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Abstract DP Problem Formulation

State and control spaces: X ,U

Control constraint: u ∈ U(x) for all x

Stationary policies: µ : X 7→ U, with µ(x) ∈ U(x) for all x

Monotone Mappings

Abstract monotone mapping H : X × U × E(X ) 7→ <

J ≤ J ′ =⇒ H(x , u, J) ≤ H(x , u, J ′), ∀ x , u

where E(X ) is the set of functions J : X 7→ [−∞,∞]

Mappings Tµ and T

(TµJ)(x) = H
(
x , µ(x), J

)
, ∀ x ∈ X , J ∈ E(X )

(TJ)(x) = inf
µ

(TµJ)(x) = inf
u∈U(x)

H(x , u, J), ∀ x ∈ X , J ∈ E(X )

Stochastic Optimal Control Mapping: A Special Case

H(x , u, J) = E
{

g(x , u,w) + αJ
(
f (x , u,w)

)}
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Abstract Problem Formulation

Abstract DP Problem

Given an initial function J̄ ∈ R(X ) and policy µ, define

Jµ(x) = lim sup
N→∞

(T N
µ J̄)(x), x ∈ X

Find J∗(x) = infµ Jµ(x) and an optimal µ attaining the infimum

Results of Interest
Bellman’s equation

J∗ = TJ∗

and its set of solutions. Usually J∗ is a solution.

Conditions for optimality of a stationary policy µ, usually TµJµ = TJµ.

Algorithms, such as value iteration (VI) and policy iteration (PI), and their
convergence issues.

Semicontractive Models:
Some policies are “well-behaved" (have a regularity property), and others are not.
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Our Approach for Semicontractive Problems

Select a class of well-behaved/regular policies

Define a restricted optimization problem over the regular policies only

Show that the restricted problem has nice theoretical and algorithmic properties

Relate the restricted problem to the original

Under reasonable conditions, obtain strong theoretical and algorithmic results

Research Monograph
D. P. Bertsekas, Abstract Dynamic Programming, Athena Scientific, 2013; updated
chapters on-line
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S-Regularity

Key idea: We have a set of functions S ⊂ E(X ), which we view as the “domain of
regularity"

Problem Formulation and Results Results Overview Semicontractive Nonnegative Models

S-Regular policy µ
S-Regular policy µ

Problem Formulation and Results Results Overview Semicontractive Nonnegative Models
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S-Irregular policy µ̄
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Definition of S-Regular Policy
Given a set of functions S ⊂ E(X ), we say that a stationary policy µ is S-regular if:

Jµ ∈ S and Jµ = TµJµ
T k
µJ → Jµ for all J ∈ S

A policy that is not S-regular is called S-irregular.
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S-Regular Restricted Problem
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Given a set S ⊂ E(X )

Consider the restricted optimization problem: Minimize Jµ over µ in the setMS of
all S-regular policies

Let J∗S be the optimal cost function over S-regular policies only:

J∗S (x) = inf
µ∈MS

Jµ(x), x ∈ X

Since the set of S-regular policies is a subset of the set of all policies,

J∗ ≤ J∗S
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A Principal Assumption that Guarantees “Good Behavior"

Assume that S consists of real-valued functions and:
There exists at least one S-regular policy and J∗S = infµ∈MS Jµ belongs to S.

For every J ∈ S and S-irregular policy µ, there exists x ∈ X such that

lim sup
k→∞

(T k
µJ)(x) =∞

S contains J̄, and has the property that if J1, J2 are two functions in S, then S
contains all functions J with J1 ≤ J ≤ J2

The set
{

u ∈ U(x) | H(x , u, J) ≤ λ
}

is compact for every J ∈ S, x ∈ X , and λ ∈ <
For each sequence {Jm} ⊂ S with Jm ↑ J for some J ∈ S,

lim
m→∞

H(x , u, Jm) = H (x , u, J) , ∀ x ∈ X , u ∈ U(x)

For each function J ∈ S, there exists a function J ′ ∈ S such that J ′ ≤ J and
J ′ ≤ TJ ′

It is worth checking which parts of these assumptions are violated in the
counterexamples of Lecture 1.
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Main Result

Proposition: Under the preceding assumption
(Bellman Eq.) J∗ = TJ∗. Moreover, J∗ is the unique fixed point of T within S

