Semicontractive Dynamic Programming

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

Lecture 2 of 5

July 2016

- Semicontractive Examples.
- Semicontractive Analysis for Stochastic Optimal Control.
- Extensions to Abstract DP Models.
- Applications to Stochastic Shortest Path and Other Problems.
- Algorithms.

System: $x_{k+1} = f(x_k, u_k, w_k)$

- *x_k*: State at time *k*, from some space *X*
- *u_k*: Control at time *k*, from some space *U*
- w_k : Random "disturbance" at time k, from a countable space W, with $p(w_k | x_k, u_k)$ given

Policies: $\pi = \{\mu_0, \mu_1, ...\}$

- Each μ_k maps states x_k to controls $u_k = \mu_k(x_k) \in U(x_k)$ (a constraint set)
- Cost of π starting at x_0 , with discount factor $\alpha \in (0, 1]$:

 $J_{\pi}(x_0) = \limsup_{k \to \infty} E\left\{ \sum_{m=0}^{k} \alpha^m g(x_m, \mu_m(x_m), w_m) \right\}$

- Optimal cost starting at x_0 : $J^*(x_0) = \inf_{\pi} J_{\pi}(x_0)$
- Optimal policy π^* : Satisfies $J_{\pi^*}(x) = J^*(x)$ for all $x \in X$
- Stationary policies, those of the form $\{\mu, \mu, \ldots\}$, play a special role

• The cost of a stationary policy μ starting from state x, denoted $J_{\mu}(x)$, and the optimal cost starting from state x, denoted $J^{*}(x)$, typically satisfy Bellman's equations

$$J_{\mu}(x) = E\{g(x,\mu(x),w) + \alpha J_{\mu}(f(x,\mu(x),w))\}, \quad \forall x \in X$$

$$J^*(x) = \inf_{u \in U(x)} E\{g(x, u, w) + \alpha J^*(f(x, u, w))\}, \quad \forall x \in X$$

Denote for all $x \in X$ and μ ,

$$H(x, u, J) = E\{g(x, u, w) + \alpha J(f(x, u, w))\}$$

$$(T_{\mu}J)(x) = H(x,\mu(x),J), \qquad (TJ)(x) = \inf_{\mu \in U(x)} H(x,u,J)$$

A key property is that T_{μ} and T are monotone

- The Bellman equations can be viewed abstractly as the fixed point equations $J_{\mu} = T_{\mu}J_{\mu}$ and $J^* = TJ^*$
- We are considering semicontractive problems where some T_{μ} are "contraction-like" and others are not

• Characterization of the set of solutions of Bellman's equations

$$J = T_{\mu}J, \qquad J = TJ$$

Are J_{μ} and J^* solutions?

• If $\mu^*(x)$ attains the min for all *x*,

 $\mu^*(x) \in \operatorname*{arg\,min}_{u \in U(x)} E\{g(x, u, w) + \alpha J^*(f(x, u, w))\}, \qquad \forall x \in X$

(i.e., $T_{\mu^*}J^* = TJ^*$ in shorthand), then μ^* is optimal

- The value iteration (VI) method converges: $\{T^kJ\} \rightarrow J^*$ for appropriate initial J
- The policy iteration (PI) method converges: $J_{\mu^k} \to J^*$, where $\{\mu^k\}$ is generated by

$$J_{\mu^k} = T_{\mu^k} J_{\mu^k}$$
, (policy evaluation)

and

$$T_{\mu^{k+1}}J_{\mu^k} = TJ_{\mu^k},$$
 (policy improvement)

We Gave Four Pathological Examples: What is the Root of the Anomalies?

A (partial) answer

The presence of policies that are not well-behaved in terms of VI (e.g., involve zero length cycles in shortest path problems, or are unstable in linear quadratic problems)

We call these policies "irregular" and we investigate

- What problems can they cause?
- Under what assumptions are they "harmless"?

- Select a class of well-behaved/regular policies
- Define a restricted optimization problem over the regular policies only
- Show that the restricted problem has nice theoretical and algorithmic properties
- Relate the restricted problem to the original
- Under reasonable conditions, obtain strong theoretical and algorithmic results

Research Monograph

D. P. Bertsekas, Abstract Dynamic Programming, Athena Scientific, 2013; updated chapters on-line

S-Regular Policies

- 2 S-Regular Restricted Optimization
- Weak and Strong PI Properties
- 4 Stochastic Shortest Path Example
- 5 Deterministic Optimal Control Example

