Bertsekas

Reinforcement Learning and Optimal Control

ASU, CSE 691, Winter 2019

Dimitri P. Bertsekas
dimitrib@mit.edu

Lecture 6

Reinforcement Learning

1/28

0 Parametric Approximation Architectures

e Training of Approximation Architectures

e Incremental Optimization of Sums of Differentiable Functions
0 Neural Networks

e Neural Nets and Finite Horizon DP

Bertsekas Reinforcement Learning 2/23

Recall the Approximation in Value Space Framework for Finite Horizon

Problems

First Step “Future”

Approximate Min _ - R

min E{gk(l’k, Uk, wk)+Jk+1(ﬂfk+1)}

v A

Approximate E{-} Approximate Cost-to-Go jk+1
Certainty equivalence Problem approximation
Adaptive simulation Rollout, Model Predictive Control

Parametric approximation
Neural nets
Aggregation

Monte Carlo tree search

Bertsekas Reinforcement Learning 4/23

Parametric Approximation in Value Space

An approximation architecture is a class of functions J(x, r) that depend on x and a
vector r = (ry, ..., Im) of m “tunable" scalar parameters (or weights).

Issues and terminology

@ Aim: Choose r to make J(x, r) close to some target cost function J(x).

@ Training algorithm chooses r. It typically uses least squares optimization
(regression) to fit J(x, r) to a data set of state-cost pairs.

@ An architecture is called linear if J(x, r) is linear in r.
@ ltis called feature-based if it depend on x via a feature vector ¢(x),

Jx,r) = J(s(x),r),

where J is some function. Idea: Features capture dominant nonlinearities.
@ A linear feature-based architecture:

Jx,r) = meﬁe x) = r'¢(x),

=

where r; and ¢, (x) are the ¢th components of r and ¢(x).

Bertsekas Reinforcement Learning 5/23

Training of Architectures

Least squares regression

@ Collect a set of state-cost training pairs (x°, 8°), s = 1,..., g, where 3° is equal to
the target cost J(x°) plus some “noise".

@ ris determined by solving the problem
q
min > (J(x*, r) - °)°
s=1

@ Sometimes a quadratic regularization term ~||r||? is added to the least squares
objective, to facilitate the minimization (among other reasons).

Training of linear feature-based architectures can be done exactly

o If J(x,r) = r'¢(x), where ¢(x) is the m-dimensional feature vector, the training
problem is quadratic and can be solved in closed form.

@ The exact solution of the training problem is given by
q -1 q
P= (Z ¢(x5)¢<x5)’> > o(x)s°
s=1 s=1

@ This requires a lot of computation for a large m and data set; may not be best.

Bertsekas Reinforcement Learning 7/23

Training of Nonlinear Architectures

The main training issue

How to exploit the structure of the training problem
! 2
i T vS s
mran;(J(x ,r) = B%)
S=

to solve it efficiently.

Key characteristics of the training problem

@ Possibly nonconvex with many local minima, horribly complicated graph of the cost
function (true when a neural net is used).

@ Many terms in the least least squares sum; standard gradient and Newton-like
methods are essentially inapplicable.

@ Incremental iterative methods that operate on a single term (J(x°,r) — ﬂS)Z at
each iteration have worked well enough (for many problems).

Bertsekas Reinforcement Learning 8/23

Incremental Gradient Methods

Generic sum of terms optimization problem
Minimize
m

) = > i)

where each f; is a differentiable scalar function of the n-dimensional vector y (this is
the parameter vector in the context of parametric training).

The ordinary gradient method generates y**! from y* according to
m
Y =y =) =y = VYY)
i=1

where v¥ > 0 is a stepsize parameter.

The incremental gradient counterpart
Choose an index i and iterate according to

Y = yf =V ()

where ~* > 0 is a stepsize parameter.
Bertsekas Reinforcement Learning 10/23

The Advantage of Incrementalism: An Interpretation from the NDP Book

(ciy —bi)?
. \
— min; y; R MaxX; Y
| = - — .
FAROUT REGION REGION OF CONFUSION FAROUT REGION

Minimize f(y) = 3 31", (ciy — bi)?

Compare the ordinary and the incremental gradient methods in two cases

@ When far from convergence: Incremental gradient is as fast as ordinary gradient
with 1/m amount of work.

@ When close to convergence: Incremental gradient gets confused and requires a
diminishing stepsize for convergence.

Bertsekas Reinforcement Learning 11/23

Incremental Aggregated and Stochastic Gradient Methods

Incremental aggregated method aims at acceleration
@ Evaluates gradient of a single term at each iteration.
@ Uses previously calculated gradients as if they were up to date

m—1

yk+1 _ yk o ﬁ/k Z Vfik,é(ykié)

£=0

@ Has theoretical and empirical support, and it is often preferable.

Stochastic gradient method (also called stochastic gradient descent or SGD)

@ Applies to minimization of f(y) = E{F(y. w)} where w is a random variable
@ Has the form
yk+1 _ yk o ’YKVyF(,Vk, Wk)
where w¥ is a sample of w and V, F denotes gradient of F with respect to y.

@ The incremental gradient method with random index selection is the same as SGD
[convert the sum 37, fi(y) to an expected value, where i is random with uniform
distribution].

Bertsekas Reinforcement Learning 12/23

Implementation Issues of Incremental Methods - Alternative Methods

@ How to pick the stepsize v* (usually v* = 25 or similar).

@ How to deal (if at all) with region of confusion issues (detect being in the region of
confusion and reduce the stepsize).

@ How to select the order of terms to iterate (cyclic, random, other).
@ Diagonal scaling (a different stepsize for each component of y).