(VI Convergence) We have T k J → J∗ for all J ∈ S

(Optimality Condition) µ is optimal if and only if TµJ∗ = TJ∗, and there exists an
optimal S-regular µ

(PI Convergence) If in addition for each {Jm} ⊂ E(X ) with Jm ↓ J for some
J ∈ E(X ),

H (x , u, J) = lim
m→∞

H(x , u, Jm), ∀ x ∈ X , u ∈ U(x)

then every sequence {µk} generated by the PI algorithm starting from an
S-regular policy µ0 satisfies Jµk ↓ J∗

(Optimization-Based Solution of Bellman’s Eq.) For any J ∈ S, if J ≤ TJ we have
J ≤ J∗, and if J ≥ TJ we have J ≥ J∗

Note: Nearly as strong results as for contractive problems.
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The Three Applications of this Lecture

Common Characteristics

They all involve a finite number of states (X = {1, . . . , n}), and a finite number of
controls at each state (so the number of policies is finite).

The set R(X ) of real-valued functions on X is identified with <n.

In all cases S is a subset of <n.

Usually there is a termination state.

Because of this structure, the complicated assumption given earlier simplifies, and
is nonrestrictive and intuitive.

The results are almost as strong as for discounted problems.
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The Applications in Summary

Stochastic Shortest Path (SSP) Problems: Transition probs. pij (u),

J̄(i) ≡ 0, (TµJ)(i) =
n∑

i=1

pij
(
µ(i)

)(
g(i, µ(i), j) + J(j)

)
Affine Monotonic (AM) Problems:

J̄ ≥ 0, TµJ = bµ + AµJ,

where bµ ≥ 0, Aµ ≥ 0. A special case is SSP with exponential cost.

Minimax Shortest Path (MSP) Problems: Disturbance has a nonprobabilistic
set-membership description, w ∈ W (i),

J̄(i) ≡ 0, (TµJ)(i) = max
w∈W (i)

{
g(i, µ(i),w) + αJ(f (i, µ(i),w))

}
Jµ(i0) = lim sup

N→∞
max

w0,w1,...

N∑
k=0

g
(
ik , µ(ik ),wk

)
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We Specialize our Analysis to the Finite Spaces Context

S consists of real-valued functions
For SSP and MSP, we use S = <n.

For AM, we use S = <n
+, the nonnegative orthant.

Thanks to the finite spaces structure, and the choices of S, the complicated
multipart assumption simplifies to the following:

There exists at least one S-regular policy.

Infinite cost condition: For all J ∈ S and S-irregular µ, there exists i such that

lim sup
k→∞

(T k
µJ)(i) =∞

All other parts of the assumption are automatically satisfied.
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A Common Approach for All Three Applications

Define the set S
For SSP and MSP, we use S = <n. For AM, we use S = <n

+, the nonnegative orthant.

Characterize the S-Regular Policies
For SSP, the S-regular µ are the proper policies (those that terminate with prob. 1).

For AM, the S-regular µ are those for which Tµ is a contraction, i.e., all
eigenvalues of Aµ are strictly within the unit circle.

For MSP, the S-regular µ turn out to be those that guarantee termination
regardless of the adversarial actions w0,w1, . . ., but also some others.

Assume that there exists an S-regular policy and that each S-irregular policy has
infinite cost.

Apply the theorem: J∗ solves uniquely Bellman’s Eq., VI, PI, and optimization approach
work, etc.
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Stochastic Shortest Path Problem
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1

A graph of n nodes plus the destination t

At each node i we choose one of m probability distributions pij (u), u = 1, . . . ,m,
over the successor nodes j .

Transition cost g(i, u, j).

Minimize total expected cost up to termination.

J̄(i) ≡ 0, (TµJ)(i) =
n∑

i=1

pij
(
µ(i)

)(
g(i, µ(i), j) + J(j)

)
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Analysis for the SSP Problem

Proper Policies
A policy µ is proper if it terminates from every initial state with probability 1.

Equivalent definition: Starting at any node i , there exists a sequence of positive
probability transitions under µ that starts at i and ends at t .

Then Jµ(i) is the expected cost starting from i up to termination.

S-Regularity

A policy is S-regular, where S = <n, if and only if it is proper.

