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Abstract Dynamic Programming: A Unifying Methodological Framework

Main Objective
Unification of the core theory and algorithms of total cost sequential decision
problems

Simultaneous treatment of a variety of problems: stochastic optimal control,
Markovian decision problems (MDP), sequential games, sequential minimax,
multiplicative cost, risk-sensitive, etc

Methodology
Define a problem by its “mathematical signature": the mapping defining the
optimality/Bellman equation

Structure of this mapping (monotonicity, contraction, “semicontractive" properties,
etc) determines the analytical and algorithmic theory of the problem

Fixed point theory: An important connection
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Abstract DP Mappings

State and control spaces: X ,U

Control constraint: u ∈ U(x)

Stationary policies: µ : X 7→ U, with µ(x) ∈ U(x) for all x

Monotone Mappings

Abstract monotone mapping H : X × U × E(X ) 7→ <

J ≤ J ′ =⇒ H(x , u, J) ≤ H(x , u, J ′), ∀ x , u

where E(X ) is the set of functions J : X 7→ [−∞,∞]

Mappings Tµ and T

(TµJ)(x) = H
(
x , µ(x), J

)
, ∀ x ∈ X , J ∈ R(X )

(TJ)(x) = inf
µ

(TµJ)(x) = inf
u∈U(x)

H(x , u, J), ∀ x ∈ X , J ∈ R(X )

Stochastic Optimal Control Mapping: A Special Case

H(x , u, J) = E
{

g(x , u,w) + αJ
(
f (x , u,w)

)}
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Abstract Problem Formulation

Abstract DP Problem

Given an initial function J̄ ∈ R(X ) and policy µ, define

Jµ(x) = lim sup
N→∞

(T N
µ J̄)(x), x ∈ X

Find J∗(x) = infµ Jµ(x) and an optimal µ attaining the infimum

Notes
Theory revolves around fixed point properties of mappings Tµ and T :

Jµ = TµJµ, J∗ = TJ∗

These are generalized forms of Bellman’s equation

Algorithms are special cases of fixed point algorithms

We restrict attention (initially) to issues involving only stationary policies
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Examples With a Dynamic System xk+1 = f
(
xk , µ(xk ),wk

)

Stochastic Optimal Control

J̄(x) ≡ 0, (TµJ)(x) = Ew
{

g(x , µ(x),w) + αJ
(
f (x , µ(x),w)

)}
Jµ(x0) = lim sup

N→∞
Ew0,w1,...

{
N∑

k=0

αk g
(
xk , µ(xk ),wk

)}

Minimax - Sequential Games

J̄(x) ≡ 0, (TµJ)(x) = sup
w∈W (x)

{
g(x , u,w) + αJ

(
f (x , u,w)

)}
Jµ(x0) = lim sup

N→∞
sup

w0,w1,...

N∑
k=0

αk g
(
xk , µ(xk ),wk

)

Multiplicative Cost Problems

J̄(x) ≡ 1, (TµJ)(x) = Ew
{

g(x , µ(x),w)J
(
f (x , µ(x),w)

)}
Jµ(x0) = lim sup

N→∞
Ew0,w1,...

{
N∏

k=0

g
(
xk , µ(xk ),wk

)}
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Examples With a Markov Chain: Transition Probs. pik ,ik+1(uk )

Finite-State Markov and Semi-Markov Decision Processes

J̄(x) ≡ 0, (TµJ)(i) =
n∑

i=1

pij
(
µ(i)

)(
g(i, µ(i), j) + αij

(
µ(i)

)
J(j)

)
Jµ(i0) = lim sup

N→∞
E

{
N∑

k=0

(
αi0

(
µ(i0)

)
· · · aik ik+1

(
µ(ik )

))
g
(
ik , µ(ik ), ik+1

)}
where αij (u) are state and control-dependent discount factors

Risk-Sensitive Shortest Path: Exponential Cost with Termination State t

Jµ(x0) = lim sup
N→∞

E
{

eg
(

i0,µ(i0),i1
)
+···+g

(
iN ,µ(iN ),iN+1

)}

J̄(x) ≡ 1, (TµJ)(i) = pit
(
µ(i)

