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0 Review of Aggregation Frameworks
e Definition of the Aggregate Problem
e Simulation-Based Solution of the Aggregate Problem

0 Variants of Aggregation
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Aggregation within the Approximation in Value Space Framework

Approximate minimization

First Step “Future”
n - >
min ij(u)(g(t,u,5) +aJ(j
uEU(i);pm( )(g(i,u, 5) + o J (7))
Approximations: Computation of J:
Replace E{-} with nominal values Problem approximation
(certainty equivalence) Rollout

Approximate PI
Parametric approximation
Aggregation
ONE-STEP LOOKAHEAD
MULTISTEP LOOKAHEAD IS SIMILAR - WE WILL DISCUSS LATER

Some important differences from alternative schemes:

Adaptive simulation
Monte Carlo tree search

@ In aggregation, J aims to approximate J*, not the cost function J,, of a policy ,
like rollout or approximate PI.

@ J converges to J* as the aggregation becomes finer, i.e., as the number of
representative states or features increases.

@ Key factor for good performance: Choose properly the rep. features so that the
number needed for good performance is not excessive.
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Aggregation with Representative States: A Form of Discretization

A classical example. J

\\ . .
— States (Fine Grid)

| — Representative States
(Coarse Grid)

Original states are related to representative states with interpolation coefficients called
aggregation probabilities. J

Representative States | Aggregation Probabilities
@iy
Relate
Original States to

Original State Space -} Representative States
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Representative States - The Aggregate Problem

Original States

pij(u), 9(i,u, 7)

Aggregation

Probabilities
Pjy

1

| :
Cost 7‘*| ——————— S mmmm o

Original cost approximation by interpolation
n

Py (u ZpX] )by, G(x,u) = ZPX/’(U)Q(Xv u, j), Ji) = Z bty
j=1

yeA

Exact methods

Once the aggregate model is computed (i.e., its transition probs. and cost per stage),
any exact DP method can be used: VI, Pl, optimistic PI, or linear programming.

Model-free (simulation-based) methods

Given a simulator for the original problem, we can obtain a simulator for the aggregate
problem. Then use an (exact) model-free method to solve the aggregate problem.
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Feature-Based Aggregation - Discretize the Feature Space

Feature
@ Extraction T e e
> > L] L] L]

Representative Features
State Space Feature Space Aggregate States

Representative features formation - Guiding ideas:
@ Feature map F: States i with similar F (/) should have similar J* (/).
@ Footprint /x of feature x: States i in I should have feature F(i) ~ x.

Original
System States

pij(u), 9(i,u, j)
Disaggregation
Probabilities
dzi

qujZOfOriilm

Aggregation
Probabilities
vy

¢jy = 1forjel,

Representative Features
Aggregate States
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A Simple but Flawed Version of the Aggregate Problem

Original
System States

pij(u), (i, u, j)
Disaggregation
Probabilities
d:m',

dei =0fori¢ I,

Aggregation
Probabilities
Yy

¢jy =1forjel,

Representative Features
Aggregate States

Patterned after the simpler representative states model J

Aggregate dynamics and costs
@ Aggregate dynamics: Transition probabilities between representative features x, y

Pry(u) = Z O Z pi(u) by

i€ly

=> dy Z px(L)g(x, u,j)

i€ly
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More Accurate Version: The Enlarged Aggregate Problem

Enlarged State Space
pij(u), 9(i,u, j)

Cost Jo Cost Ji

Zontrols u are associated

Disaggregation with states i
Probabilities

Aggregation
Probabilities
Pjy

Cost r* Representative Features

Bellman equations for the enlarged problem
re =Y dado(i), XxE€A,

i=1

' - mln Zpl] g(l,u,])+0[n]1(j)), i:17"'an7

UEU(
J1(/ =>"gyr;,  j=1,...,n

yeA

r* solves uniquely the composite Bellman equation r* = Hr*:

— (Hr)(x) = de, min Zpy glhu)+ad dyry |, x€A
yeA
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Approximation error for the piecewise constant case (¢;, = 0 or 1 for all /, y)

Consider the footprint sets
Sy={ley=1} yeA
The (J* — J) error is small if J* varies little within each S,. In particular,
DRl <= J€S,yeA

where e = maxyc.4 max;jes, |J* (i) — J*(j)| is the max variation of J* within S,.

Implication
Choose representative features x so that J* varies little over the footprint of x.

