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Classical Total Cost Stochastic Optimal Control (SOC)

System: X1 = f(Xk, Uk, Wk)
@ Xxx: State at time k, from some space X
@ ux: Control at time k, from some space U

@ wi: Random “disturbance" at time k, from a countable space W, with
p(Wk | Xk, Ux) given

Policies: © = {po, pi1, .- .}

@ Each ux maps states xx to controls ux = uk(xx) € U(xx) (a constraint set)
@ Cost of 7 starting at xo, with discount factor o € (0, 1]:

Jr(x0) = limsupy._,. E {Z’k\’zo oF g( Xk, pu(Xk), Wk)}
@ Optimal cost starting at xo: J*(x0) = infx Jx(x0)
@ Optimal policy 7*: Satisfies J,=(x) = J*(x) for all x € X

@ Stationary policies, those of the form {u, u, ...}, play a special role (typically, there
are stationary optimal policies that are optimal)

v
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Bellman’s Equation

@ The cost of a stationary policy p starting from state x, denoted J,,(x), typically
satisfies

Ju(x) = E{g(x, p(x), w) + ady (F(x, u(x), W)}, ¥x€X
This is called Bellman’s equation for policy x

@ The optimal cost starting from state x, denoted J*(x), typically satisfies

J(x) = ueimx) E{g(x,u,w)+ aJ*(f(x,u,w))}, VxeX

This is called Bellman’s equation

@ Both types of Bellman’s equation are functional equations in J,, or J*
@ They can be viewed abstractly as having the form

Jo=Tudy o J=TJS

@ In a given DP problem it is significant when Bellman’s equation has a unique
solution. This is true if all T,, are contraction mappings (with a common modulus).
If this is true, the problem is called contractive and otherwise noncontractive

@ Contractive problems are much nicer!
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Two Main Classes of Total Cost SOC Problems

Contractive Problems:
@ a < 1 and bounded g
@ Date to 50s (Bellman, Shapley)

@ Nicest results; key fact is the contraction property of the mapping in Bellman’s
equation

Noncontractive Problems - Stochastic Shortest Path (SSP):
@ Date to 60s (Eaton-Zadeh, Derman, Pallu de la Barriere)
@ Also known as first passage or transient programming
@ Aim is to reach a special termination state at min expected cost

@ Under favorable assumptions, the results are almost as strong as for the
discounted case (when the noncontractive policies cannot be optimal)

@ In general, very complex behavior is possible

Some Additional Noncontractive Problems:
@ Discounted problems with unbounded g
@ Undiscounted problems with positive and negative cost (g < 0 or g > 0)
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Semicontractive Problems

Intermediate Problem Types: Between Contractive and Noncontractive
@ Problems where some policies are “well-behaved" and some are not

@ “Well-behaved" has a problem-dependent meaning. The most common example
of “well-behaved" policy is one that is contractive

@ Pathological behaviors are due to policies that are not “well-behaved”

Our Approach

@ Select a class of well-behaved policies (we call them regular and define them in a
precise way later)

@ Define a restricted optimization problem over the regular policies only
@ Show that the restricted problem has nice theoretical and algorithmic properties
@ Relate the restricted problem to the original

@ Under reasonable conditions, obtain strong theoretical and algorithmic results
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Contents of the Lecture Series

@ Semicontractive Examples.

@ Semicontractive Analysis for Stochastic Optimal Control.

@ Extensions to Abstract DP Models.

© Applications to Stochastic Shortest Path and Other Problems.

@ Algorithms.
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Results that we Aim for in Total Cost DP Problems

Denote
H(x,u,J) = E{g(x,u,w) + aJ(f(x,u,w))}

@ J* satisfies Bellman’s equation

J (x):uelrJ{X)H(x,u,J )s vxeX

and if u*(x) attains the min for all x, p* is optimal
@ The value iteration (VI) method converges: Jx — J*, where

Jkt1 (X) = ueimx) H(X7 u, Jk)

@ The policy iteration (Pl) method converges: J,« — J*, where {1*V is generated by
J(x) = H(x, 1(x),J k), VxeX,  (policy evaluation)

1(x) €arg min H(x,u,J ), ¥xe€X. (policyimprovement)
ueU(x)
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Four Pathological Examples: An Overview

@ In all examples, we introduce a set of “well-behaved" or “regular” policies (in
shortest path problems, regular policies will be the ones that reach the termination

state in finite time).

o Let
J*(x): Optimal cost (over all policies) starting from x

J(x): Optimal cost over the regular policies only, starting from x

The Four Examples

@ A finite-state, finite-control deterministic shortest path problem. Here Bellman’s
equation may have multiple solutions (including J* and J), and VI and Pl may not
converge to J* orto J