Shorthand Notation for Cost Functions

- \Re the set of real numbers $(-\infty,\infty)$
- R(X) the set of real-valued functions $J: X \mapsto \Re$
- E(X) the set of extended real-valued functions J : X → [-∞, ∞]
- \bar{J} is the identically 0-function, $\bar{J}(x) \equiv 0$
- *N*-stage cost of policy μ starting from *x* with terminal cost function *J*:

$$(T^{N}_{\mu}J)(x) = E\left\{\alpha^{N}J(x_{N}) + \sum_{k=0}^{N-1}\alpha^{k}g(x_{k},\mu(x_{k}),w_{k})\right\}$$

• *k*-stage cost of policy μ starting from *x* with 0 terminal cost:

$$(T^k_{\mu}\bar{J})(x) = E\left\{\sum_{m=0}^{k-1} \alpha^m g(x_m, \mu(x_m), w_m)\right\}$$

• Infinite horizon cost of policy μ starting from *x*:

$$J_{\mu}(x) = \limsup_{k \to \infty} \left(T_{\mu}^{k} \bar{J} \right)(x)$$

S-Regular Policies

Definition of S-Regular Policy

Given a set of functions $S \subset E(X)$, we say that a stationary policy μ is S-regular if:

- $J_{\mu} \in S$ and $J_{\mu} = T_{\mu}J_{\mu}$
- $T^k_{\mu}J \rightarrow J_{\mu}$ for all $J \in S$

A policy that is not *S*-regular is called *S*-irregular.

- The S-regular μ are the ones for which J_μ is the unique and stable equilibrium point of T_μ within S
- The S-regular μ are well-behaved" with respect to VI (at least within S)

S-Regular Policies: Illustration for $S = \Re$

Definition of S-Regularity

Given a set of functions $S \subset E(X)$, a stationary policy μ is *S*-regular if:

•
$$J_{\mu} \in S$$
 and $J_{\mu} = T_{\mu}J_{\mu}$

•
$$T^k_{\mu}J \rightarrow J_{\mu}$$
 for all $J \in S$

Definition of S-Regularity

Given a set of functions $S \subset E(X)$, a stationary policy μ is *S*-regular if:

- $J_{\mu} \in S$ and $J_{\mu} = T_{\mu}J_{\mu}$
- $T^k_{\mu}J \rightarrow J_{\mu}$ for all $J \in S$

Examples

• All μ such that $J_{\mu} \in S$ and T_{μ} is a contraction mapping over S are S-regular: i.e., $T_{\mu} : S \mapsto S$ and

$$\|T_{\mu}J - T_{\mu}J'\| \leq \beta \|J - J'\|, \qquad \forall J, J' \in S$$

where $\beta \in (0, 1)$

- *n*-state shortest path problems: If S = Rⁿ, the S-regular policies are precisely the terminating policies
- In linear quadratic problems: If *S* is the set of positive semidefinite quadratic functions, the linear stabilizing controllers are *S*-regular

S-Regular Policies: Dependence on the Choice of S

Definition of S-Regularity

Given a set of functions $S \subset E(X)$, a stationary policy μ is *S*-regular if:

•
$$J_{\mu} \in S$$
 and $J_{\mu} = T_{\mu}J_{\mu}$

•
$$T^k_{\mu}J \rightarrow J_{\mu}$$
 for all $J \in S$

S-Regular Restricted Problem

Given a set $S \subset E(X)$

- Let \mathcal{M}_S be the set of all S-regular policies
- Consider the restricted optimization problem: Minimize J_{μ} over the S-regular μ
- Let J_S^* be the optimal cost function over *S*-regular policies only:

 $J_{\mathcal{S}}^*(x) = \inf_{\mu \in \mathcal{M}_{\mathcal{S}}} J_{\mu}(x), \qquad x \in X$

• Since S-regular policies is a subset of the set of all policies,

$$J^* \leq J^*_S$$

Well-Behaved Region Theorem

Given a set $S \subset E(X)$ consider

$$J^*_{\mathcal{S}}(x) = \inf_{\mu \in \mathcal{M}_{\mathcal{S}}} J_{\mu}(x), \qquad x \in X$$

where $\mathcal{M}_{\mathcal{S}}$ is the set of all \mathcal{S} -regular policies

Proposition

Assume that J_S^* is a fixed point of *T*. Then:

- (Uniqueness of fixed point) J_S^* is the only fixed point of T within the set $W_S = \{J \in E(X) \mid J_S^* \le J \le \tilde{J} \text{ for some } \tilde{J} \in S\}$
- (VI convergence) $T^k J \rightarrow J^*_S$ for every $J \in W_S$
- (Optimality condition) If μ* is S-regular, J^{*}_S ∈ S, and T_{μ*} J^{*}_S = TJ^{*}_S, then μ* is M_S-optimal. Conversely, if μ* is M_S-optimal, then T_{μ*} J^{*}_S = TJ^{*}_S.