We just verify the regularity definition (T k
µJ → Jµ for all J ∈ S): We have that T k

µJ
does not depend on J for k large if and only if µ terminates.

Assume there exists a proper policy.

Assume each Improper Policy has Infinite Cost Starting at Some Initial State
Check that “cycling has positive cost"; true if every transition has positive cost.

Apply the theorem
J∗ solves uniquely Bellman’s Eq., VI and PI converge to J∗, LP approach works, etc.
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Back to the Pathological Examples

Deterministic shortest path problem
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Polyhedral approximation

LPs are solved by simplex method
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Modern view: Post 1990s
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Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 1 2 t b Destination

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 0 1 2 t b c Destination

Prob. u Prob. 1 � u Cost 1 Cost 1 �⇥
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

1

a 0 1 2 t b c Destination

Prob. u Prob. 1 � u Cost 1 Cost 1 �⇥
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

1

One proper policy (from 1 go to t), and one improper policy (self-cycle)

Set of solutions of Bellman’s equation: J(1) = min
{

b, a + J(1)
}

Unique solution, J∗(1) = b if a > 0 (assumptions satisfied)

All J(1) ≤ b if a = 0 (assumptions violated)

No real-valued solution if a < 0 (assumptions violated; consider changing S)

The assumption a > 0 corresponds to the classical conditions:
There exists a path to the destination starting from every node.

All cycles have positive length.
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The SSP Problem where J∗ does not Satisfy Bellman’s Equation

A single policy µ. The only uncertainty is at the first stage starting at state 1

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

1

a 1 2 t b Destination

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost 2 Cost −2 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost 2 Cost −2 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 6 7 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost 2 Cost −2 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 6 7 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost 2 Cost −2 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

Sec. 3.1 Pathologies of Noncontractive DP Models 7

the most part, they are used to exclude from optimality the policies that
are not “well-behaved,” and to obtain results that are nearly as powerful
as their counterparts for the contractive models of Chapter 2.

3.1.1 Deterministic Shortest Path Problems

Let us consider the classical deterministic shortest path problem, discussed
in Example 1.2.7. Here, we have a graph of n nodes x = 1, . . . , n, plus
a destination t , and an arc length axy for each directed arc (x, y). The
objective is to find for each x a directed path that starts at x, ends at t,
and has minimum length (the length of a path is defined as the sum of the
lengths of its arcs). A standard assumption, which we will adopt here, is
that every node x is connected to the destination, i.e., there exists a path
from every x to t.

To formulate this shortest path problem as a DP problem, we embed
it within a “larger” problem, whereby we view all paths as admissible,
including those that do not terminate at t. We also view t as a cost-
free and absorbing node. Of course, we need to deal with the presence of
policies that do not terminate, and the most common way to do this is to
assume that all cycles have strictly positive length, in which case policies
that do not terminate cannot be optimal. However, it is not uncommon to
encounter shortest path problems with zero length cycles, and even negative
length cycles. We will thus not impose any assumption on the sign of the
cycle lengths, particularly since we aim to use the shortest path problem
to illustrate behavior that arises in a broader undicounted/noncontractive
DP setting.

As noted in Section 1.2, we can formulate the problem in terms of an
abstract DP model where the states are the nodes x = 1, . . . , n, and the
controls available at x can be identified with the outgoing neighbors of x
[the nodes u such that (x, u) is an arc]. The mapping H that defines the
corresponding abstract DP problem is

H(x, u, J) =

⇢
axu + J(u) if u 6= t,
axt if u = t,

x = 1, . . . , n.

A stationary policy µ defines the subgraph whose arcs are
�
x, µ(x)

�
,

x = 1, . . . , n. We say that µ is proper if this graph is acyclic, i.e., it consists
of a tree of paths leading from each node to the destination. If µ is not
proper, it is called improper . Thus there exists a proper policy if and only
if each node is connected to t with a path. Furthermore, an improper policy
has cost greater than �1 starting from every initial state if and only if all
the cycles of the corresponding subgraph have nonnegative cycle cost.

Let us now get a sense of what may happen by considering the simple
one-node example shown in Fig. 3.1.1. Here there is a single state 1 in
addition to the termination state t. At state 1 there are two choices: a
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The Bellman Eq. is violated at 1: Jµ(1) 6= 1
2 Jµ(2) + 1

2 Jµ(5)

Here the infinite cost condition is violated.

