
Semicontractive Dynamic Programming

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Lecture 5 of 5

September 2016

Bertsekas (M.I.T.) Semicontractive Dynamic Programming 1 / 19



Contents of the Lecture Series

Semicontractive Examples.

Semicontractive Analysis for Stochastic Optimal Control.

Extensions to Abstract DP Models.

Applications to Stochastic Shortest Path and Other Problems.

Algorithms.

Bertsekas (M.I.T.) Semicontractive Dynamic Programming 2 / 19



Outline of this Lecture

1 Review of Abstract DP

2 Review of Semicontractive Analysis

3 Algorithms Under Weaker Assumptions: A Perturbation Approach

Bertsekas (M.I.T.) Semicontractive Dynamic Programming 3 / 19



Abstract DP Problem Formulation

State and control spaces: X ,U

Control constraint: u ∈ U(x) for all x

Stationary policies: µ : X 7→ U, with µ(x) ∈ U(x) for all x

Monotone Mappings
Abstract monotone mapping H : X × U × E(X ) 7→ <

J ≤ J ′ =⇒ H(x , u, J) ≤ H(x , u, J ′), ∀ x , u

Mappings Tµ and T

(TµJ)(x) = H
(
x , µ(x), J

)
, ∀ x ∈ X , J ∈ E(X )

(TJ)(x) = inf
µ

(TµJ)(x) = inf
u∈U(x)

H(x , u, J), ∀ x ∈ X , J ∈ E(X )

Stochastic Optimal Control Mapping: A Special Case

H(x , u, J) = E
{

g(x , u,w) + αJ
(
f (x , u,w)

)}
We saw several other problems and mappings, e.g., exponential cost, minimax, etc.
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Abstract Problem Analysis

Abstract DP Problem

Given an initial function J̄ ∈ E(X ) and policy µ, define

Jµ(x) = lim sup
N→∞

(T N
µ J̄)(x), x ∈ X

Find J∗(x) = infµ Jµ(x) and an optimal µ attaining the infimum

Results of Interest
Bellman’s equation

J∗ = TJ∗

and its set of solutions. Usually J∗ is a solution.

Conditions for optimality of a stationary policy µ, usually TµJµ = TJµ.

Algorithms and their convergence issues.

Semicontractive Models:
Some policies are “well-behaved" (have a regularity property), and others are not.
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S-Regularity

Key idea: We have a set of functions S ⊂ E(X ), which we view as the “domain of
regularity"

Problem Formulation and Results Results Overview Semicontractive Nonnegative Models

S-Regular policy µ
S-Regular policy µ

Problem Formulation and Results Results Overview Semicontractive Nonnegative Models

S-Regular policy µ
S-Irregular policy µ̄
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Definition of S-Regular Policy
Given a set of functions S ⊂ E(X ), we say that a stationary policy µ is S-regular if:

Jµ ∈ S and Jµ = TµJµ
T k
µJ → Jµ for all J ∈ S

A policy that is not S-regular is called S-irregular.
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Algorithms for Abstract DP

Value Iteration (VI)

Given an initial function J0, generate T k J0, k = 0, 1, . . .

We hope and expect that T k J0 → J∗ for all J0, or for J0 in some convenient subset
of functions.

There is a similar VI algorithm that aims to compute Jµ in the limit. It generates
T k
µJ0, k = 0, 1, . . .

Note the connection with S-regularity: essentially, µ is S-regular if VI is
“well-behaved starting within S," i.e., T k

µJ0 → Jµ, for all J0 ∈ S.

Policy Iteration (PI)

{µk} is generated by a two-step iteration:

Jµk = Tµk Jµk , (policy evaluation)

and
Tµk+1 Jµk = TJµk , (policy improvement)

We aim to prove that Jµk → J∗, and perhaps µk → µ∗, an optimal policy.
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S-Regular Restricted Problem
Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u 2 (0, 1]

Well-Behaved Region J⇤ S

Jµ for µ 2 MS supJ2S J J⇤
S J 2 E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u 2 (0, 1]

Well-Behaved Region J⇤ S

Jµ for µ 2 MS supJ2S J J⇤
S J 2 E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Given a set S ⊂ E(X )

Consider the restricted optimization problem: Minimize Jµ over µ in the setMS of
all S-regular policies

Let J∗S be the optimal cost function over S-regular policies only:

J∗S (x) = inf
µ∈MS

Jµ(x), x ∈ X

J∗ ≤ J∗S with strict inequality possible.

