k1 (f) = m|n Zp,, (9(i, u,)) + adk())), I —J*

s (i Zp,, () (90 i),) + adki))s e =

Optimality condition

w is optimal if and only if it attains the min in Bellman’s equation

Bertsekas Reinforcement Learning 4/22

Policy Iteration (P1) Algorithm: Generates a Sequence of Policies {<}

Initial Policy

Evaluate Cost Function J,, of Policy Cost
Current policy p Evaluation

Generate “Improved” Policy 1z Policy Improvement

Given the current policy 1%, a Pl consists of two phases:

@ Policy evaluation computes J,«(f), i = 1,..., n, as the solution of the (linear)
Bellman equation system

J(i) = 3 Py (1)) (g(i, 1 (i),) + aJ#k(j)), i=1,....n
j=1

@ Policy improvement then computes a new policy p**' as

n
W0 e arg min B py(u) (g0,) + adk(i), i=1,.n
j=1

v

Optimistic PI: Like standard PI, but policy evaluation uses a finite number of VI. |
Bertsekas Reinforcement Learning 5/22

Approximation in Value Space for Infinite Horizon Problems

Approximate minimization

First Step “Future”

min Zpij(u) (g(i,u,j) + ozj(]))

weU (i) =
Approximations: Computation of J:
Replace E{-} with nominal values Problem approximation
(certainty equivalence) Rollout

Approximate PI
Parametric approximation
Aggregation

Adaptive simulation
Monte Carlo tree search

We focus on rollout, and particularly on approximate Pl schemes, which
operate as follows:
@ Several policies 1%, 1", ..., ™ are generated, starting with an initial policy z°.

@ Each policy . is evaluated approximately, with a cost function j‘uk, often with the
use of a parametric approximation/neural network approach.

@ The next policy 1" is generated by policy improvement based on J ,«.

@ The approximate evaluation j#m of the last policy in the sequence is used as the
lookahead approximation J in a one-step or multistep lookahead minimization.

Bertsekas Reinforcement Learning

6/22

Rollout and Truncated Rollout

Lookahead Tree

Terminal Cost
Approximation .J

Selective Depth

Rollout Policy s

States ir42

(-step lookahead, truncated rollout, terminal cost approximation

@ (-step lookahead, then rollout with policy . for a limited number of steps, and
finally a terminal cost approximation J.

@ Without terminal approximation, this is a single Pl combined with multistep
lookahead.

@ With a terminal approximation, this is a single optimistic PI combined with
multistep lookahead.

v

Performance bounds: They improve as ¢ increases and J ~ J* (within a constant shift).

Bertsekas Reinforcement Learning 7122

Approximate (Nonoptimistic) Policy Iteration - Performance Bound

Jux

Error Zone

J*

ol 1 2] il

Typical Behavior: Oscillations within an error zone

@ “Size" of the zone depends on the “approximation quality" of policy evaluation (9)
and policy improvement (e).

@ When the generated policies converge, the performance bound is better.

Bertsekas Reinforcement Learning 8/22

Parametric Approximation and Model-Based Actor-Critic Schemes

Initial Policy

I:Zvaluatc Approximate Cost Approximate Policy
Ju(4,T) of Current Policy Evaluation
Critic

A

Generate “Improved” Policy 7i by | Policy Improvement
Lookahead Min Based on J,(i,T) Actor

Introduce a differentiable parametric architecture J, (i, r) for policy evaluation

@ Examples: A linear featured-based architecture or a neural net.

@ Approximate policy evaluation/training: Generate state-cost pairs (i°, 3°), where
3% is a sample cost corresponding to i°. Use least squares/regression:

q
T € argmin 21 (Ju (1) = B°)
=
@ [3° is generated by simulating a trajectory that starts at i°, using u for some
number N of stages, accumulating the correspondlng discounted costs, and
adding a terminal cost approximation aJ(iy).

2

Bertsekas Reinforcement Learning

Training, Exploration, and Other Issues

@ The training problem q
Feargmind_ (Ju(i°,r) - §°)°
r s=1
is well-suited for incremental gradient:
rk+1 = rk - ’kajﬂ(iSkv rk)(JN(iSkv rk) - ﬂSK)
where (i%, 3%) is the state-cost sample pair that is used at the kth iteration.

@ Trajectory reuse: Given a long trajectory (ip, i1, - - - , in), we can obtain cost
samples for all the states iy, /s, io, . . ., by using the tail portions of the trajectory.