Bertsekas (M.I.T.) Semicontractive Dynamic Programming 21 / 32



Affine Monotonic Problems

Tµ maps J ∈ <n
+ into TµJ ∈ <n

+ and is affine:

TµJ = bµ + AµJ,

where bµ ≥ 0, Aµ ≥ 0. Also assume J̄ ∈ <n
+ (but may have J̄ 6= 0)

Some special cases

An SSP problem with nonnegative cost per transition. Corresponds to J̄ = 0 and

bµ(i) = g
(
i, µ(i), j

)
, Aµ(i, j) = pij

(
µ(i)

)
An SSP problem with exponential cost for the length of a path, so

Jµ(i) = E
{

exp(Length of path starting at i up to reaching destination t)
}

Corresponds to the affine monotonic problem defined by

J̄(i) ≡ 1, (TµJ)(i) = pit
(
µ(i)

)
eg
(

i,µ(i),t
)

+
n∑

i=1

pij
(
µ(i)

)
eg
(

i,µ(i),j
)
J(j)

Multiplicative cost function (contains the exponential cost SSP as a special case)
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Characterization of S-Regular Policies; Here S = <n
+

Cost Function of a Policy µ
By repeatedly applying the equation TµJ = bµ + AµJ, we have

T N
µ J = AN

µJ +
N−1∑
k=0

Ak
µbµ, ∀ J ∈ E+(X ), N = 1, 2, . . . ,

Jµ = lim sup
N→∞

T N
µ J̄ = lim sup

N→∞
AN
µ J̄ +

∞∑
k=0

Ak
µbµ

Contractive policies: Those for which lim supN→∞ AN
µJ = 0 for all J ∈ <n

(equivalently Aµ has eigenvalues strictly within the unit circle).

Key fact is that µ is R+(X )-regular if and only if Tµ is contractive. Justification:

Jµ = lim sup
N→∞

T N
µ J = lim sup

N→∞

N−1∑
k=0

Ak
µbµ, ∀ µ: contractive, J ∈ <n

+

Hence, if µ is contractive it is also R+(X )-regular. The reverse can also be shown to be
true.
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Assumptions and Results for AM Problems

Assume that:

There exists at least one contractive policy

Each noncontractive policy has infinite cost for some initial state.

Then the standard results hold:

Bellman’s Eq. has J∗ as its unique solution

VI and PI converge to J∗

Standard optimality conditions hold

Solution by linear programming is possible

Some notes for the exponential cost SSP
Every proper policy is contractive but the reverse is not true (consider a
deterministic problem and a policy with a negative length cycle)

In exponential cost SSP policies that include cycles with “negative cost" do not
cause difficulties (but “zero cost cycles" may cause a problem)
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Back to the Deterministic Shortest Path Problem

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 1 2 t b Destination

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

Policy µ (go to t) and Policy µ0 (self-cycle).

Jµ(1) = exp(b) Jµ0(1) = limN!1 exp(aN) (TmJ)(1) = exp(b) (Tµ0J)(1) =
exp(a)J(1)

S ⇢ R(X) u, Cost b Jµ0 Jµ2 . . . PI-generated sequence

PI Improvement Eq: µ1 2 arg min{b, a + Jµ0} = arg min{b, a + b}

Bellman Eq: J(1) = (TJ)(1) = min
�
b, J(1)

 
µ0 is <-Irregular

pit(u) pjt(u) ptt(u) = 1

Well-Behaved Region WS Fixed Point of T J⇤ S = R(X)

Jµ for µ 2 MS supJ2S J J⇤ = J⇤
S J 2 E(X)

a = 0 Weak PI property holds u0, Cost a

a > 0 Strong PI property holds

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Jµ(2) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1 Jµ(5) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Policy µ (go to t) and Policy µ0 (self-cycle).