@ Alternative methods (more ambitious): Incremental Newton method, extended
Kalman filter (see the textbook and references).

Bertsekas Reinforcement Learning 13/23

Neural Nets: An Architecture that Automatically Constructs Features

x,v
- ¢1(x,v) A Cost
pproximation
State y(xl Ay(x) + b $2(x,v) r'¢(x,v)
— O —
ot o "
State Linear Nonlinear Linear
Encoding Layer Layer Weighting
Parameter Parameter
= (A,b) FEATURES r
Given a set of state-cost training pairs (x°, 3°), s =1,..., g, the parameters of the

neural network (A, b, r) are obtained by solving the training problem

@ Incremental gradient is typically used for training.

@ Universal approximation property.

Bertsekas Reinforcement Learning 15/23

Rectifier and Sigmoidal Nonlinearities

max{0, €} (&) =In(1 +€f)

The rectified linear unit o(€) = In(1 + €°). It is the rectifier function max{0, £} with its
corner “smoothed out."

Sigmoidal units: The hyperbolic tangent function o(¢) = tanh(¢) = ‘:Z;j:f is on the
left. The logistic function o(¢) = ;1= is on the right.

Bertsekas Reinforcement Learning 16/23

Deep Neural Networks

r'(x,v)

State Linear Nonlinear Linear Nonlinear Linear
Encoding Layer Layer Layer Layer Weighting

@ The multilayer network provides a hierarchy of features (each set of features being
a function of the preceding set of features).

@ We may use matrices A with a special structure that encodes special linear
operations such as convolution.

@ When such structures are used, the training problem may become easier,
because the number of parameters in the linear layers is drastically decreased.

@ They have been found more effective than shallow neural nets for some problems.

@ Incremental gradient is still used for training. The algorithm is based on an

intelligent way of using the chain rule to calculate the incremental gradient at each
iteration.

Bertsekas Reinforcement Learning 17/23

A Working Break: Challenge Question

Pp,~(2)
/ Slope v

T Linear Rectifier
y(x —5) max{0, £}

0 Jé; T

How can we use linear and rectifier units to construct the “pulse” feature below?

¢181 :/82753754,’}’(33)

Slope T i i
| |

»

0 Bif2 B3P

@ What are the features that can be produced by neural nets?
@ Why do neural nets have a “universal approximation” property? J

Bertsekas Reinforcement Learning 18/23

Answer

Linear Rectifier $51,62.7(%)
—
y(z — B1) max{0, £} 4 Slope 7 /!
* |
ol 0 B B2 x
Linear Rectifier
v(z — f2) max{0, £} (a)
Linear Rectifier
(= B1) max{0, £}
BB1,B2,Ba,61.4(T)
Linear Rectifier
y(z — f2) max{0, £}
- - e - l
Linear Rectifier 0 Aip Psbs @
Y(z — B3) » max{0,&} +
(b)
Linear Rectifier
(@ — fBa) max{0,&}
Using the pulse feature as a building block, any feature can be approximated J

Bertsekas Reinforcement Learning 19/23

Sequential DP Approximation - A Parametric Approximation at Every

Stage (Also Called

Start with Jy = gn and sequentially train going backwards, until k = 0

@ Given a cost-to-go approximation Jx,1, we use one-step lookahead to construct a
large number of state-cost pairs (xi, 35), s =1, ..., q, where

B: = min E{g(x,f,u,wk)+Jk+1(fk(x,f,u,wk),rk+1)}7 s=1,....q

u€ Uk (x§)

@ We “train" an architecture Jx on the training set (x§, 55), s =1,...,q.

Typical approach: Train by least squares/regression and possibly using a
neural net

We minimize over r

g
Z (J(xXE, 1) 3)2
p

Bertsekas Reinforcement Learning 21/23

Sequential Q-Factor Approximation

@ Consider sequential DP approximation of Q-factor parametric approximations

Qk (X, Uk, k) = E{gk(xk~, U we) + min Qupt (Xeit, U, fk+1)}
UE Upey1 (X 1)

(Note a mathematical magic: The order of E{-} and min have been reversed.)

@ We obtain Qk(xk, Uk, r) by training with many pairs ((x2, Ug), Bi), where 37 is a
sample of the approximate Q-factor of (x¢, ug). [No need to compute E{-}.]

@ Note: No need for a model to obtain ;. Sufficient to have a simulator that
generates state-control-cost-next state random samples

(XK, Uk), (Gk (Xk, Uk, Wi), Xkr1))

@ Having computed ri, the one-step lookahead control is obtained on-line as

T (x) €arg min Qx(xk, U, 1)
u€e Uk (xk)

without the need of a model or expected value calculations.
@ Important advantage: The on-line calculation of the control is simplified.

Bertsekas Reinforcement Learning 22/23

About the Next Lecture

We will cover:
@ Infinite horizon DP problems: Stochastic shortest path and discounted problems
@ Analysis, Bellman’s equation, optimality conditions
@ Algorithms: Value iteration, policy iteration
@ We will likely need more than one lecture

PLEASE READ AS MUCH OF SECTIONS 4.1-4.5 AS YOU CAN
APPENDIX OF CHAPTER 4 CONTAINS PROOFS; TAKE A CRACK AT THEM
PLEASE DOWNLOAD THE LATEST VERSIONS FROM MY WEBSITE

Bertsekas Reinforcement Learning 23/23

	Parametric Approximation Architectures
	Training of Approximation Architectures
	Incremental Optimization of Sums of Differentiable Functions
	Neural Networks
	Neural Nets and Finite Horizon DP

