Semicontractive Dynamic Programming

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

Lecture 3 of 5

July 2016

Contents of the Lecture Series

- Semicontractive Examples.
- Semicontractive Analysis for Stochastic Optimal Control.
- Extensions to Abstract DP Models.
- Applications to Stochastic Shortest Path and Other Problems.
- Algorithms.

Outline of this Lecture

- Abstract Dynamic Programming
- Results Overview
- Semicontractive Models
- Semicontractive Analysis

Abstract Dynamic Programming: A Unifying Methodological Framework

Main Objective

- Unification of the core theory and algorithms of total cost sequential decision problems
- Simultaneous treatment of a variety of problems: stochastic optimal control, Markovian decision problems (MDP), sequential games, sequential minimax, multiplicative cost, risk-sensitive, etc

Methodology

- Define a problem by its "mathematical signature": the mapping defining the optimality/Bellman equation
- Structure of this mapping (monotonicity, contraction, "semicontractive" properties, etc) determines the analytical and algorithmic theory of the problem
- Fixed point theory: An important connection

Abstract DP Mappings

- State and control spaces: X, U
- Control constraint: $u \in U(x)$
- Stationary policies: $\mu: X \mapsto U$, with $\mu(x) \in U(x)$ for all x

Monotone Mappings

• Abstract monotone mapping $H: X \times U \times E(X) \mapsto \Re$

$$J \leq J'$$
 \Longrightarrow $H(x, u, J) \leq H(x, u, J'), \forall x, u$

where E(X) is the set of functions $J: X \mapsto [-\infty, \infty]$

• Mappings T_{μ} and T

$$(T_{\mu}J)(x) = H(x, \mu(x), J), \qquad \forall \ x \in X, \ J \in R(X)$$
$$(TJ)(x) = \inf_{\mu} (T_{\mu}J)(x) = \inf_{u \in U(x)} H(x, u, J), \qquad \forall \ x \in X, \ J \in R(X)$$

Stochastic Optimal Control Mapping: A Special Case

$$H(x, u, J) = E\{g(x, u, w) + \alpha J(f(x, u, w))\}$$

Abstract Problem Formulation

Abstract DP Problem

• Given an initial function $\bar{J} \in R(X)$ and policy μ , define

$$J_{\mu}(x) = \limsup_{N \to \infty} (T_{\mu}^{N} \bar{J})(x), \qquad x \in X$$

• Find $J^*(x) = \inf_{\mu} J_{\mu}(x)$ and an optimal μ attaining the infimum

Notes

• Theory revolves around fixed point properties of mappings T_{μ} and T:

$$J_{\mu}=T_{\mu}J_{\mu}, \qquad J^*=TJ^*$$

These are generalized forms of Bellman's equation

- Algorithms are special cases of fixed point algorithms
- We restrict attention (initially) to issues involving only stationary policies

Examples With a Dynamic System $x_{k+1} = f(x_k, \mu(x_k), w_k)$

Stochastic Optimal Control

$$\begin{split} \bar{J}(x) &\equiv 0, \qquad (T_{\mu}J)(x) = E_{w}\big\{g(x,\mu(x),w) + \alpha J\big(f(x,\mu(x),w)\big)\big\} \\ J_{\mu}(x_{0}) &= \limsup_{N \to \infty} \; E_{w_{0},w_{1},\dots}\left\{\sum_{k=0}^{N} \alpha^{k} g\big(x_{k},\mu(x_{k}),w_{k}\big)\right\} \end{split}$$

Minimax - Sequential Games

$$\begin{split} \bar{J}(x) &\equiv 0, \qquad (T_{\mu}J)(x) = \sup_{w \in W(x)} \left\{ g(x,u,w) + \alpha J(f(x,u,w)) \right\} \\ J_{\mu}(x_0) &= \limsup_{N \to \infty} \sup_{w_0,w_1,\dots} \sum_{k=0}^N \alpha^k g(x_k,\mu(x_k),w_k) \end{split}$$

Multiplicative Cost Problems

$$\begin{split} \bar{J}(x) &\equiv 1, \qquad (T_{\mu}J)(x) = E_{w}\big\{g(x,\mu(x),w)J\big(f(x,\mu(x),w)\big)\big\} \\ J_{\mu}(x_{0}) &= \limsup_{N \to \infty} \ E_{w_{0},w_{1},\dots}\left\{\prod_{k=0}^{N} g\big(x_{k},\mu(x_{k}),w_{k}\big)\right\} \end{split}$$