Jµ(1) = exp(b) Jµ0(1) = limN!1 exp(aN) (TmJ)(1) = exp(b) (Tµ0J)(1) =
exp(a)J(1)

S ⇢ R(X) u, Cost b Jµ0 Jµ2 . . . PI-generated sequence

PI Improvement Eq: µ1 2 arg min{b, a + Jµ0} = arg min{b, a + b}

Bellman Eq: J(1) = (TJ)(1) = min
�
b, J(1)

 
µ0 is <-Irregular

pit(u) pjt(u) ptt(u) = 1

Well-Behaved Region WS Fixed Point of T J⇤ S = R(X)

Jµ for µ 2 MS supJ2S J J⇤ = J⇤
S J 2 E(X)

a = 0 Weak PI property holds u0, Cost a

a > 0 Strong PI property holds

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Jµ(2) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1 Jµ(5) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Policy µ (go to t) and Policy µ0 (self-cycle).

Jµ(1) = exp(b) Jµ0(1) = limN!1 exp(aN) (TµJ)(1) = exp(b) (Tµ0J)(1) =
exp(a)J(1)

S ⇢ R(X) u, Cost b Jµ0 Jµ2 . . . PI-generated sequence

PI Improvement Eq: µ1 2 arg min{b, a + Jµ0} = arg min{b, a + b}

Bellman Eq: J(1) = (TJ)(1) = min
�
b, J(1)

 
µ0 is <-Irregular

pit(u) pjt(u) ptt(u) = 1

Well-Behaved Region WS Fixed Point of T J⇤ S = R(X)

Jµ for µ 2 MS supJ2S J J⇤ = J⇤
S J 2 E(X)

a = 0 Weak PI property holds u0, Cost a

a > 0 Strong PI property holds

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Jµ(2) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1 Jµ(5) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Length a Length b

Policy µ (go to t) and Policy µ0 (self-cycle).

Jµ(1) = exp(b) Jµ0(1) = limN!1 exp(aN) (TµJ)(1) = exp(b)

(Tµ0J)(1) = exp(a)J(1)

S ⇢ R(X) u, Cost b Jµ0 Jµ2 . . . PI-generated sequence

PI Improvement Eq: µ1 2 arg min{b, a + Jµ0} = arg min{b, a + b}

Bellman Eq: J(1) = (TJ)(1) = min
�
b, J(1)

 
µ0 is <-Irregular

pit(u) pjt(u) ptt(u) = 1

Well-Behaved Region WS Fixed Point of T J⇤ S = R(X)

Jµ for µ 2 MS supJ2S J J⇤ = J⇤
S J 2 E(X)

a = 0 Weak PI property holds u0, Cost a

a > 0 Strong PI property holds

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Jµ(2) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1 Jµ(5) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Length a Length b

Policy µ (go to t) and Policy µ′ (self-cycle).

Jµ(1) = exp(b) Jµ′(1) = limN→∞ exp(aN) (TµJ)(1) = exp(b)

(Tµ′J)(1) = exp(a)J(1)

S ⊂ R(X) u, Cost b Jµ0 Jµ2 . . . PI-generated sequence

PI Improvement Eq: µ1 ∈ argmin{b, a + Jµ0} = arg min{b, a + b}

Bellman Eq: J(1) = (TJ)(1) = min
{
b, J(1)

}
µ′ is ℜ-Irregular

pit(u) pjt(u) ptt(u) = 1

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

a = 0 Weak PI property holds u′, Cost a

a > 0 Strong PI property holds

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Jµ(2) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1 Jµ(5) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Length a Length b

Policy µ (go to t) and Policy µ′ (self-cycle).

Jµ(1) = exp(b) Jµ′(1) = limN→∞ exp(aN) (TµJ)(1) = exp(b)

(Tµ′J)(1) = exp(a)J(1)

S ⊂ R(X) u, Cost b Jµ0 Jµ2 . . . PI-generated sequence

PI Improvement Eq: µ1 ∈ argmin{b, a + Jµ0} = arg min{b, a + b}

Bellman Eq: J(1) = (TJ)(1) = min
{
b, J(1)

}
µ′ is ℜ-Irregular

pit(u) pjt(u) ptt(u) = 1

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

a = 0 Weak PI property holds u′, Cost a

a > 0 Strong PI property holds

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Jµ(2) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1 Jµ(5) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Length a Length b

Policy µ (go to t) and Policy µ′ (self-cycle).