This is a generally valid qualitative guideline
Holds for the more general piecewise linear interpolation case.
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Simulation-Based Asynchronous Value lteration for the Aggregate

Problem

~

A sampled version of VI for solving r* = Hr*: r**1 ~ (1 — 4%)rk + vkKH(rk) with

Hr (X Zd)a min ZP:/ ( ’ uvj)+az¢]}’ry> ) xeA
yeA

ueU()

Note that H is a contraction.

At time k iterate for a single rep. feature x, and keep all other rX unchanged

Zp’kl (g(ik,u,j)—i—anSjyrf)

o= (1 = )+ min
yeA

er ueU(i)

where iy is a sample from Iy, selected according to dy,;, and v is a stepsize

Convergence result [Tsitsiklis and Van Roy (1995)]

With +* — 0 and other technical conditions, this iteration converges to the unique

solution r*. Some similarity with (exact) Q-learning proofs.
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Simulation-Based Policy Iteration

Uses policy evaluation/policy improvement to generate policy/cost pairs {(u*, r¥)}.
Converges monotonically ("' < r¥) and finitely (r* = r* for sufficiently large k).

Policy evaluation of current policy 1

Solve the (linear) composite Bellman equation r* = H,r" for 1/, where

yeA

(Hur)(x) = ZdX,Zp,, ( j)+a2¢,yry>, xe A

Two possibilities:
@ lteratively: Using a sampled version of VI with sampling for both / and for j.
@ By matrix inversion: Write the equation r* = H .« r¥ in matrix form as
rk = Akrk 4 b¥. Evaluate A¥ and b* by simulation, and set r* = (/1 — AX)~'b¥.

Policy improvement by one-step lookahead

(i) = arg m|n Zp,, u) (gl uf)+ad eyry |, i=1,....n
yeA
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Biased Aggregation - Suppose we Know a Good Approximation V ~ J*;

How do we Correct it?

Aggregation-based
Correction

(piecewise constant or

piecewise linear)

~
Corrected V'

State

We add a “bias" function V to the cost structure of the enlarged aggregate problem )

Cost Jo Enlarged Siate Space Cost Ji
Dij (u)’ 9(7‘7 uv])
Disaggregation Aggregation
probabilities probabilities
T iy
Cost —V (7) Cost V(j)

Cost r*

Representative Features
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Some Results for Biased Aggregation

Cost Jo Enlarged State Space u Cost Ji
Disaggregation Aggregation
probabilities probabilities

Cost =V (7) Cost V(j)

Cost r* (U _ _ _ _ __ _ _ _p _______
Representative Features

Let (r*, Jo, J1) be the solution [note that Ji (j) = V(j) + 3, c 4 ;]

@ When V = J* then r* = 0, Jo = J; = J*, and any optimal policy for the aggregate
problem is optimal for the original problem.

@ When V = J, for some policy 1, the policy produced by aggregation is a rollout
policy based on u, when there is a single rep. feature. Suggests that with multiple
rep. features the aggregation/rollout policy should be much better than rollout.

@ Error bounds similar to the ones for the case V = 0 suggest to choose rep.
features and footprint sets within which V — J* varies little.

@ We do not know J*, but we may use TXV (k value iterations on V) as an
approximation. Then use V — T*V as a scoring function to form rep. features.
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A Challenge Question - Deterministic Problems

Enlarged State Space
pij(u), 9(i,u,5)

Cost Jo Cost J;

Zontrols u are associated
with states i

Disaggregation Aggregation
Probabilities Probabilities
dyi jy
Cost 1" Y Reanrecentatioe Foatiros

Representative Features

How do VI and PI benefit from the problem being deterministic?

@ VI form: rfkﬁ =(1= Vk)’fk + v minyeug Z,L pij(u) <g(ik, uj)tadl,ca qs,yr}‘)
@ Policy evaluation: Solve the composite Bellman equation r* = Hukr", where
(Huar)(x) =" da > o (D) | g( () ) + 0> dyyry | xcA
i=1 j=1 yeA

@ Policy improvement: /" (i) = argmin,cy() 3-74 pj(u) (g(i, Ui +ad,cq (bjyr;‘)

@ How about using representative states? Possibility of multistep lookahead?
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Deterministic Problems - Aggregation with ¢-Step Lookahead

For a deterministic problem, the simulation-based VI and PI are simplified
@ The sampled version of VI has the form

k+1 k\ .k k :
==+ wel) < glic; u) + @ D bitiuy” )
yeA
@ No expectation over j is required.