Examples With a Markov Chain: Transition Probs. $p_{i_k,i_{k+1}}(u_k)$

Finite-State Markov and Semi-Markov Decision Processes

$$\bar{J}(x) \equiv 0, \qquad (T_{\mu}J)(i) = \sum_{i=1}^{n} p_{ij}(\mu(i)) (g(i,\mu(i),j) + \alpha_{ij}(\mu(i))J(j))$$

$$J_{\mu}(i_0) = \limsup_{N \to \infty} E\left\{ \sum_{k=0}^{N} \left(\alpha_{i_0} \big(\mu(i_0) \big) \cdots a_{i_k i_{k+1}} \big(\mu(i_k) \big) \right) g(i_k, \mu(i_k), i_{k+1}) \right\}$$

where $\alpha_{ij}(u)$ are state and control-dependent discount factors

Risk-Sensitive Shortest Path: Exponential Cost with Termination State t

$$J_{\mu}(x_0) = \limsup_{N \rightarrow \infty} \ E\left\{e^{g\left(i_0, \mu(i_0), i_1\right) + \dots + g\left(i_N, \mu(i_N), i_{N+1}\right)}\right\}$$

$$\bar{J}(x) \equiv 1, \qquad (T_{\mu}J)(i) = p_{it}(\mu(i))e^{g(i,\mu(i),t)} + \sum_{i=1}^{n} p_{ij}(\mu(i))e^{g(i,\mu(i),j)}J(j)$$

Models Classified According to Properties of \mathcal{T}_{μ}

Contractive (C)

All T_{μ} are contractions within the set of bounded functions B(X), w.r.t. a common (weighted) sup-norm and contraction modulus (e.g., discounted problems)

Monotone Increasing (I) and Monotone Decreasing (D)

 $\bar{J} \leq T_{\mu}\bar{J}$ (e.g., negative DP problems)

 $ar{J} \geq T_{\mu}ar{J}$ (e.g., positive DP problems)

Semicontractive (SC)

 T_{μ} has "contraction-like" properties for some μ - to be discussed (e.g., SSP problems)

Semicontractive Nonnegative (SC⁺)

Semicontractive, and in addition $\bar{J} \geq 0$ and

$$J \ge 0 \implies H(x, u, J) \ge 0, \ \forall x, u$$

(e.g., affine monotonic, exponential/risk-sensitive problems)

Bellman's Equation

Bellman's Equation:

 $J_{\mu} = T_{\mu}J_{\mu}$ and $J^* = TJ^*$ hold often (but not always) under our assumptions

Bellman's Equation: Cases (C), (I), and (D)

 $J_{\mu}=T_{\mu}J_{\mu}$ and $J^{*}=TJ^{*}$ always hold

Bellman's Equation: Case (SC)

 $J_{\mu}=T_{\mu}J_{\mu}$ holds only for μ : "regular"

 \hat{J} , the "restricted optimal" cost function, solves Bellman's Eq. under our assumptions. We may have $J^* \neq \hat{J}$

Uniqueness of Solution of Bellman's Equations

Case (C)

T is a contraction within B(X) and J^* is its unique fixed point

Cases (I), (D)

T has multiple fixed points (some partial results hold)

Case (SC)

 \hat{J} is the unique fixed point of T within a subset of $J \in R(X)$ with "regular" behavior

Case (SC⁺)

 J^* is the unique positive (or nonnegative) fixed point of T

Optimality Conditions (A Complicated Story)

Cases (C), (I), and (SC - under one set of assumptions)

 μ^* is optimal if and only if $T_{\mu^*}J^* = TJ^*$

Case (SC - under another set of assumptions)

A "regular" μ^* is optimal if and only if $T_{\mu^*}J^*=TJ^*$

Case (D)

 μ^* is optimal if and only if $T_{\mu^*}J_{\mu^*}=TJ_{\mu^*}$

Convergence of Value Iteration: $J_{k+1} = TJ_k$

Case (C)

 $T^k J \to J^*$ for all $J \in B(X)$

Case (D)

 $T^k ar{J} o J^*$

Case (I)

 $T^k \bar{J} o J^*$ under additional "compactness" conditions

Case (SC)

 $T^kJ \to \hat{J}$ and possibly $T^kJ \to J^*$ for all $J \in R(X)$ within a set of "regular" behavior

Case (SC+)

 $T^k J \to J^*$ for all J > 0 (or $J \ge 0$ under some conditions)

Policy Iteration: $T_{\mu^{k+1}}J_{\mu^k}=TJ_{\mu^k}$ (A Complicated Story)

Classical Form of Exact PI

- \bullet (C): Convergence starting with any μ
- (SC): Convergence starting with a "regular" μ (not if "irregular" μ arise)
- (I), (D): Convergence fails