Proof Argument

• Let $J \in W_S$, so that $J_S^* \le J \le \tilde{J}$ for some $\tilde{J} \in S$. We have for all k and S-regular μ ,

$$J^*_{\mathcal{S}} = T^k J^*_{\mathcal{S}} \leq T^k J \leq T^k \tilde{J} \leq T^k_{\mu} \tilde{J} \qquad \Longrightarrow \qquad T^k J o J^*_{\mathcal{S}}$$

- If J' is another fixed point of T that belongs to W_S , start VI at J' to get that $J' = \lim_{k \to \infty} T^k J' = J_S^*$.
- If μ^* satisfies $T_{\mu^*}J_S^* = TJ_S^*$, then $T_{\mu^*}J_S^* = J_S^*$, implying that $J_S^* = J_{\mu^*}$. Thus μ^* is \mathcal{M}_S -optimal
- Conversely, if μ^* is M_S -optimal, we have $J_{\mu^*} = J_S^*$, so

$$TJ_S^* = J_S^* = J_{\mu^*} = T_{\mu^*}J_{\mu^*} = T_{\mu^*}J_S^*$$

Deterministic Shortest Path Example; $S = \Re$

• J_S^* is the only fixed point of T in the well-behaved region

• $T^k J \rightarrow J^*_S$ for every *J* in the well-behaved region $J \in E(X)$

One approach: Choose *S* so that $J_S^* = J^*$, and prove that J^* is a fixed point of *T*. J^* is a fixed point of *T* for several broad classes of problems, e.g., all deterministic problems, all problems where the cost per stage *g* is uniformly nonnegative, or uniformly nonpositive, etc

We will Follow Another Approach Based on Policy Iteration (PI)

- The approach applies when *S* is "well-behaved" with respect to PI: roughly, starting from an *S*-regular policy μ^0 , PI generates *S*-regular policies
- The significance of S-regularity is that {J_{μk}} is monotonically nonincreasing, and its limit is a fixed point of T

The Weak PI property

Key Fact

If $\{\mu^k\}$ is generated by PI and consists of *S*-regular policies then

 $J_{\mathcal{S}}^* \leq J_{\mu^{k+1}} \leq J_{\mu^k}, \qquad \forall \ k$

Proof: $J_{\mu^k} = T_{\mu^k} J_{\mu^k} \ge T J_{\mu^k} = T_{\mu^{k+1}} J_{\mu^k} \ge \lim_{m \to \infty} T_{\mu^{k+1}}^m J_{\mu^k} = J_{\mu^{k+1}}$

We distinguish between two versions of PI-related assumptions, strong and weak, which lead to corresponding strong and weak results

Definition

We say that *S* has the weak PI property if there exists a sequence of *S*-regular policies $\{\mu^k\}$ that can be generated by the PI algorithm

Weak PI Property Theorem

Let S have the weak PI property and $\{\mu^k\}$ be a generated sequence of S-regular policies. Then:

- $J_{\mu^k} \downarrow J_S^*$ and J_S^* is a fixed point of T
- The well-behaved theorem applies, so J_S^* is the only fixed point of T within the well-behaved region, and VI converges to J_S^* starting from within that region

Proof Argument

• S-regularity guarantees that J_{μ^k} is monotonically nonincreasing so $J_{\mu^k} \downarrow J_{\infty}$

We have

$$J_{\mu^{k+1}} \leq T_{\mu^{k+1}} J_{\mu^k} = T J_{\mu^k} \leq T_{\mu^k} J_{\mu^k} = J_{\mu^k}$$

• By a limit and continuity argument, J_∞ is a fixed point of T and $J_\infty = J_S^*$

Definition

We say that *S* has the strong PI property if it has the weak PI property and starting from an *S*-regular policy, PI generates only *S*-regular policies (i.e., the set of *S*-regular policies is nonempty and is closed under PI)

Verifying the Strong PI Property for S = R(X)

S has the strong PI property if:

• There exists at least one S-regular policy

• The set

$$\{u \in U(x) \mid H(x, u, J) \leq \lambda\}$$

is compact for every $J \in S$, $x \in X$, and $\lambda \in \Re$.

