Semicontractive Dynamic Programming

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

Lecture 5 of 5

September 2016

- Semicontractive Examples.
- Semicontractive Analysis for Stochastic Optimal Control.
- Extensions to Abstract DP Models.
- Applications to Stochastic Shortest Path and Other Problems.
- Algorithms.

Review of Abstract DP

2 Review of Semicontractive Analysis

Algorithms Under Weaker Assumptions: A Perturbation Approach

Abstract DP Problem Formulation

- State and control spaces: X, U
- Control constraint: $u \in U(x)$ for all x
- Stationary policies: $\mu : X \mapsto U$, with $\mu(x) \in U(x)$ for all x

Monotone Mappings

• Abstract monotone mapping $H: X \times U \times E(X) \mapsto \Re$

$$J \leq J' \implies H(x, u, J) \leq H(x, u, J'), \quad \forall x, u$$

• Mappings T_{μ} and T

$$(T_{\mu}J)(x) = H(x,\mu(x),J), \qquad \forall x \in X, J \in E(X)$$
$$(TJ)(x) = \inf_{\mu} (T_{\mu}J)(x) = \inf_{u \in U(x)} H(x,u,J), \qquad \forall x \in X, J \in E(X)$$

Stochastic Optimal Control Mapping: A Special Case

$$H(x, u, J) = E\{g(x, u, w) + \alpha J(f(x, u, w))\}$$

We saw several other problems and mappings, e.g., exponential cost, minimax, etc.

Bertsekas (M.I.T.)

Abstract Problem Analysis

Abstract DP Problem

• Given an initial function $\overline{J} \in E(X)$ and policy μ , define

$$J_{\mu}(x) = \limsup_{N \to \infty} (T^N_{\mu} \bar{J})(x), \qquad x \in X$$

• Find $J^*(x) = \inf_{\mu} J_{\mu}(x)$ and an optimal μ attaining the infimum

Results of Interest

• Bellman's equation

$$J^* = TJ^*$$

and its set of solutions. Usually J^* is a solution.

- Conditions for optimality of a stationary policy μ , usually $T_{\mu}J_{\mu} = TJ_{\mu}$.
- Algorithms and their convergence issues.

Semicontractive Models:

Some policies are "well-behaved" (have a regularity property), and others are not.

S-Regularity

Key idea: We have a set of functions $S \subset E(X)$, which we view as the "domain of regularity"

Definition of S-Regular Policy

Given a set of functions $S \subset E(X)$, we say that a stationary policy μ is S-regular if:

•
$$J_{\mu} \in S$$
 and $J_{\mu} = T_{\mu}J_{\mu}$

•
$$T^k_\mu J o J_\mu$$
 for all $J \in S$

A policy that is not *S*-regular is called *S*-irregular.

Value Iteration (VI)

- Given an initial function J_0 , generate $T^k J_0$, k = 0, 1, ...
- We hope and expect that *T^kJ*₀ → *J*^{*} for all *J*₀, or for *J*₀ in some convenient subset of functions.
- There is a similar VI algorithm that aims to compute J_{μ} in the limit. It generates $T_{\mu}^{k}J_{0}, k = 0, 1, ...$
- Note the connection with *S*-regularity: essentially, μ is *S*-regular if VI is "well-behaved starting within *S*," i.e., $T_{\mu}^{k}J_{0} \rightarrow J_{\mu}$, for all $J_{0} \in S$.

Policy Iteration (PI)

• $\{\mu^k\}$ is generated by a two-step iteration:

$$J_{\mu^k} = T_{\mu^k} J_{\mu^k},$$
 (policy evaluation)

and

$$T_{\mu^{k+1}}J_{\mu^k} = TJ_{\mu^k},$$
 (policy improvement)

• We aim to prove that $J_{\mu^k} \to J^*$, and perhaps $\mu_k \to \mu^*$, an optimal policy.