Optimistic/Modified PI (Combination of VI and PI)

- (C): Convergence starting with any μ
- (SC): Convergence starting with any μ after a substantial modification in the policy evaluation step: Solving an "optimal stopping" problem instead of a linear equation
- (D): Convergence starting with initial condition \bar{J}
- (I): Convergence may fail (special conditions required)

Asynchronous Optimistic/Modified PI (Combination of VI and PI)

- (C): Fails in the standard form. Works after a substantial modification
- (SC): Works after a substantial modification
- (D), (I): Convergence may fail (special conditions required)

Results Overview: Approximate DP

Approximate J_{μ} and J^* within a subspace spanned by basis functions

- Aim for approximate versions of value iteration, and policy iteration
- Very large and complex problems has been addressed
- Simulation-based algorithms are common
- No mathematical model is necessary (a computer simulator of the controlled system is sufficient)
- Abstract DP applies when cost approximation is based on the aggregation method (then the aggregate DP model has the required monotonicity property)

Case (C)

- A wide variety of additional results thanks to the underlying contraction property
- Approximate value iteration and Q-learning
- Approximate policy iteration, pure and optimistic/modified

Cases (I), (D), (SC)

Hardly any results available. Some results for stochastic shortest path problems

Semicontractive Abstract Problem Formulation

• Abstract monotone mapping $H: X \times U \times E(X) \mapsto \Re$

$$J \leq J'$$
 \Longrightarrow $H(x, u, J) \leq H(x, u, J'), \quad \forall x, u$

where E(X) is the set of functions $J: X \mapsto [-\infty, \infty]$

• Mappings T_{μ} and T

$$(T_{\mu}J)(x) = H(x, \mu(x), J), \qquad \forall \ x \in X, \ J \in R(X)$$
$$(TJ)(x) = \inf_{\mu} (T_{\mu}J)(x) = \inf_{u \in U(x)} H(x, u, J), \qquad \forall \ x \in X, \ J \in R(X)$$

Abstract DP Problem

• Given an initial function $\bar{J} \in R(X)$ and policy μ , define

$$J_{\mu}(x) = \limsup_{N \to \infty} (T_{\mu}^{N} \bar{J})(x), \qquad x \in X$$

• Find $J^*(x) = \inf_{\mu} J_{\mu}(x)$ and an optimal μ attaining the infimum

Semicontractive Models: Regular Policies

Key idea: We have a set of functions $S \subset E(X)$, which we view as the "domain of regularity"

Definition of S-Regular Policy

Given a set of functions $S \subset E(X)$, we say that a stationary policy μ is S-regular if:

- ullet $J_{\mu}\in \mathcal{S}$ and $J_{\mu}=\mathcal{T}_{\mu}J_{\mu}$
- ullet $T_{\mu}^k J o J_{\mu}$ for all $J \in \mathcal{S}$

A policy that is not S-regular is called S-irregular.

S-Regular Restricted Problem

Given a set $S \subset E(X)$

- Consider the restricted optimization problem: Minimize J_{μ} over μ in the set $\mathcal{M}_{\mathcal{S}}$ of all S-regular policies
- Let J_S^* be the optimal cost function over S-regular policies only:

$$J_{\mathcal{S}}^*(x) = \inf_{\mu \in \mathcal{M}_{\mathcal{S}}} J_{\mu}(x), \qquad x \in X$$

• Since the set of S-regular policies is a subset of the set of all policies,

$$J^* \leq J_S^*$$

Well-Behaved Region Theorem

Given a set $S \subset E(X)$ consider

$$J_{\mathcal{S}}^*(x) = \inf_{\mu \in \mathcal{M}_{\mathcal{S}}} J_{\mu}(x), \qquad x \in X$$

where $\mathcal{M}_{\mathcal{S}}$ is the set of all S-regular policies

Proposition

Assume that J_S^* is a fixed point of T. Then:

- (Uniqueness of fixed point) J_S^* is the only fixed point of T within the set $W_S = \{J \in E(X) \mid J_S^* \leq J \leq \tilde{J} \text{ for some } \tilde{J} \in S\}$
- (VI convergence) $T^kJ \to J_S^*$ for every $J \in W_S$
- (Optimality condition) If μ^* is S-regular, $J_S^* \in S$, and $T_{\mu^*}J_S^* = TJ_S^*$, then μ^* is \mathcal{M}_S -optimal. Conversely, if μ^* is \mathcal{M}_S -optimal, then $T_{\mu^*}J_S^* = TJ_S^*$.

How do we Show that J_S^* is a Fixed Point of T?