@ Exploration: When evaluating p with trajectory reuse, we generate many cost
samples that start from states frequently visited by . Then the cost of
underrepresented states may be estimated inaccurately, causing potentially
serious errors in the calculation of the improved policy f.

@ Bias-variance tradeoff: As the trajectory length N increases, the cost samples 3°
become more accurate but also more “noisy."

@ Cost shaping: Replace g(i, u, j) with (i, u,j) = g(i, u,j) + aV(j) — V(i), to
approximate J,, — V rather than J,.. Suboptimal policies depend on V, and V can
capture much of the “nonlinearity” in J,,. Allows the use of enhanced
approximations.

Bertsekas Reinforcement Learning 11/22

A Working Break: Think About Exploration in Approximate Pl

Initial Policy

Evaluate Approximate Cost Approximate Policy
Ju(4,T) of Current Policy Evaluation
Critic

A

Generate “Improved” Policy fi by Policy Improvement
Lookahead Min Based on J,(i,7) Actor

How would you introduce both exploration and trajectory reuse into policy evaluation? J

@ What kind of schemes would diversify the cost samples of a given policy p?
@ How would they work for deterministic problems?
@ How would they work if we estimate Q-factors?

Answer: Many starting states, short trajectories, terminal cost approximation, use of an
“off-policy".

Bertsekas Reinforcement Learning 12/22

Approximate Pl Schemes with Q-Factors

Initial Policy

Evaluate Approximate Q-Factors Approximate Policy
Q,.(i, u,7) of Current Policy p Evaluation
Critic

A,

Generate “Improved” Policy i Policy Improvement

(i) € arg minyep (i) Qhu(i-, u,T) Actor

Introduce a parametric architecture éu(i, u, r) for Q-factor evaluation

@ Approximate policy evaluation/training: Generate training triplets (i°, u®, %), where
B° is a sample Q-factor corresponding to (i°, u®). Use least squares/regression:

q
7 € argmin > (Qui b, r) = B°)
s=1
@ 3° is generated by simulating a trajectory that starts at (i°, u®), using p for some
number N of stages, accumulating the corresponding discounted costs, and
adding a terminal cost approximation a™J(iy).

Bertsekas Reinforcement Learning 13/22

2

Approximate Pl with Approximation in Policy Space on Top of

Approximation in Value Space

Trajectory Reuse and Exploration Issues
@ Trajectory reuse is more problematic in Q-factor evaluation than in cost evaluation;
each trajectory generates state-control pairs of the special form (i, u(i)) at every
stage after the first, so pairs (i, u) with u # w(i) are not adequately explored.
@ For this reason, it is necessary to make an effort to include in the samples a rich
enough set of trajectories that start at pairs (i, u) with u # (/).

@ An alternative approach: First compute in model-free fashion a cost function
approximation J,.(j, 7), and then use a second sampling process and regression to
approximate further the (already approximate) Q-factor

> PiW) (gl u.)) + aJu(7).

with some Q,.(i, u, F) possibly obtained with a policy approximation architecture.

@ This is model-free approximate Pl that is based on approximation in policy space
on top of approximation in value space. It is more complex, but allows trajectory
reuse and thus deals better with the exploration issue.

Bertsekas Reinforcement Learning 14/22

Q-Learning with Lookup Table Representation

Recall the VI Algorithm for Q-Factors Q.1 = FQx where F is the operator
(FQ)(i, u) Zp,, (i,u,j) + avrglijr(}) Q(j, v)) , forall (i,u)

F is a contraction with modulus «, so VI converges to Q*.

Q-Learning is a simulation-based VI algorithm for Q-factors, based on
“asynchronous DP" ideas [iterate on a single pair (i, u) at a time]

@ An infinitely long sequence of state-control pairs {(i*, u*)} is generated according
to some (essentially arbitrary) probabilistic mechanism.

@ For each pair (i, u¥), a state j* is generated according to the probabilities pj;(u*).

@ Then only the Q-factor of (i, u*) is updated using a stepsize v* € (0, 1]; all other
Q-factors are left unchanged:

Qut (i, u) = (1 = Y)Qu(i, u) + v (Fk Qi) (i, u), forall (i, u),
where (F Qi) (i, u) = Qk(i, u) if (i, u) # (i, u¥), and
(FeQu)(I", 1) = 9", 0",) + o min Qu(*,v) i (7, u) = ()
veu(j

@ To guarantee convergence some technical conditions are needed, e.g., v* — 0.