Jµ(1) = exp(b) Jµ′(1) = limN→∞ exp(aN) (TµJ)(1) = exp(b)

(Tµ′J)(1) = exp(a)J(1)

S ⊂ R(X) u, Cost b Jµ0 Jµ2 . . . PI-generated sequence

PI Improvement Eq: µ1 ∈ argmin{b, a + Jµ0} = arg min{b, a + b}

Bellman Eq: J(1) = (TJ)(1) = min
{
b, J(1)

}
µ′ is ℜ-Irregular

pit(u) pjt(u) ptt(u) = 1

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

a = 0 Weak PI property holds u′, Cost a

a > 0 Strong PI property holds

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Jµ(2) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1 Jµ(5) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Length a Length b

Policy µ (go to t) and Policy µ′ (self-cycle).

Jµ(1) = exp(b) Jµ′(1) = limN→∞ exp(aN) (TµJ)(1) = exp(b)

(Tµ′J)(1) = exp(a)J(1)

S ⊂ R(X) u, Cost b Jµ0 Jµ2 . . . PI-generated sequence

PI Improvement Eq: µ1 ∈ argmin{b, a + Jµ0} = arg min{b, a + b}

Bellman Eq: J(1) = (TJ)(1) = min
{
b, J(1)

}
µ′ is ℜ-Irregular

pit(u) pjt(u) ptt(u) = 1

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

a = 0 Weak PI property holds u′, Cost a

a > 0 Strong PI property holds

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Jµ(2) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1 Jµ(5) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Bellman’s equation: J(1) = min
{

exp(b), exp(a)J(1)
}

If a > 0 (assumptions satisfied), J∗(1) = exp(b) solves uniquely Bellman’s Eq., µ
is optimal

If a < 0 (assumptions satisfied, both policies are contractive, even though µ′ is
improper!), J∗(1) = 0 solves uniquely Bellman’s Eq., µ′ is optimal

If a = 0 (assumptions violated), all J(1) in the interval 0 ≤ J(1) ≤ exp(b) solve
Bellman’s Eq., J∗(1) = min

{
exp(b), 1

}
The assumption a > 0 corresponds to the classical conditions:

There exists a path to the destination starting from every node.

All cycles have positive length.
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An Exponential Cost SSP Problem where J∗ does not Satisfy Bellman’s
Equation

This is the exponential cost version of the earlier SSP counterexample, which involved
zero length cycles.
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the most part, they are used to exclude from optimality the policies that
are not “well-behaved,” and to obtain results that are nearly as powerful
as their counterparts for the contractive models of Chapter 2.

3.1.1 Deterministic Shortest Path Problems

Let us consider the classical deterministic shortest path problem, discussed
in Example 1.2.7. Here, we have a graph of n nodes x = 1, . . . , n, plus
a destination t , and an arc length axy for each directed arc (x, y). The
objective is to find for each x a directed path that starts at x, ends at t,
and has minimum length (the length of a path is defined as the sum of the
lengths of its arcs). A standard assumption, which we will adopt here, is
that every node x is connected to the destination, i.e., there exists a path
from every x to t.

To formulate this shortest path problem as a DP problem, we embed
it within a “larger” problem, whereby we view all paths as admissible,
including those that do not terminate at t. We also view t as a cost-
free and absorbing node. Of course, we need to deal with the presence of
policies that do not terminate, and the most common way to do this is to
assume that all cycles have strictly positive length, in which case policies
that do not terminate cannot be optimal. However, it is not uncommon to
encounter shortest path problems with zero length cycles, and even negative
length cycles. We will thus not impose any assumption on the sign of the
cycle lengths, particularly since we aim to use the shortest path problem
to illustrate behavior that arises in a broader undicounted/noncontractive
DP setting.

As noted in Section 1.2, we can formulate the problem in terms of an
abstract DP model where the states are the nodes x = 1, . . . , n, and the
controls available at x can be identified with the outgoing neighbors of x
[the nodes u such that (x, u) is an arc]. The mapping H that defines the
corresponding abstract DP problem is

H(x, u, J) =

⇢
axu + J(u) if u 6= t,
axt if u = t,

x = 1, . . . , n.

A stationary policy µ defines the subgraph whose arcs are
�
x, µ(x)

�
,

x = 1, . . . , n. We say that µ is proper if this graph is acyclic, i.e., it consists
of a tree of paths leading from each node to the destination. If µ is not
proper, it is called improper . Thus there exists a proper policy if and only
if each node is connected to t with a path. Furthermore, an improper policy
has cost greater than �1 starting from every initial state if and only if all
the cycles of the corresponding subgraph have nonnegative cycle cost.