@ If representative states are used, there is no need for sampling according to the
probabilities d, to obtain ik (so v* = 1).

Given r*, consider ¢-step lookahead minimization
@ At state fp we find

(ué,...,ui(,,ﬂearg m|n )(2 o g(ix, ug) + o § gb,[yry>
seeeslp—q
yeA

and apply i(io) = u§.
@ This is a shortest path problem, and its solution on-line may be fast.
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N-Step Feature-Based Aggregation

N Stages
— — — — — — — — — — — — — — — — — >
pij (1) pij(u) pij (1)
O D@ e D)
g(i, u, 5) 9(1,4,9) > Original g(i, u, 5)

Disaggregation System States Aggregation
Probabilities Probabilities
dai 3 y Piy
dei =0 fori ¢ I, ¢jy =1forjel,

@ i . @
Representative Features

Aggregate States

@ The composite system consists of N + 2 stochastic Bellman equations.
@ Simulation-based version of VI is hard to implement.
@ Simulation-based version of Pl is possible, but policies are multistep.

A simpler case: Deterministic problem and representative states (no features)

@ Then each VIl iteration involves solution of an N-stage deterministic DP (shortest
path) problem: r**" = Hy(r¥), where Hy is the N-stage DP operator.

@ This algorithm embodies the idea of aggregation in both space and time.
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Spatio-Temporal Aggregation - Compressing Space and Time

‘‘‘‘‘‘ ATLANTIC

ocEAN

0CEAN

Plan 5-day auto travel from Boston to San Francisco - How would you do it?
@ Select major stops/cities (New York, Chicago, Salt Lake City, Phoenix, etc).
@ Select major stopping times (times to stop for sleep, rest, etc).
@ Decide on space and time schedules at a coarse level. Optimize the details later.

@ We may view this as an example of reduction of a very large-scale shortest path
problem to a manageable problem by spacio-temporal aggregation.
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Deterministic Problems - N-Stage Aggregation with Representative

States and Aggregation Probabilities ¢;, = 0 or 1

Aggregation Controls Aggregation
Probabilities ¢, ¢ U (z) Probabilities
¢jy =0or1 / ¢jy =0or1
ol /= o
L f 9
T
R~ R~
:,/ I~ — I~~~
ro— — o
o— ®

N Stages—»

Representative Representative
States States
Cost Vector r* Cost Vector r*

An example of spacio-temporal aggregation

@ The infinite horizon discounted aggregate problem decomposes into a sequence
of (identical) N-stage shortest path problems.

@ Compute shortest path from each rep. state x to each rep. state y.

@ Construct a low-dimensional deterministic infinite horizon DP problem (the states
are just the representative states).
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Spatio-Temporal Decomposition

Aggregation Controls Aggregation
Probabilities ¢, € U(x) Probabilities
¢jy =0or1 jy =0 or 1
o S SN S aSSSS L[]

SRS |
— 1

\5-/
b Y

Y Y Y W Y Y
L B2
prele
S i
Representative N Stages Representative
States States
Cost Vector r* Cost Vector 7*

Shortest N-Stage Compressed
Distance N stages

x—to—\y //

AT AT A
IR
e el el

Representative States
Cost Vector r*

~|
—n

NG

‘l““‘|7

IN71X

o<

1‘\?'\' 79797

]
¥ )I//

T

o
;c<

¢

%

@ Each N-stages block is “compressed" into an all-to-all shortest path problem.
@ The compressed problem is a low-dimensional deterministic DP problem.
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Spatio-Temporal Decomposition - Extension

Representative
State-Time Pairs

Deterministic shortest path and finite horizon extensions

@ Consider the space-time tube of a deterministic shortest path problem.

@ Introduce space-time barriers, i.e., subsets of representative state-time pairs that
“separate past from future" (think of the Boston-San Francisco travel).

@ “Compress" the portions of the space-time tube between two successive barriers
into shortest path problems between each state-time pair of the left barrier to each
state-time pair of the right barrier.

@ Form a “master" shortest path problem of low dimension that involves only the
representative state-time pairs.
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About the Next and Final Lecture

WE WILL GIVE AN OVERVIEW OF THE ENTIRE COURSE
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