Bertsekas Reinforcement Learning 16/22

Optimistic Policy Iteration Methods with Q-Factor Approximation

Introduce a linear parametric architecture @(i, u,r) = ¢(i,u)'r, and iterate on r. Each
value of r defines a policy, which generates controls. As r is iterated on the policy

changes.

SARSA: At iteration k, we have r*, i, and we have chosen a control u*

@ We simulate the next transition (/*, /“*") using the transition probabilities pj;(u).

@ We generate u**" with the minimization """ & argmin,,. .1, Q(*", u, r*) [In

some schemes, u
U(i**') to enhance exploration.]

@ We update the parameter vector via
P = P — o 1,

where ¥ is a positive stepsize, and gx is given by

gk = (%, U r* — ap(i*T UKy R — g(iF, Uk iFT

@ The vector ¢(i", uk)qk can be interpreted as an approximate gradient direction,
and gk is referred to as a temporal difference.

k1 is chosen with a small probability to be a different element of

Bertsekas Reinforcement Learning

17/22

A Projection View of Approximate Policy Evaluation

@ Approximation of solution of Bellman’s equation J,, = T,J,, with a parametric
architecture amounts to replacing J,, with a vector in

M= {(J(1,r), ...,Jd(n,r)) | all parameter vectors r}
@ A common approach uses projection onto M:
n(J) € argmin ||J — V|?
VeMm
where

1IE = 36 ()%,

where J(i) are the components of J, and & are some positive weights.

Three general approaches for approximation of J,, using projection

@ Project J,, onto M to obtain M(J,), which is used in place of J,,.

@ Start with some approximation J of Ju, perform N VIs to obtain TM’\’J, and project
onto M to obtain M(T}'J). We then use M(TJ) in place of J,..

@ Solve a projected equation J,, = IM(T,J,.), and use the solution in place of J,.

Bertsekas Reinforcement Learning 19/22

Approximate Projection by Monte-Carlo Simulation

@ We focus on the case where the manifold M is a subspace M = {&r | r € R™}
where ® is an n x m matrix with rows denoted by ¢(i)’, i=1,...,n

@ The projection M(J) is of the form ®r*, where
n
* . 2 . . N ~ 2
r* € arg min [|&r — J|J¢ = arg min ;&w(/) r—J(i)

@ This minimization can be done in closed form,

r*(Zf@(i)qﬁ(i)’) Z@ (NJ(i)

View the two terms as expectations and approximate them by MC simulation
@ Generate samples i°, s =1, ..., g, according to £, and form the estimates

1 q q

5 Z o(i° Z &i9() % DL GERDWLIONO)

where ° is a sample of J(i°) plus a “zero mean noise" term n(i°) (see the text).
e Estimate r* by 7 = (X7, ¢(i¥)¢(i)) ' 20, 6(i°)8°

Bertsekas Reinforcement Learning 20/22

Connection with Least Squares
The solution of the simulation-based approximate projection
q -1 q
r= <Z o(iS)d)(iS)/) > oli)s
t=1 t=1
is also obtained by the least squares minimization

q
7 € arg min ; (p(i%) r — B°)°

Thus simulation-based projection can be implemented in two equivalent ways

@ Replacing expected values in the exact projection formula by simulation-based
estimates.

@ Replacing the exact least squares/projection problem with a simulation-based
least squares approximation.

@ |t is not necessary that the simulation produces independent samples.

@ |t is sufficient that the long term empirical frequencies by which the indices i
appear in the simulation sequence are consistent with the probabilities &;.

@ We do not need the probabilities &; (the simulation determines them implicitly).

Bertsekas Reinforcement Learning 21/22

About the Next Lecture

We will cover:
@ More on parametric approximation methods
@ Exact and approximate linear programming
@ Approximation in policy space

PLEASE READ AS MUCH OF SECTIONS 4.9-4.11 AS YOU CAN
PLEASE DOWNLOAD THE LATEST VERSIONS FROM MY WEBSITE

Bertsekas Reinforcement Learning 22/22

	Review of Exact and Approximate Policy Iteration
	Approximate PI with Parametric Approximation
	Q-Learning
	Least Squares Training and Simulation-Based Projection

