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Contents of the Lecture Series

@ Semicontractive Examples.

@ Semicontractive Analysis for Stochastic Optimal Control.

@ Extensions to Abstract DP Models.

@ Applications to Stochastic Shortest Path and Other Problems.

@ Algorithms.
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Outline of this Lecture

° Abstract Dynamic Programming
e Results Overview
e Semicontractive Models

0 Semicontractive Analysis
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Abstract Dynamic Programming: A Unifying Methodological Framework

Main Objective
@ Unification of the core theory and algorithms of total cost sequential decision
problems

@ Simultaneous treatment of a variety of problems: stochastic optimal control,
Markovian decision problems (MDP), sequential games, sequential minimax,
multiplicative cost, risk-sensitive, etc

Methodology
@ Define a problem by its “mathematical signature": the mapping defining the
optimality/Bellman equation

@ Structure of this mapping (monotonicity, contraction, “semicontractive" properties,
etc) determines the analytical and algorithmic theory of the problem

@ Fixed point theory: An important connection
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Abstract DP Mappings

@ State and control spaces: X, U
@ Control constraint: u € U(x)
@ Stationary policies: p : X — U, with p(x) € U(x) for all x

Monotone Mappings
@ Abstract monotone mapping H : X x U x E(X) — R

J<J BN H(x,u,J) < H(x,u,J"), Y X, u

where E(X) is the set of functions J : X — [—o0, 0]
@ Mappings T, and T

(T.)(x) = H(x, u(x),J),  VxeX,JeRX)
(TN)(x) =it (Tu)(x) = int H(xuJ),  VxeX, JeR(X)

Stochastic Optimal Control Mapping: A Special Case
H(x,u,J) = E{g(x,u,w) + aJ(f(x,u,w))}
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Abstract Problem Formulation

Abstract DP Problem
@ Given an initial function J € R(X) and policy 1, define

Ju(x) = limsup (TII)(x),  x €X

@ Find J*(x) = inf, J.(x) and an optimal x attaining the infimum

Notes
@ Theory revolves around fixed point properties of mappings 7, and T:
Jp = Tudy, J =TS

These are generalized forms of Bellman’s equation
@ Algorithms are special cases of fixed point algorithms
@ We restrict attention (initially) to issues involving only stationary policies
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Examples With a Dynamic System xy.1 = f( Xk, t(Xk), Wk)

Stochastic Optimal Control

J)=0,  (Tu)(x) = Ew{g(x, n(x), w) + ad (f(x, u(x), w)) }

N
Ju(X0) = Iim sup Ewg,wi,... {Za"g(Xk,u(Xk)a Wk)}

k=0

Minimax - Sequential Games

Jx)=0, (T.J)(x)= sup {g(x,u,w)+ad(f(x,u,w))}

weW(x)
N
Ju(x) = limsup sup Zakg(xk,p(xk),wk)
N— oo Wo, W1, 4o

Multiplicative Cost Problems

J) =1, (Tud)(x) = Eu{glx, u(x), w)J(F(x, u(x), w)) }

N
Ju(x0) = Ii/rvn SUp Eug,m.... {H 9 (X, (), Wk)}
—00 k=0
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Examples With a Markov Chain: Transition Probs. p;_ ;... (Ux)

Finite-State Markov and Semi-Markov Decision Processes

Jx)=0, (T.J)) qu ) (9, 1(i), ) + ey (1) J())

N
Ju(ip) = limsup E {Z (cvip (o)) - - - @iy (1)) ) G s po /k)7’k+1)}

N— oo k=0

where «;i(u) are state and control-dependent discount factors

Risk-Sensitive Shortest Path: Exponential Cost with Termination State t

Ju(x) = limsup E {eg("OaP«("O)v"1)+"'+9("N7#(/N)’iN+1)}
N— oo

T =1, () = pu(u(i)) e +Zp,, ) e 04) g
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Models Classified According to Properties of T,

Contractive (C)

All T, are contractions within the set of bounded functions B(X), w.r.t. a common
(weighted) sup-norm and contraction modulus (e.g., discounted problems)

Monotone Increasing (l) and Monotone Decreasing (D)
J<T,J (eg., negative DP problems)
J>T,J (eg. positive DP problems)

Semicontractive (SC)
T, has “contraction-like" properties for some p - to be discussed (e.g., SSP problems)

v

Semicontractive Nonnegative (SC™)

Semicontractive, and in addition J > 0 and

J>0 = H(x,u,J) >0, Vx,u

(e.g., affine monotonic, exponential/risk-sensitive problems)

