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Contents of the Lecture Series

@ Semicontractive Examples.

@ Semicontractive Analysis for Stochastic Optimal Control.

@ Extensions to Abstract DP Models.

@ Applications to Stochastic Shortest Path and Other Problems.

@ Algorithms.
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Outline of this Lecture

° Review of Abstract DP
e Review of Semicontractive Analysis

e Algorithms Under Weaker Assumptions: A Perturbation Approach
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Abstract DP Problem Formulation

@ State and control spaces: X, U
@ Control constraint: u € U(x) for all x
@ Stationary policies: p : X — U, with p(x) € U(x) for all x

Monotone Mappings
@ Abstract monotone mapping H : X x U x E(X) — R

J<J = H(x,u,J) < H(x,u,J"), Vx,u

@ Mappings T, and T
(Tud)(X) = H(x, u(x),J), VxeX,JeEX)
(TH(x) = ir;f(TuJ)(x) = inf H(x,u,J), VxeX,JeEX)

ueU(x)

Stochastic Optimal Control Mapping: A Special Case
H(x,u,J) = E{g(x,u, w) + aJ(f(x,u,w))}

We saw several other problems and mappings, e.g., exponential cost, minimax, etc.

v
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Abstract Problem Analysis

Abstract DP Problem

@ Given an initial function J € E(X) and policy u, define

Ju.(x) =limsup (T)J)(x), xeX
N— oo

@ Find J*(x) = inf, J.(x) and an optimal x attaining the infimum

Results of Interest
@ Bellman’s equation
J =T
and its set of solutions. Usually J* is a solution.
@ Conditions for optimality of a stationary policy p, usually T,J, = TJ,.
@ Algorithms and their convergence issues.

Semicontractive Models:

Some policies are “well-behaved" (have a regularity property), and others are not.
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S-Regularity

Key idea: We have a set of functions S C E(X), which we view as the “domain of
regularity” J

S-Regular policy S-Irregular policy
TE]

Definition of S-Regular Policy

Given a set of functions S C E(X), we say that a stationary policy x is S-regular if:
@ J,eSandJ, = T,J,
o TfJ—J,forallde S

A policy that is not S-regular is called S-irregular.
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Algorithms for Abstract DP

Value lteration (VI)

@ Given an initial function Jy, generate T¥dy, k = 0,1, ...

@ We hope and expect that TkJo — J* for all J, or for Jp in some convenient subset
of functions.

@ There is a similar VI algorithm that aims to compute J,, in the limit. It generates
Tkdo, k=0,1,...

@ Note the connection with S-regularity: essentially, 1 is S-regular if VI is
“well-behaved starting within S," i.e., TXJy — J,., for all Jy € S.

Policy Iteration (PI)
@ {4*} is generated by a two-step iteration:
Ik = Tkdyk, (policy evaluation)
and

Towerd e = Tk, (policy improvement)

© We aim to prove that J « — J*, and perhaps i« — 1*, an optimal policy.
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S-Regular Restricted Problem

Jy for pe Mg

Je o JE // \\\

< » JEEX)
S

Given aset S C E(X)

@ Consider the restricted optimization problem: Minimize J,, over p in the set M of
all S-regular policies

@ Let Js be the optimal cost function over S-regular policies only:

Js(x) = S dedy e

@ J* < Js with strict inequality possible.
@ When J* # Jg, we have seen that J5 may be more “well-behaved" than J*.
@ Most of our analysis has focused on cases where J* = Js.
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Our Main Assumption

Assume that S consists of real-valued functions and:
@ There exists at least one S-regular policy and Jg = inf,c amg Ju belongs to S.
@ For every J € S and S-irregular policy u, there exists x € X such that

lim sup (T/{J)(x) = oo

k— o0
@ S contains J, and has the property that if J;, J> are two functions in S, then S
contains all functions J with J; < J < >
@ Theset {u e U(x) | H(x,u,J) < A} is compact forevery J € S, x € X, and A € R
@ For each sequence {Jn} C S with J, 1 J for some J € S,

lim H(x,u,Jdn) = H(x,u,J), VxeX, ueU(x)

m— oo

@ For each function J € S, there exists a function J' € S such that J’ < J and
J<TS
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Main Result

Proposition: Under the preceding assumption
@ (Bellman Eq.) J* = TJ*. Moreover, J* is the unique fixed point of T within S
@ (VI Convergence) We have TXJ — J* forallJ € S
@ (Optimality Condition) w is optimal if and only if T,J* = TJ*, and there exists an
optimal S-regular p
@ (PI Convergence) If in addition for each {Jn} C E(X) with Jx | J for some
J € E(X),

H(x,u,J):mIim H(x,u, Jm), VxeX, ueU(x)
then every sequence {1} generated by the Pl algorithm starting from an
S-regular policy ° satisfies Ik L J”
@ (Optimization-Based Solution of Bellman’s Eq.) For any J € S, if J < TJ we have
J < J*,andif J > TJ we have J > J* (this allows finding J* by linear
programming for many types of problems with finite spaces)
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Algorithms for Semicontractive DP

Value Iteration Properties

@ Under our main assumption, T¢J — J* for all J € S.