S-Regular Restricted Problem

Given a set $S \subset E(X)$

- Consider the restricted optimization problem: Minimize J_{μ} over μ in the set \mathcal{M}_{S} of all *S*-regular policies
- Let J_S^* be the optimal cost function over *S*-regular policies only:

$$J_{\mathcal{S}}^*(x) = \inf_{\mu \in \mathcal{M}_{\mathcal{S}}} J_{\mu}(x), \qquad x \in X$$

- $J^* \leq J^*_S$ with strict inequality possible.
- When $J^* \neq J_S^*$, we have seen that J_S^* may be more "well-behaved" than J^* .
- Most of our analysis has focused on cases where $J^* = J_S^*$.

Assume that S consists of real-valued functions and:

- There exists at least one *S*-regular policy and $J_S^* = \inf_{\mu \in M_S} J_{\mu}$ belongs to *S*.
- For every $J \in S$ and S-irregular policy μ , there exists $x \in X$ such that

 $\limsup_{k\to\infty} (T^k_\mu J)(x) = \infty$

- *S* contains \overline{J} , and has the property that if J_1, J_2 are two functions in *S*, then *S* contains all functions *J* with $J_1 \le J \le J_2$
- The set $\{u \in U(x) \mid H(x, u, J) \le \lambda\}$ is compact for every $J \in S$, $x \in X$, and $\lambda \in \Re$
- For each sequence $\{J_m\} \subset S$ with $J_m \uparrow J$ for some $J \in S$,

 $\lim_{m\to\infty}H(x, u, J_m)=H(x, u, J), \qquad \forall x\in X, \ u\in U(x)$

• For each function $J \in S$, there exists a function $J' \in S$ such that $J' \leq J$ and $J' \leq TJ'$

Main Result

Proposition: Under the preceding assumption

- (Bellman Eq.) $J^* = TJ^*$. Moreover, J^* is the unique fixed point of T within S
- (VI Convergence) We have $T^k J \rightarrow J^*$ for all $J \in S$
- (Optimality Condition) μ is optimal if and only if T_μJ^{*} = TJ^{*}, and there exists an optimal S-regular μ
- (PI Convergence) If in addition for each $\{J_m\} \subset E(X)$ with $J_m \downarrow J$ for some $J \in E(X)$,

$$H(x, u, J) = \lim_{m \to \infty} H(x, u, J_m), \qquad \forall x \in X, \ u \in U(x)$$

then every sequence $\{\mu^k\}$ generated by the PI algorithm starting from an *S*-regular policy μ^0 satisfies $J_{\mu^k} \downarrow J^*$

• (Optimization-Based Solution of Bellman's Eq.) For any $J \in S$, if $J \leq TJ$ we have $J \leq J^*$, and if $J \geq TJ$ we have $J \geq J^*$ (this allows finding J^* by linear programming for many types of problems with finite spaces)

Value Iteration Properties

- Under our main assumption, $T^k J \rightarrow J^*$ for all $J \in S$.
- Under weaker assumptions (centering on PI properties of *S*, cf. Lectures 2 and 3), $T^k J \rightarrow J_S^*$ for all *J* such that $J_S^* \leq J \leq \tilde{J}$ for some $\tilde{J} \in S$.

Policy Iteration Properties (Assuming we Start with an S-Regular Policy)

- Under our main assumption, $J_{\mu^k} \rightarrow J^*$.
- Under weaker assumptions (a strong PI property of *S*, cf. Lectures 2 and 3), $J_{\mu^k} \rightarrow J_S^*$.
- Note a weakness: An initial S-regular policy is needed.

Optimization Approach

- Under our main assumption J^* maximizes over J the sum $\sum_{i \in X} J(i)$ subject to $J \leq TJ$.
- Under weaker assumptions, J_S^* maximizes over J the sum $\sum_{i \in X} J(i)$ subject to $J \leq TJ$.