)
eg
(

i,µ(i),t
)

+
n∑

i=1

pij
(
µ(i)

)
eg
(

i,µ(i),j
)
J(j)
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Models Classified According to Properties of Tµ

Contractive (C)
All Tµ are contractions within the set of bounded functions B(X ), w.r.t. a common
(weighted) sup-norm and contraction modulus (e.g., discounted problems)

Monotone Increasing (I) and Monotone Decreasing (D)

J̄ ≤ TµJ̄ (e.g., negative DP problems)

J̄ ≥ TµJ̄ (e.g., positive DP problems)

Semicontractive (SC)
Tµ has “contraction-like" properties for some µ - to be discussed (e.g., SSP problems)

Semicontractive Nonnegative (SC+)

Semicontractive, and in addition J̄ ≥ 0 and

J ≥ 0 =⇒ H(x , u, J) ≥ 0, ∀ x , u

(e.g., affine monotonic, exponential/risk-sensitive problems)

Bertsekas (M.I.T.) Semicontractive Dynamic Programming 10 / 29



Bellman’s Equation

Bellman’s Equation:
Jµ = TµJµ and J∗ = TJ∗ hold often (but not always) under our assumptions

Bellman’s Equation: Cases (C), (I), and (D)
Jµ = TµJµ and J∗ = TJ∗ always hold

Bellman’s Equation: Case (SC)
Jµ = TµJµ holds only for µ: “regular"

Ĵ, the “restricted optimal" cost function, solves Bellman’s Eq. under our assumptions.
We may have J∗ 6= Ĵ
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Uniqueness of Solution of Bellman’s Equations

Case (C)
T is a contraction within B(X ) and J∗ is its unique fixed point

Cases (I), (D)
T has multiple fixed points (some partial results hold)

Case (SC)

Ĵ is the unique fixed point of T within a subset of J ∈ R(X ) with “regular" behavior

Case (SC+)
J∗ is the unique positive (or nonnegative) fixed point of T
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Optimality Conditions (A Complicated Story)

Cases (C), (I), and (SC - under one set of assumptions)
µ∗ is optimal if and only if Tµ∗J∗ = TJ∗

Case (SC - under another set of assumptions)
A “regular" µ∗ is optimal if and only if Tµ∗J∗ = TJ∗

Case (D)
µ∗ is optimal if and only if Tµ∗Jµ∗ = TJµ∗
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Convergence of Value Iteration: Jk+1 = TJk

Case (C)

T k J → J∗ for all J ∈ B(X )

Case (D)

T k J̄ → J∗

Case (I)

T k J̄ → J∗ under additional “compactness" conditions

Case (SC)

T k J → Ĵ and possibly T k J → J∗ for all J ∈ R(X ) within a set of “regular" behavior

Case (SC+)

T k J → J∗ for all J > 0 (or J ≥ 0 under some conditions)
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Policy Iteration: Tµk+1Jµk = TJµk (A Complicated Story)

Classical Form of Exact PI
(C): Convergence starting with any µ

(SC): Convergence starting with a “regular" µ (not if “irregular" µ arise)

(I), (D): Convergence fails

Optimistic/Modified PI (Combination of VI and PI)
(C): Convergence starting with any µ

(SC): Convergence starting with any µ after a substantial modification in the policy
evaluation step: Solving an “optimal stopping" problem instead of a linear equation

(D): Convergence starting with initial condition J̄

(I): Convergence may fail (special conditions required)

Asynchronous Optimistic/Modified PI (Combination of VI and PI)
(C): Fails in the standard form. Works after a substantial modification

(SC): Works after a substantial modification

(D), (I): Convergence may fail (special conditions required)
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Results Overview: Approximate DP

Approximate Jµ and J∗ within a subspace spanned by basis functions

Aim for approximate versions of value iteration, and policy iteration

Very large and complex problems has been addressed

Simulation-based algorithms are common

No mathematical model is necessary (a computer simulator of the controlled
system is sufficient)

Abstract DP applies when cost approximation is based on the aggregation method
(then the aggregate DP model has the required monotonicity property)

Case (C)
A wide variety of additional results thanks to the underlying contraction property