Let us now get a sense of what may happen by considering the simple
one-node example shown in Fig. 3.1.1. Here there is a single state 1 in
addition to the termination state t. At state 1 there are two choices: a
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On the other hand, a similar (but simpler) calculation shows that
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Here the policy is noncontractive and hence <n
+-irregular, while the infinite cost

condition is violated.
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Minimax Shortest Path Problem

Problem Formulation
A graph with set of nodes X = {1, . . . , n} plus a destination t , and a set of directed
arcs (i, j), where i, j ∈ X ∪ {t}.
At each node i we may choose a control u from a finite set U(i).

The destination t is absorbing and cost-free.

At node i , a successor node j is selected by an antagonistic opponent from a
given set Y (i, u) ⊂ X ∪ {t} and a cost g(i, u, j) is incurred.

Mappings:
H(i, u, J) = max

j∈Y (i,u)

[
g(i, u, j) + J̃(j)

]
, ∀ x , u, J ∈ <n,

where J̃(j) = J(j) if j ∈ X and J̃(j) = 0 if j = t . We have

(TµJ)(i) = H
(
i, µ(i), J

)
, (TJ)(i) = min

u∈U(i)
H(i, u, J)

Let J̄ be the zero function, so

Jµ(i0) = lim sup
N→∞

max
w0,w1,...

N∑
k=0

g
(
ik , µ(ik ),wk

)
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Cost Function and Other Properties of a Policy µ

A possible path under µ starting at node i0 ∈ X is an arc sequence
p =

{
(i0, i1), (i1, i2), . . .

}
, such that ik+1 ∈ Y

(
ik , µ(ik )

)
for all k ≥ 0. The set of all

possible paths under µ starting at i0 is denoted by P(i0, µ).

The length of a path p ∈ P(i0, µ) is lim supN→∞
∑N

k=0 g
(
ik , µ(ik ), ik+1

)
.

Similar definitions for the length of a portion of a path p, consisting of a finite
number of consecutive arcs.

For any µ and i , (T k
µ J̄)(i) is the length of the longest path under µ that starts at i

and consists of k arcs, and can be computed with a k -stage DP algorithm.

Of special interest are cycles, i.e., paths of the form
{

(ii , ii+1), . . . , (ii+m, ii )
}

, and
paths that terminate, i.e., have the form p =

{
(i0, i1), . . . , (im, t), (t , t), . . .

}
.

Proper Policies
A policy µ is proper if for all i , all the paths in P(i, µ) contain no cycle and terminate.

S-Regular Policies (S = <n)

It is easy to see that all proper policies are <n-regular. The reverse is not true.
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Characterization of S-Regular Policies (S = <n)

The Characteristic Graph of a Policy µ: Aµ = ∪i∈X
{
(i , j) | j ∈ Y

(
i , µ(i)

)}
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We say that Aµ is destination-connected if for each i ∈ X there exists a
terminating path in P(i, µ).

Characterization of <n-Regular Policies

µ is <n-regular if and only if Aµ is destination-connected and all its cycles have
negative length. (Note that a proper policy is <n-regular.)

µ is <n-irregular if and only if it is improper, and either is destination-disconnected
or Aµ has a cycle with length ≥ 0. (Note that there exist improper policies that are
<n-regular.)
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Assumptions and Results for MSP

Assume that:

There exists at least one proper policy (implies that there exists an <n-regular
policy).

For every improper policy µ, all cycles in the characteristic graph Aµ have positive
length (implies that every <n-irregular policy has infinite cost for some initial state).

Then the standard results hold:

Bellman’s Eq. has J∗ as its unique solution.

VI, PI, converge to J∗.

Standard optimality conditions hold, etc.

Some notes
The positive cycle condition can be relaxed to nonnegativity, using a perturbation
approach (add a δ > 0 to each g(i, u, j) and take δ ↓ 0; see the next lecture).

There is a finitely terminating Dijkstra-like algorithm for MSP problems with
nonnegative arc lengths (this is a consequence of the shortest path character of
the problem, not its semicontractive character).
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