A Mixture of VI and PI

Start with some $J_0 \in E(X)$ such that $J_0 \ge TJ_0$, and generate a sequence $\{J_k, \mu^k\}$ according to

$$T_{\mu^k} J_k = T J_k, \qquad J_{k+1} = T_{\mu^k}^{m_k} J_k, \qquad k = 0, 1, \dots,$$

where m_k is a positive integer for each k.

Convergence under the Main Assumption

- We have $J_k \downarrow J^*$.
- The sequence $\{\mu^k\}$ generated by the algorithm consists of *S*-regular policies.

Notes

- Generally tends to converge faster than both VI and PI.
- Still requires a J_0 such that $J_0 \ge TJ_0$.
- There are interesting asynchronous variations for which this is not a requirement. Moreover this algorithm can deal with irregular policies as well.

A Motivating Example

- The cost of the improper policy μ' becomes ∞ .
- The cost of the proper policy μ increases by δ .
- By letting $\delta \downarrow 0$, we obtain $J_S^*(1) = b$.

This Motivates a Perturbation Approach

• For each policy μ and $\delta \geq$ 0, we consider the mappings

$$(T_{\mu,\delta}J)(x)=Hig(x,\mu(x),Jig)+\delta, \ \ x\in X, \qquad T_{\delta}J=\inf_{\mu\in\mathcal{M}}T_{\mu,\delta}J.$$

• Solve the δ -perturbed problem with a sequence $\delta_k \downarrow 0$.

Relating the Original Problem with the Perturbed problem as $\delta \downarrow \mathbf{0}$

We define the cost functions of policies $\mu \in M$, and optimal cost function J_{δ}^* of the δ -perturbed problem by

$$J_{\mu,\delta}(x) = \limsup_{k o \infty} \, T^k_{\mu,\delta} ar{J}, \qquad J^*_\delta = \inf_{\mu \in \mathcal{M}} J_{\mu,\delta}.$$

Proposition:

Given a set $S \subset E(X)$, assume that:

For every δ > 0, we have J^{*}_δ = T_δJ^{*}_δ, and there exists an S-regular policy μ^{*}_δ that is optimal for the δ-perturbed problem, i.e., J_{μ^{*}_δ,δ} = J^{*}_δ

• For every S-regular policy μ , we have

$$J_{\mu,\delta} \leq J_{\mu} + w_{\mu}(\delta), \qquad \forall \ \delta > 0,$$

where w_{μ} is a function such that $\lim_{\delta \downarrow 0} w_{\mu}(\delta) = 0$

• *H* has the property that for every sequence $\{J_m\} \subset S$ with $J_m \downarrow J$, we have

$$\lim_{n\to\infty}H(x,u,J_m)=H(x,u,J),\qquad\forall\ x\in X,\ u\in U(x).$$

Then $\lim_{\delta \downarrow 0} J_{\delta}^* = J_{S}^*$, and J_{S}^* is a fixed point of T (which brings to bear a main result from Lectures 2 and 3).

Value Iteration

- $J_{k+1} = T_{\delta_k} J_k$, with $\delta_k \downarrow 0$.
- There is an asynchronous version of the algorithm

Policy Iteration for SSP Assuming that $J^*(i) > -\infty$ for all *i*

Let $\delta_k \downarrow 0$, and let μ^0 be a proper policy. Given a proper policy μ^k , and we generate μ^{k+1} according to

$$T_{\mu^{k+1}}J_{\mu^k,\delta_k} = TJ_{\mu^k,\delta_k}$$

Then:

- We have $J_{\mu^k} \to J_S^*$.
- μ^k is an optimal policy for sufficiently large *k* (this depends on the finiteness of the state and the control spaces).

On Abstract DP

- Abstraction leads to an economical analysis and promotes a deeper understanding.
- Focuses on the fundamental issues.

Semicontractive Models: An Interesting Special Class of Abstract DP Models

- Include important classes of practical problems.
- Involves unusual/pathological behavior.
- Aims to discover simple assumptions that preclude the pathological behavior, and allow the use of reliable algorithms.