Approximate value iteration and Q-learning

Approximate policy iteration, pure and optimistic/modified

Cases (I), (D), (SC)
Hardly any results available. Some results for stochastic shortest path problems
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Semicontractive Abstract Problem Formulation

Abstract monotone mapping H : X × U × E(X ) 7→ <

J ≤ J ′ =⇒ H(x , u, J) ≤ H(x , u, J ′), ∀ x , u

where E(X ) is the set of functions J : X 7→ [−∞,∞]

Mappings Tµ and T

(TµJ)(x) = H
(
x , µ(x), J

)
, ∀ x ∈ X , J ∈ R(X )

(TJ)(x) = inf
µ

(TµJ)(x) = inf
u∈U(x)

H(x , u, J), ∀ x ∈ X , J ∈ R(X )

Abstract DP Problem

Given an initial function J̄ ∈ R(X ) and policy µ, define

Jµ(x) = lim sup
N→∞

(T N
µ J̄)(x), x ∈ X

Find J∗(x) = infµ Jµ(x) and an optimal µ attaining the infimum
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Semicontractive Models: Regular Policies

Key idea: We have a set of functions S ⊂ E(X ), which we view as the “domain of
regularity"

Problem Formulation and Results Results Overview Semicontractive Nonnegative Models

S-Regular policy µ
S-Regular policy µ

Problem Formulation and Results Results Overview Semicontractive Nonnegative Models

S-Regular policy µ
S-Irregular policy µ̄
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Definition of S-Regular Policy
Given a set of functions S ⊂ E(X ), we say that a stationary policy µ is S-regular if:

Jµ ∈ S and Jµ = TµJµ
T k
µJ → Jµ for all J ∈ S

A policy that is not S-regular is called S-irregular.
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S-Regular Restricted Problem
Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1
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1

Given a set S ⊂ E(X )

Consider the restricted optimization problem: Minimize Jµ over µ in the setMS of
all S-regular policies

Let J∗S be the optimal cost function over S-regular policies only:

J∗S (x) = inf
µ∈MS

Jµ(x), x ∈ X

Since the set of S-regular policies is a subset of the set of all policies,

J∗ ≤ J∗S
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Well-Behaved Region Theorem

Given a set S ⊂ E(X ) consider

J∗S (x) = inf
µ∈MS

Jµ(x), x ∈ X

whereMS is the set of all S-regular policies
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Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region Fixed Point of T J∗ S

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Proposition
Assume that J∗S is a fixed point of T . Then:

(Uniqueness of fixed point) J∗S is the only fixed point of T within the set
WS =

{
J ∈ E(X ) | J∗S ≤ J ≤ J̃ for some J̃ ∈ S

}
(VI convergence) T k J → J∗S for every J ∈ WS

(Optimality condition) If µ∗ is S-regular, J∗S ∈ S, and Tµ∗J∗S = TJ∗S , then µ∗ is
MS-optimal. Conversely, if µ∗ isMS-optimal, then Tµ∗J∗S = TJ∗S .
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How do we Show that J∗
S is a Fixed Point of T ?

A PI-Based Approach
The approach applies when S is “well-behaved" with respect to PI: roughly,
starting from an S-regular policy µ0, PI generates S-regular policies

The significance of S-regularity is that {Jµk } is monotonically nonincreasing,

Jµk = Tµk Jµk ≥ TJµk = Tµk+1 Jµk ≥ Jµk+1

so it has a limit J∞
It is natural to expect that J∞ will be equal to J∗S and will be a fixed point of T

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Jµ0 Jµ1 Jµ2 . . .

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Jµ0 Jµ1 Jµ2 . . .

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Jµ0 Jµ1 Jµ2 . . .

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Jµ0 Jµ1 Jµ2 . . .

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Jµ0 Jµ1 Jµ2 . . . PI-generated sequence

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

We introduce weak and strong PI properties and obtain corresponding weaker and
stronger results for J∗S to be a fixed point of T
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Weak PI Property Theorem

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1
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Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region Fixed Point of T J∗ S

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Jµ0 Jµ1 Jµ2 . . .

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Jµ0 Jµ1 Jµ2 . . .

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Jµ0 Jµ1 Jµ2 . . .