@ Under weaker assumptions (centering on Pl properties of S, cf. Lectures 2 and 3),
TKJ — J5 for all J such that J; < J < J for some J € S.

Policy Iteration Properties (Assuming we Start with an S-Regular Policy)
@ Under our main assumption, J x — J*.

@ Under weaker assumptions (a strong Pl property of S, cf. Lectures 2 and 3),
JMk — Jg
@ Note a weakness: An initial S-regular policy is needed.

Optimization Approach

@ Under our main assumption J* maximizes over J the sum »,_, J(/) subject to
J< T

@ Under weaker assumptions, J5 maximizes over J the sum >, _, J(i) subject to
J< T
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Optimistic PI: Another Algorithm

A Mixture of VI and PI

Start with some Jp € E(X) such that Jo > Tdb, and generate a sequence {Jx, #k}
according to
Tude =T,  dhr=Thdk, k=01,

where my is a positive integer for each k.

Convergence under the Main Assumption
@ We have Ji | J*.
@ The sequence {.X} generated by the algorithm consists of S-regular policies.

Notes
@ Generally tends to converge faster than both VI and PI.
@ Sitill requires a Jp such that Jy > Tup.

@ There are interesting asynchronous variations for which this is not a requirement.
Moreover this algorithm can deal with irregular policies as well.
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What to do when the Infinite Cost Assumption is not Satisfied?

A Motivating Example

Stationary policy costs u/, Cost 0 Bellman Eq
Ju(1) =b, Ju(1) =0 J(1) = (TJ)(1) = min {b, J(1)}

J5(1) = b, J*(1) = 0 Destination

Suppose that we add § > 0 to the two costs 0 and b:
@ The cost of the improper policy n’ becomes oo.
@ The cost of the proper policy p increases by §.
@ By letting 6 | 0, we obtain J5(1) = b.

This Motivates a Perturbation Approach
@ For each policy p and § > 0, we consider the mappings

(Tusd)(X) = H(x, u(x),J) +6, x € X, TsJ = inf Tsd.
1

@ Solve the §-perturbed problem with a sequence d | 0.
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Relating the Original Problem with the Perturbed problem as § | 0

We define the cost functions of policies i € M, and optimal cost function J; of the
d-perturbed problem by

Jus(x) = Iiglsolip ThsJ, Ji= Hié\/fw Jus.

Proposition:
Given a set S C E(X), assume that:

@ For every § > 0, we have J; = TsJs, and there exists an S-regular policy 5 that is
optimal for the d-perturbed problem, i.e., Jug,(; =J;

@ For every S-regular policy i, we have
Jus < Ju + wu(9), V>0,

where w,, is a function such that lims;o w,.(5) = 0
@ H has the property that for every sequence {Jn} C S with Jn | J, we have

lim H(x,u,dm) = H(x,u,J), VxeX, ue U(x).

m— oo
Then lims o J5 = Js5, and Jg is a fixed point of T (which brings to bear a main result
from Lectures 2 and 3).
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Perturbation-Based Algorithms

Value lteration
@ Ji1 = Tngk, with dx | 0.
@ There is an asynchronous version of the algorithm

Policy lteration for SSP Assuming that J*(i) > —oo for all i

Let 6k | 0, and let 1.° be a proper policy. Given a proper policy 1, and we generate
w1 according to
Toerduk s, = Tk s,
Then:
© We have J x — Js.

e ;X is an optimal policy for sufficiently large k (this depends on the finiteness of the
state and the control spaces).

v
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Some Final Remarks

On Abstract DP

@ Abstraction leads to an economical analysis and promotes a deeper
understanding.

@ Focuses on the fundamental issues.

Semicontractive Models: An Interesting Special Class of Abstract DP Models
@ Include important classes of practical problems.
@ Involves unusual/pathological behavior.

@ Aims to discover simple assumptions that preclude the pathological behavior, and
allow the use of reliable algorithms.
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