@ A finite-state, finite-control stochastic shortest path problem. Here J* does not
satisfy Bellman’s equation, while J does

@ A finite-state, infinite-control stochastic shortest path problem. Here there is no
optimal policy, and VI and Pl exhibit some peculiarities

@ A linear-quadratic optimal control problem. Here Bellman’s equation has two
solutions, J* and J, and VI and PI typically converge to J
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A Deterministic Shortest Path Problem

u/, Cost 0
Stationary policy costs

Ju(1) =b, J(1)=0 Destination

u, Cost b
Optimal cost J*(1) = min{b,0} [ 1 e —__ Cost 0

Bellman’s equation: J(1) =min{b, J(1)}. Set of solutions: All J(1) < b

u is well-behaved/regular, but 4’ is not; here J=b,J" = min{b, 0} J

Value iteration (VI) starting from any Jo(1): Jk+1(1) = min {b, Jk(1)}
@ If b< 0: Je(1) — J*(1) starting with Jo(1) > b (works depending on Jo)
@ If b> 0: (1) — J*(1) only if Jo(1) = 0; starting from Jo(1) > b, (1) — J(1)
@ VI for the regular policy p: J,., k(1) = b (works)
@ VI for the irregular policyy’: J,,/ x1(1) = J,./ (1) (fails)

Policy iteration (PI) starting from p
If b < 0: Oscillates between p and . If b > 0: Converges to suboptimal
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A Stochastic Shortest Path Problem (from Bertsekas and Yu, 2015)

A single policy u. The only uncertainty is at the first stage starting at state 1.

Cost 0

Ju(1) =0

Prob. = 1/2 Prob. = 1/2

Cost —2 Cost 1 Cost —1

Destination

Cost 1 © Cost —1

Cost 0

The Bellman Eq. is violated at 1: J,(1) # 1Ju(2) + 1J.(5)

A peculiar phenomenon

Consider the deterministic optimal control problem where at state 1 we may choose
either to go to 2 or to 5 at zero cost

@ Then J*(x) = 1 for all x, including J*(1) = 1
@ Belman’s equation J*(1) = min {J*(2), J*(5)} is satisfied
@ Randomization lowers the optimal cost and invalidates Bellman’s equation
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The Blackmailer’s Dilemma

Prob. 1 —u2

Prob. u?
: ©

Victim compliant Blackmailer denounced
Amount demanded: u € (0,1]

@ Every policy u terminates with probability 1, and J,.(1) = fﬁ
@ We have J*(1) = —oo and there exists no optimal policy
@ Bellman’s equation is

J(1) = min {—u+(1-uv)J(1)}

It is satisfied by J* = —co (also by J = o0)

@ VI converges to J* starting from any scalar J

@ In Pl we have J x — J*, but 1¥(1) = 0 (which is not an admissible policy)

@ A variation of the problem: Replacing the probability u? by u. Then J*(1) = —1is
a solution of Bellman’s Eq., but all J < —1 are also solutions, and still there is no
optimal policy
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A Linear Quadratic Problem

System: xx1 = Xk + Uk, Cost per stage: g(x, u) = u?
@ Here J*(x) = 0 and the optimal policy is ¢ (x) = 0
@ Bellman’s equation is

J(x) = min {P+J(yx+u)}, xeR,

and is satisfied by J*. Are there any other solutions?

Let v > 1, so the system is unstable
@ The optimal policy yields an unstable closed-loop system
@ Bellman’s equation has a second solution: J(x) = (v — 1)x?

@ Jis the optimal cost function over the class of policies that stabilize the system
(these are the “well-behaved" or “regular" policies)

@ Both VI and Pl typically converge to J (not J*!)
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A Summary from the Examples

@ Bellman’s equation may have multiple solutions

@ Often but not always, J* is a solution

@ A restricted problem, involving “well-behaved" policies, is meaningful and plays an
important role

@ The appropriate set of “well-behaved" policies is problem-dependent (e.g.,
terminating in shortest path problems, or stabilizing in the linear quadratic case)

@ The optimal cost function over all policies, J*, may differ from J, the optimal cost
function over the “well-behaved" policies

@ Jis the likely limit of the VI and the PI algorithms, starting from an appropriate set
of initial conditions

In the next lecture, we will aim to:
@ Explain this behavior through analysis
@ Formalize the notion of “well-behaved" policy through a notion of regularity

@ Introduce the kind of assumptions under which anomalous behavior can be
avoided or mitigated

@ Provide results of the type that are available for contractive problems
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