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Jµ0 Jµ1 Jµ2 . . .

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Jµ0 Jµ1 Jµ2 . . . PI-generated sequence

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

We say that S has the weak PI property if there exists a sequence of S-regular policies
{µk} generated by PI.

Assume:
The weak PI property

A “continuity from above" property for H: For each sequence {Jm} ⊂ E(X ) with
Jm ↓ J for some J ∈ E(X ), we have

H(x , u, J) = lim
m→∞

H(x , u, Jm), ∀ x ∈ X , u ∈ U(x)

Then J∗S is the only fixed point of T within WS , and VI converges to J∗S starting from
within WS .

Bertsekas (M.I.T.) Semicontractive Dynamic Programming 25 / 29



The Strong PI Property

We say that S has the strong PI property if the weak PI property holds, and PI
generates exclusively S-regular policies, when started with an S-regular policy

Verifying the Strong PI Property for S ⊂ R(X )

S has the strong PI property if:

There exists at least one S-regular policy

The set
{u ∈ U(x) | H(x , u, J) ≤ λ}

is compact for every J ∈ S, x ∈ X , and λ ∈ <.

For every J ∈ S and S-irregular policy µ, there exists a state x ∈ X such that

lim sup
k→∞

(T k
µJ)(x) =∞

(so S-irregular policies cannot be optimal)
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Strong PI Property Theorem

Assume the conditions of the preceding slide hold (so that the strong PI property also
holds), and also that J∗S ∈ S. Then:

J∗S is the unique fixed point of T within S

We have T k J → J∗S for every J in the well-behaved region WS

Every policy µ that satisfies TµJ∗S = TJ∗S isMS-optimal and there exists at least
one such policy

Note the stronger conclusions:
J∗S is the unique fixed point of T within S (not just from within WS)

An optimality condition and existence of anMS-optimal policy
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A Stronger Assumption for Stronger Conclusions

The conditions for verifying the strong PI property hold:

S ⊂ R(X )

There exists at least one S-regular policy

The set
{

u ∈ U(x) | H(x , u, J) ≤ λ
}

is compact for every J ∈ S, x ∈ X , and λ ∈ <
For every J ∈ S and S-irregular policy µ, there exists a state x ∈ X such that

lim sup
k→∞

(T k
µJ)(x) =∞

and also:

S contains J̄, and has the property that if J1, J2 are two functions in S, then S
contains all functions J with J1 ≤ J ≤ J2

The function J∗S = infµ∈MS Jµ belongs to S

For each sequence {Jm} ⊂ S with Jm ↑ J for some J ∈ S,

lim
m→∞

H(x , u, Jm) = H (x , u, J) , ∀ x ∈ X , u ∈ U(x)

For each function J ∈ S, there exists a function J ′ ∈ S such that J ′ ≤ J and
J ′ ≤ TJ ′
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A Stronger Theorem for S ⊂ R(X )

Proposition: Under the preceding assumption
J∗ is the unique fixed point of T within the set S

We have T k J → J∗ for all J ∈ S

µ is optimal if and only if TµJ∗ = TJ∗, and there exists an optimal S-regular µ

For any J ∈ S, if J ≤ TJ we have J ≤ J∗, and if J ≥ TJ we have J ≥ J∗

If in addition for each {Jm} ⊂ E(X ) with Jm ↓ J for some J ∈ E(X ),

H (x , u, J) = lim
m→∞

H(x , u, Jm), ∀ x ∈ X , u ∈ U(x)

then every sequence {µk} generated by the PI algorithm starting from an
S-regular policy µ0 satisfies Jµk ↓ J∗

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

S ⇢ R(X) u, Cost b Jµ0 Jµ2 . . . PI-generated sequence

PI Improvement Eq: µ1 2 arg min{b, a + Jµ0} = arg min{b, a + b}

Bellman Eq: J(1) = (TJ)(1) = min
�
b, J(1)

 
µ0 is <-Irregular

1

Bertsekas (M.I.T.) Semicontractive Dynamic Programming 29 / 29


	Abstract Dynamic Programming
	Results Overview
	Semicontractive Models
	Semicontractive Analysis