When J∗ 6= J∗S , we have seen that J∗S may be more “well-behaved" than J∗.

Most of our analysis has focused on cases where J∗ = J∗S .
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Our Main Assumption

Assume that S consists of real-valued functions and:
There exists at least one S-regular policy and J∗S = infµ∈MS Jµ belongs to S.

For every J ∈ S and S-irregular policy µ, there exists x ∈ X such that

lim sup
k→∞

(T k
µJ)(x) =∞

S contains J̄, and has the property that if J1, J2 are two functions in S, then S
contains all functions J with J1 ≤ J ≤ J2

The set
{

u ∈ U(x) | H(x , u, J) ≤ λ
}

is compact for every J ∈ S, x ∈ X , and λ ∈ <
For each sequence {Jm} ⊂ S with Jm ↑ J for some J ∈ S,

lim
m→∞

H(x , u, Jm) = H (x , u, J) , ∀ x ∈ X , u ∈ U(x)

For each function J ∈ S, there exists a function J ′ ∈ S such that J ′ ≤ J and
J ′ ≤ TJ ′
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Main Result

Proposition: Under the preceding assumption
(Bellman Eq.) J∗ = TJ∗. Moreover, J∗ is the unique fixed point of T within S

(VI Convergence) We have T k J → J∗ for all J ∈ S

(Optimality Condition) µ is optimal if and only if TµJ∗ = TJ∗, and there exists an
optimal S-regular µ

(PI Convergence) If in addition for each {Jm} ⊂ E(X ) with Jm ↓ J for some
J ∈ E(X ),

H (x , u, J) = lim
m→∞

H(x , u, Jm), ∀ x ∈ X , u ∈ U(x)

then every sequence {µk} generated by the PI algorithm starting from an
S-regular policy µ0 satisfies Jµk ↓ J∗

(Optimization-Based Solution of Bellman’s Eq.) For any J ∈ S, if J ≤ TJ we have
J ≤ J∗, and if J ≥ TJ we have J ≥ J∗ (this allows finding J∗ by linear
programming for many types of problems with finite spaces)
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Algorithms for Semicontractive DP

Value Iteration Properties

Under our main assumption, T k J → J∗ for all J ∈ S.

Under weaker assumptions (centering on PI properties of S, cf. Lectures 2 and 3),
T k J → J∗S for all J such that J∗S ≤ J ≤ J̃ for some J̃ ∈ S.

Policy Iteration Properties (Assuming we Start with an S-Regular Policy)
Under our main assumption, Jµk → J∗.

Under weaker assumptions (a strong PI property of S, cf. Lectures 2 and 3),
Jµk → J∗S .

Note a weakness: An initial S-regular policy is needed.

Optimization Approach
Under our main assumption J∗ maximizes over J the sum

∑
i∈X J(i) subject to

J ≤ TJ.

Under weaker assumptions, J∗S maximizes over J the sum
∑

i∈X J(i) subject to
J ≤ TJ.
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Optimistic PI: Another Algorithm

A Mixture of VI and PI

Start with some J0 ∈ E(X ) such that J0 ≥ TJ0, and generate a sequence {Jk , µ
k}

according to
Tµk Jk = TJk , Jk+1 = T mk

µk Jk , k = 0, 1, . . . ,

where mk is a positive integer for each k .

Convergence under the Main Assumption
We have Jk ↓ J∗.

The sequence {µk} generated by the algorithm consists of S-regular policies.

Notes
Generally tends to converge faster than both VI and PI.

Still requires a J0 such that J0 ≥ TJ0.

There are interesting asynchronous variations for which this is not a requirement.
Moreover this algorithm can deal with irregular policies as well.
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What to do when the Infinite Cost Assumption is not Satisfied?

A Motivating Example
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the most part, they are used to exclude from optimality the policies that
are not “well-behaved,” and to obtain results that are nearly as powerful
as their counterparts for the contractive models of Chapter 2.

3.1.1 Deterministic Shortest Path Problems

Let us consider the classical deterministic shortest path problem, discussed
in Example 1.2.7. Here, we have a graph of n nodes x = 1, . . . , n, plus
a destination t , and an arc length axy for each directed arc (x, y). The
objective is to find for each x a directed path that starts at x, ends at t,
and has minimum length (the length of a path is defined as the sum of the
lengths of its arcs). A standard assumption, which we will adopt here, is
that every node x is connected to the destination, i.e., there exists a path
from every x to t.