Bertsekas (M.L.T.) Semicontractive Dynamic Programming



Bellman’s Equation

Bellman’s Equation:
Ju = Tudy and J* = TJ” hold often (but not always) under our assumptions

Bellman’s Equation: Cases (C), (I), and (D)
Ju = Tud, and J* = TJ* always hold

Bellman’s Equation: Case (SC)
Ju = T,J, holds only for u: “regular”

J, the “restricted optimal” cost function, solves Bellman’s Eq. under our assumptions.
We may have J* # J
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Uniqueness of Solution of Bellman’s Equations

Case (C)
T is a contraction within B(X) and J* is its unique fixed point

Cases (l), (D)
T has multiple fixed points (some partial results hold)

Case (SC)

J is the unique fixed point of T within a subset of J € R(X) with “regular" behavior

Case (SC™)
J* is the unique positive (or nonnegative) fixed point of T
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Optimality Conditions (

Cases (C), (), and (SC - under one set of assumptions)
w* is optimal if and only if T,«J* = TJ*

Case (SC - under another set of assumptions)
A “regular" i~ is optimal if and only if T,«J* = TJ*

Case (D)
p* is optimal if and only if T« Jux = T,
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Convergence of Value lteration: Jx.1 = TJk

Case (C)
TkJ — J* for all J € B(X)

Case (D)
T — J*

Case (1)

T*J — J* under additional “compactness" conditions

Case (SC)
TkJ — J and possibly T#J — J* for all J € R(X) within a set of “regular" behavior

Case (SC™)

T*J — J* for all J > 0 (or J > 0 under some conditions)
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Policy lteration: T kxw1d,x = Td k (

Classical Form of Exact PI
@ (C): Convergence starting with any
@ (SC): Convergence starting with a “regular” . (not if “irregular" p arise)
@ (I), (D): Convergence fails

Optimistic/Modified Pl (Combination of VI and PI)
@ (C): Convergence starting with any

@ (SC): Convergence starting with any p after a substantial modification in the policy
evaluation step: Solving an “optimal stopping" problem instead of a linear equation

@ (D): Convergence starting with initial condition J
@ (I): Convergence may fail (special conditions required)

Asynchronous Optimistic/Modified Pl (Combination of VI and Pl)

@ (C): Fails in the standard form. Works after a substantial modification
@ (SC): Works after a substantial modification

@ (D), (I): Convergence may fail (special conditions required)
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Results Overview: Approximate DP

Approximate J,, and J* within a subspace spanned by basis functions
@ Aim for approximate versions of value iteration, and policy iteration
@ Very large and complex problems has been addressed
@ Simulation-based algorithms are common

@ No mathematical model is necessary (a computer simulator of the controlled
system is sufficient)

@ Abstract DP applies when cost approximation is based on the aggregation method
(then the aggregate DP model has the required monotonicity property)

Case (C)
@ A wide variety of additional results thanks to the underlying contraction property
@ Approximate value iteration and Q-learning
@ Approximate policy iteration, pure and optimistic/modified

Cases (l), (D), (SC)
Hardly any results available. Some results for stochastic shortest path problems
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Semicontractive Abstract Problem Formulation

@ Abstract monotone mapping H: X x U x E(X) — R
J<J BN H(x,u,J) < H(x,u,J"), Y X, u

where E(X) is the set of functions J : X — [—o0, 0]
@ Mappings T, and T

(T.)(x) = H(x, u(x),d),  VxeX,JeRX)
(TN)(x) =int(Tu)(x) = int H(xuJ),  VxeX, JeRX)

Abstract DP Problem

@ Given an initial function J € R(X) and policy y, define

Ju(x) = limsup (TN J)(x), xeX
N— oo

@ Find J*(x) = inf, J.(x) and an optimal  attaining the infimum
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Semicontractive Models: Regular Policies

Key idea: We have a set of functions S C E(X), which we view as the “domain of
regularity” J

S-Regular policy S-Irregular policy
TE]

Definition of S-Regular Policy

Given a set of functions S C E(X), we say that a stationary policy x is S-regular if:
@ J,eSandJ, = T,J,
o TfJ—J,forallde S

A policy that is not S-regular is called S-irregular.
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S-Regular Restricted Problem

Jy for pe Mg
i NN
e s JEEX)
S

Given aset S C E(X)

@ Consider the restricted optimization problem: Minimize J,, over p in the set Mg of
all S-regular policies

@ Let JZ be the optimal cost function over S-regular policies only:

Js(x) = o, ey K@

@ Since the set of S-regular policies is a subset of the set of all policies,

J' < s
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Well-Behaved Region Theorem