• For every $J \in S$ and S-irregular policy μ , there exists a state $x \in X$ such that

$$\limsup_{k\to\infty} (T^k_{\mu}J)(x) = \infty$$

(so S-irregular policies cannot be optimal)

Assume the conditions of the preceding slide hold (so that the strong PI property holds), and also $J_S^* \in R(X)$ and is bounded below. Then:

• $J_S^* = J^*$, and J^* is the unique fixed point of T within R(X)

• We have
$$T^kJ o J^*$$
 for every $J \in R(X)$

- A policy μ^{*} is optimal if and only if T_{μ*} J^{*} = TJ^{*}, and there exists at least one optimal policy
- Starting from an S-regular policy μ^0 , PI generates a sequence $\{\mu^k\}$ of S-regular policies such that $J_{\mu^k} \downarrow J^*$

Note the stronger conclusions:

- $J_S^* = J^*$ and is the unique fixed point of T within R(X) (not just within W_S)
- VI converges starting anywhere within R(X)
- PI converges assuming we know an initial S-regular policy

Revisit: Deterministic Shortest Path Example, $S = \Re$

Case a = 0, Weak PI Property Holds

- $J_S^* = b, J^* = \min\{b, 0\}$
- Set of fixed points of $T = (-\infty, b]$
- Well-behaved region is $W_S = \{J \mid J_S^* \leq J\} = [b, \infty)$
- J_S^* is the unique fixed point of T within W_S (but if b > 0, we have $J^* < J_S^*$)
- VI converges to J* starting anywhere within W_S
- PI convergence is problematic

Case *a* > 0, Strong PI Property Holds

- $J_S^* = J^*$ is the unique fixed point of T within S
- VI converges to J* for all initial conditions. PI also converges ...

Problem Formulation

- Finite state space $X = \{1, ..., n\}$ plus a termination state *t*
- Transition probabilities $p_{xy}(u)$
- U(x) is finite for all $x \in X$
- Cost per stage g(x, u) and no discounting ($\alpha = 1$)

Proper policies

- μ is proper if the termination state t is reached w.p.1 under μ (is improper otherwise)
- Let $S = R(X) = \Re^n$. Then μ is S-regular if and only if it is proper

Contraction properties

- The mapping T_{μ} of a policy μ is a weighted sup-norm contraction iff μ proper
- If all stationary policies are proper, then *T* is a sup-norm contraction, and the problem behaves like a discounted problem
- SSP is a prime example of a semicontractive model (when some policies are proper/contractions/regular while others are not)

Case where improper policies have infinite cost (strong PI property holds)

If there exists a proper policy and for every improper μ , $J_{\mu}(x) = \infty$ for some x, then:

- J^* is the unique fixed point of T in \Re^n
- VI converges to J^* starting from every $J \in \Re^n$
- PI converges to an optimal proper policy, if started with a proper policy

Case where improper policies have finite cost (due to zero length "cycles")

Let \hat{J} be the optimal cost function over proper stationary policies only, and assume that \hat{J} and J^* are real-valued. Then, by the weak PI property theorem:

- \hat{J} is the unique fixed point of T in the set $\{J \in \Re^n \mid J \geq \hat{J}\}$
- VI converges to \hat{J} starting from any $J \geq \hat{J}$
- PI need not converge to an optimal policy even if started with a proper policy
- A related line of analysis also applies: Use a "perturbed" version of the problem (add a δ_k > 0 to g, with δ_k ↓ 0)
- A "perturbed" version of PI (add a δ_k > 0 to g, with δ_k ↓ 0) converges to an optimal policy within the class of proper policies, if started with a proper policy
- An improper policy may be (overall) optimal, while J^* need not be a fixed point of T

Application to Nonnegative Cost Deterministic Optimal Control

Classic problem of regulation to a terminal set

- System: $x_{k+1} = f(x_k, u_k)$. Cost per stage: $g(x_k, u_k) \ge 0$
- Cost-free and absorbing terminal set of states X₀ that we aim to reach or approach asymptotically at minimum cost
- Let $S = \{J \in E^+(X) \mid J(x) = 0, \ \forall \ x \in X_0\}$
- The terminating policies (reach X_0 in a finite number of steps from all x with $J^*(x) < \infty$) are *S*-regular

Assumptions (implying that the strong PI property holds)

- $J^*(x) > 0$ for all $x \notin X_0$ (implies that S-irregular policies have infinite cost)
- Controllability: For all x with J^{*}(x) < ∞ and ε > 0, there exists a terminating policy μ that reaches X₀ starting from x with cost J_μ(x) ≤ J^{*}(x) + ε
- A compactness condition

Results

- J* is the unique solution of Bellman's equation within S
- VI converges to J^* starting from any $J \in S$
- PI converges to J* starting from a terminating policy