A PI-Based Approach

- The approach applies when S is "well-behaved" with respect to PI: roughly, starting from an S-regular policy μ^0 , PI generates S-regular policies
- The significance of S-regularity is that $\{J_{\mu^k}\}$ is monotonically nonincreasing,

$$J_{\mu^k} = T_{\mu^k} J_{\mu^k} \ge T J_{\mu^k} = T_{\mu^{k+1}} J_{\mu^k} \ge J_{\mu^{k+1}}$$

so it has a limit J_{∞}

• It is natural to expect that J_{∞} will be equal to J_{S}^{*} and will be a fixed point of T

We introduce weak and strong PI properties and obtain corresponding weaker and stronger results for J_S^* to be a fixed point of T

Weak PI Property Theorem

We say that S has the weak PI property if there exists a sequence of S-regular policies $\{\mu^k\}$ generated by PI.

Assume:

- The weak PI property
- A "continuity from above" property for H: For each sequence $\{J_m\} \subset E(X)$ with $J_m \downarrow J$ for some $J \in E(X)$, we have

$$H(x, u, J) = \lim_{m \to \infty} H(x, u, J_m), \quad \forall x \in X, u \in U(x)$$

Then J_S^* is the only fixed point of T within W_S , and VI converges to J_S^* starting from within W_S .

The Strong PI Property

We say that S has the strong PI property if the weak PI property holds, and PI generates exclusively S-regular policies, when started with an S-regular policy

Verifying the Strong PI Property for $S \subset R(X)$

S has the strong PI property if:

- There exists at least one S-regular policy
- The set

$$\{u \in U(x) \mid H(x, u, J) \leq \lambda\}$$

is compact for every $J \in S$, $x \in X$, and $\lambda \in \Re$.

• For every $J \in S$ and S-irregular policy μ , there exists a state $x \in X$ such that

$$\limsup_{k\to\infty} (T^k_\mu J)(x) = \infty$$

(so S-irregular policies cannot be optimal)

Strong PI Property Theorem

Assume the conditions of the preceding slide hold (so that the strong PI property also holds), and also that $J_s^* \in S$. Then:

- J_S^* is the unique fixed point of T within S
- We have $T^k J \to J_S^*$ for every J in the well-behaved region W_S
- Every policy μ that satisfies $T_{\mu}J_{S}^{*}=TJ_{S}^{*}$ is \mathcal{M}_{S} -optimal and there exists at least one such policy

Note the stronger conclusions:

- J_S^* is the unique fixed point of T within S (not just from within W_S)
- ullet An optimality condition and existence of an $\mathcal{M}_{\mathcal{S}}$ -optimal policy

A Stronger Assumption for Stronger Conclusions

The conditions for verifying the strong PI property hold:

- S ⊂ R(X)
- There exists at least one S-regular policy
- The set $\{u \in U(x) \mid H(x,u,J) \leq \lambda\}$ is compact for every $J \in S$, $x \in X$, and $\lambda \in \Re$
- For every $J \in S$ and S-irregular policy μ , there exists a state $x \in X$ such that

$$\limsup_{k\to\infty}\,(T^k_\mu J)(x)=\infty$$

and also:

- S contains \bar{J} , and has the property that if J_1, J_2 are two functions in S, then S contains all functions J with $J_1 \leq J \leq J_2$
- The function $J_S^* = \inf_{\mu \in \mathcal{M}_S} J_\mu$ belongs to S
- For each sequence $\{J_m\} \subset S$ with $J_m \uparrow J$ for some $J \in S$,

$$\lim_{m\to\infty}H(x,u,J_m)=H(x,u,J)\,,\qquad\forall\;x\in X,\;u\in U(x)$$

• For each function $J \in S$, there exists a function $J' \in S$ such that $J' \leq J$ and J' < TJ'

A Stronger Theorem for $S \subset R(X)$

Proposition: Under the preceding assumption

- J* is the unique fixed point of T within the set S
- We have $T^k J \to J^*$ for all $J \in S$
- ullet μ is optimal if and only if $T_{\mu}J^*=TJ^*$, and there exists an optimal S-regular μ
- For any $J \in S$, if $J \leq TJ$ we have $J \leq J^*$, and if $J \geq TJ$ we have $J \geq J^*$
- If in addition for each $\{J_m\} \subset E(X)$ with $J_m \downarrow J$ for some $J \in E(X)$,

$$H(x, u, J) = \lim_{m \to \infty} H(x, u, J_m), \quad \forall x \in X, u \in U(x)$$

then every sequence $\{\mu^k\}$ generated by the PI algorithm starting from an S-regular policy μ^0 satisfies $J_{\mu^k} \downarrow J^*$