Given a set S C E(X) consider

Js(x) = inf Ju(x), xeX

HEMg

where Mg is the set of all S-regular policies

Fixed Pomt of T J, for p € Ms

J"/// \\\ supses J N

:! J e E(X)

Well-Behaved Region Wg

Proposition
Assume that Js is a fixed point of T. Then:
@ (Uniqueness of fixed point) Js is the only fixed point of T within the set
Ws = {J e E(X)|Js <J < JforsomeJ € S}
@ (VI convergence) TXJ — J3 for every J € Ws
@ (Optimality condition) If x* is S-regular, J; € S, and T,-Js = TJ3, then p* is
M-optimal. Conversely, if u* is Mg-optimal, then T,~Js = TJg.
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How do we Show that Jg is a Fixed Point of 77

A Pl-Based Approach

@ The approach applies when S is “well-behaved" with respect to Pl: roughly,
starting from an S-regular policy 1°, Pl generates S-regular policies

@ The significance of S-regularity is that {J,« } is monotonically nonincreasing,
Juk = TukJuk > TJuk = Tuk+1 Juk > J‘Lk+1

so it has a limit J
@ It is natural to expect that J.. will be equal to Jg and will be a fixed point of T

PI-generated sequence

/ \ AN
2 J,

Jy ! Jyo sup g J

/
g

[ —

J € E(X)

We introduce weak and strong Pl properties and obtain corresponding weaker and
stronger results for Jg to be a fixed point of T J
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Weak Pl Property Theorem

Fixed Point of T'

PI-generated sequence
v
Jg Sz Jur Juo sup jeg J
I . J e B(X)
Well-Behaved Region Wg

We say that S has the weak Pl property if there exists a sequence of S-regular policies
{u*} generated by PI.

Assume:

v

@ The weak Pl property

@ A “continuity from above" property for H: For each sequence {Jn} C E(X) with
Jm | J for some J € E(X), we have

H(x,u,J) = mIim H(x, u, Jm), VxeX,ue U(x)
Then Jg is the only fixed point of T within Ws, and VI converges to Jg starting from
within Ws.
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The Strong Pl Property

We say that S has the strong Pl property if the weak Pl property holds, and PI
generates exclusively S-regular policies, when started with an S-regular policy

Verifying the Strong PI Property for S ¢ R(X)
S has the strong Pl property if:
@ There exists at least one S-regular policy
@ The set
{ue U(x) | H(x,u,J) < A}
is compact forevery J € S, x € X, and \ € .
@ For every J € S and S-irregular policy u, there exists a state x € X such that

lim sup (T/{J)(x) = oo

k— oo

(so S-irregular policies cannot be optimal)
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Strong PI Property Theorem

Assume the conditions of the preceding slide hold (so that the strong Pl property also
holds), and also that J5 € S. Then:

@ J; is the unique fixed point of T within S
@ We have T*J — Jj for every J in the well-behaved region Ws

@ Every policy u that satisfies T,Js = TJg is Mg-optimal and there exists at least
one such policy

Note the stronger conclusions:
@ Js is the unique fixed point of T within S (not just from within Ws)
@ An optimality condition and existence of an M s-optimal policy
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A Stronger Assumption for Stronger Conclusions

The conditions for verifying the strong PI property hold:
@ SC R(X)
@ There exists at least one S-regular policy

@ Theset {u e U(x) | H(x,u,J) < A} is compact forevery J € S, x € X, and A € R

@ For every J € S and S-irregular policy p, there exists a state x € X such that

lim sup (Tl’fJ)(x) =00
k— oo

and also:

@ S contains J, and has the property that if J;, J» are two functions in S, then S
contains all functions J with J; < J < o

@ The function Jg = inf,caq J, belongs to S
@ For each sequence {Jn} C S with J, 1 J for some J € S,

lim H(x,u,dn) = H(x,u,J), VxeX, ue U(x)

m— oo

@ For each function J € S, there exists a function J’ € S such that J’ < J and
J T
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A Stronger Theorem for S ¢ R(X)

Proposition: Under the preceding assumption
@ J* is the unique fixed point of T within the set S
@ We have T"J — J* forallJ € S
@ u is optimal if and only if T,J* = TJ*, and there exists an optimal S-regular p
@ Forany J € S, if J < TJ we have J < J*, and if J > TJ we have J > J*
@ If in addition for each {Jn} C E(X) with Jp, | J for some J € E(X),

H(x,u,J) = mlin H(x, u, Jm), VxeX,ue U(x)

then every sequence {1} generated by the Pl algorithm starting from an
S-regular policy ° satisfies Ik L J”

Ju for p e Mg
Il T NN
- R(X)
) S c R(X) :
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