To formulate this shortest path problem as a DP problem, we embed
it within a “larger” problem, whereby we view all paths as admissible,
including those that do not terminate at t. We also view t as a cost-
free and absorbing node. Of course, we need to deal with the presence of
policies that do not terminate, and the most common way to do this is to
assume that all cycles have strictly positive length, in which case policies
that do not terminate cannot be optimal. However, it is not uncommon to
encounter shortest path problems with zero length cycles, and even negative
length cycles. We will thus not impose any assumption on the sign of the
cycle lengths, particularly since we aim to use the shortest path problem
to illustrate behavior that arises in a broader undicounted/noncontractive
DP setting.

As noted in Section 1.2, we can formulate the problem in terms of an
abstract DP model where the states are the nodes x = 1, . . . , n, and the
controls available at x can be identified with the outgoing neighbors of x
[the nodes u such that (x, u) is an arc]. The mapping H that defines the
corresponding abstract DP problem is

H(x, u, J) =

⇢
axu + J(u) if u 6= t,
axt if u = t,

x = 1, . . . , n.

A stationary policy µ defines the subgraph whose arcs are
�
x, µ(x)

�
,

x = 1, . . . , n. We say that µ is proper if this graph is acyclic, i.e., it consists
of a tree of paths leading from each node to the destination. If µ is not
proper, it is called improper . Thus there exists a proper policy if and only
if each node is connected to t with a path. Furthermore, an improper policy
has cost greater than �1 starting from every initial state if and only if all
the cycles of the corresponding subgraph have nonnegative cycle cost.

Let us now get a sense of what may happen by considering the simple
one-node example shown in Fig. 3.1.1. Here there is a single state 1 in
addition to the termination state t. At state 1 there are two choices: a
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1

Suppose that we add δ > 0 to the two costs 0 and b:

The cost of the improper policy µ′ becomes∞.

The cost of the proper policy µ increases by δ.

By letting δ ↓ 0, we obtain J∗S (1) = b.

This Motivates a Perturbation Approach
For each policy µ and δ ≥ 0, we consider the mappings

(Tµ,δJ)(x) = H
(
x , µ(x), J

)
+ δ, x ∈ X , TδJ = inf

µ∈M
Tµ,δJ.

Solve the δ-perturbed problem with a sequence δk ↓ 0.
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Relating the Original Problem with the Perturbed problem as δ ↓ 0

We define the cost functions of policies µ ∈M, and optimal cost function J∗δ of the
δ-perturbed problem by

Jµ,δ(x) = lim sup
k→∞

T k
µ,δ J̄, J∗δ = inf

µ∈M
Jµ,δ.

Proposition:
Given a set S ⊂ E(X ), assume that:

For every δ > 0, we have J∗δ = TδJ∗δ , and there exists an S-regular policy µ∗δ that is
optimal for the δ-perturbed problem, i.e., Jµ∗

δ
,δ = J∗δ

For every S-regular policy µ, we have

Jµ,δ ≤ Jµ + wµ(δ), ∀ δ > 0,

where wµ is a function such that limδ↓0 wµ(δ) = 0

H has the property that for every sequence {Jm} ⊂ S with Jm ↓ J, we have

lim
m→∞

H(x , u, Jm) = H(x , u, J), ∀ x ∈ X , u ∈ U(x).

Then limδ↓0 J∗δ = J∗S , and J∗S is a fixed point of T (which brings to bear a main result
from Lectures 2 and 3).
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Perturbation-Based Algorithms

Value Iteration
Jk+1 = Tδk Jk , with δk ↓ 0.

There is an asynchronous version of the algorithm

Policy Iteration for SSP Assuming that J∗(i) > −∞ for all i

Let δk ↓ 0, and let µ0 be a proper policy. Given a proper policy µk , and we generate
µk+1 according to

Tµk+1 Jµk ,δk
= TJµk ,δk

Then:

We have Jµk → J∗S .

µk is an optimal policy for sufficiently large k (this depends on the finiteness of the
state and the control spaces).
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Some Final Remarks

On Abstract DP
Abstraction leads to an economical analysis and promotes a deeper
understanding.

Focuses on the fundamental issues.

Semicontractive Models: An Interesting Special Class of Abstract DP Models
Include important classes of practical problems.

Involves unusual/pathological behavior.

Aims to discover simple assumptions that preclude the pathological behavior, and
allow the use of reliable algorithms.
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