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Classical Total Cost Stochastic Optimal Control (SOC)

System: xk+1 = f (xk ,uk ,wk )

xk : State at time k , from some space X

uk : Control at time k , from some space U

wk : Random “disturbance" at time k , from a countable space W , with
p(wk | xk , uk ) given

Policies: π = {µ0, µ1, . . .}
Each µk maps states xk to controls uk = µk (xk ) ∈ U(xk ) (a constraint set)

Cost of π starting at x0, with discount factor α ∈ (0, 1]:

Jπ(x0) = lim supN→∞ E
{∑N

k=0 α
k g(xk , µk (xk ),wk

)}
Optimal cost starting at x0: J∗(x0) = infπ Jπ(x0)

Optimal policy π∗: Satisfies Jπ∗(x) = J∗(x) for all x ∈ X

Stationary policies, those of the form {µ, µ, . . .}, play a special role (typically, there
are stationary optimal policies that are optimal)

Bertsekas (M.I.T.) Abstract and Semicontractive Dynamic Programming 2 / 14



Bellman’s Equation

The cost of a stationary policy µ starting from state x , denoted Jµ(x), typically
satisfies

Jµ(x) = E
{

g(x , µ(x),w) + αJµ
(
f (x , µ(x),w)

)}
, ∀ x ∈ X

This is called Bellman’s equation for policy µ
The optimal cost starting from state x , denoted J∗(x), typically satisfies

J∗(x) = inf
u∈U(x)

E
{

g(x , u,w) + αJ∗
(
f (x , u,w)

)}
, ∀ x ∈ X

This is called Bellman’s equation
Both types of Bellman’s equation are functional equations in Jµ or J∗

They can be viewed abstractly as having the form

Jµ = TµJµ or J∗ = TJ∗

In a given DP problem it is significant when Bellman’s equation has a unique
solution. This is true if all Tµ are contraction mappings (with a common modulus).
If this is true, the problem is called contractive and otherwise noncontractive
Contractive problems are much nicer!
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Two Main Classes of Total Cost SOC Problems

Contractive Problems:
α < 1 and bounded g

Date to 50s (Bellman, Shapley)

Nicest results; key fact is the contraction property of the mapping in Bellman’s
equation

Noncontractive Problems - Stochastic Shortest Path (SSP):
Date to 60s (Eaton-Zadeh, Derman, Pallu de la Barriere)

Also known as first passage or transient programming

Aim is to reach a special termination state at min expected cost

Under favorable assumptions, the results are almost as strong as for the
discounted case (when the noncontractive policies cannot be optimal)

In general, very complex behavior is possible

Some Additional Noncontractive Problems:
Discounted problems with unbounded g

Undiscounted problems with positive and negative cost (g ≤ 0 or g ≥ 0)
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Semicontractive Problems

Intermediate Problem Types: Between Contractive and Noncontractive
Problems where some policies are “well-behaved" and some are not

“Well-behaved" has a problem-dependent meaning. The most common example
of “well-behaved" policy is one that is contractive

Pathological behaviors are due to policies that are not “well-behaved"

Our Approach
Select a class of well-behaved policies (we call them regular and define them in a
precise way later)

Define a restricted optimization problem over the regular policies only

Show that the restricted problem has nice theoretical and algorithmic properties

Relate the restricted problem to the original

Under reasonable conditions, obtain strong theoretical and algorithmic results
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Results that we Aim for in Total Cost DP Problems

Denote
H(x , u, J) = E

{
g(x , u,w) + αJ

(
f (x , u,w)

)}
J∗ satisfies Bellman’s equation

J∗(x) = inf
u∈U(x)

H(x , u, J∗), ∀ x ∈ X

and if µ∗(x) attains the min for all x , µ∗ is optimal

The value iteration (VI) method converges: Jk → J∗, where

Jk+1(x) = inf
u∈U(x)

H(x , u, Jk )

The policy iteration (PI) method converges: Jµk → J∗, where {µk} is generated by

Jµk (x) = H
(
x , µk (x), Jµk

)
, ∀ x ∈ X , (policy evaluation)

µk+1(x) ∈ arg min
u∈U(x)

H(x , u, Jµk ), ∀ x ∈ X . (policy improvement)
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Four Pathological Examples: An Overview

In all examples, we introduce a set of “well-behaved" or “regular" policies (in
shortest path problems, regular policies will be the ones that reach the termination
state in finite time).

Let
J∗(x): Optimal cost (over all policies) starting from x

Ĵ(x): Optimal cost over the regular policies only, starting from x

The Four Examples
A finite-state, finite-control deterministic shortest path problem. Here Bellman’s
equation may have multiple solutions (including J∗ and Ĵ), and VI and PI may not
converge to J∗ or to Ĵ

A finite-state, finite-control stochastic shortest path problem. Here J∗ does not
satisfy Bellman’s equation, while Ĵ does

A finite-state, infinite-control stochastic shortest path problem. Here there is no
optimal policy, and VI and PI exhibit some peculiarities

A linear-quadratic optimal control problem. Here Bellman’s equation has two
solutions, J∗ and Ĵ, and VI and PI typically converge to Ĵ
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A Deterministic Shortest Path Problem
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Sec. 3.1 Pathologies of Noncontractive DP Models 7

the most part, they are used to exclude from optimality the policies that
are not “well-behaved,” and to obtain results that are nearly as powerful
as their counterparts for the contractive models of Chapter 2.

3.1.1 Deterministic Shortest Path Problems

Let us consider the classical deterministic shortest path problem, discussed
in Example 1.2.7. Here, we have a graph of n nodes x = 1, . . . , n, plus
a destination t , and an arc length axy for each directed arc (x, y). The
objective is to find for each x a directed path that starts at x, ends at t,
and has minimum length (the length of a path is defined as the sum of the
lengths of its arcs). A standard assumption, which we will adopt here, is
that every node x is connected to the destination, i.e., there exists a path
from every x to t.

To formulate this shortest path problem as a DP problem, we embed
it within a “larger” problem, whereby we view all paths as admissible,
including those that do not terminate at t. We also view t as a cost-
free and absorbing node. Of course, we need to deal with the presence of
policies that do not terminate, and the most common way to do this is to
assume that all cycles have strictly positive length, in which case policies
that do not terminate cannot be optimal. However, it is not uncommon to
encounter shortest path problems with zero length cycles, and even negative
length cycles. We will thus not impose any assumption on the sign of the
cycle lengths, particularly since we aim to use the shortest path problem
to illustrate behavior that arises in a broader undicounted/noncontractive
DP setting.

As noted in Section 1.2, we can formulate the problem in terms of an
abstract DP model where the states are the nodes x = 1, . . . , n, and the
controls available at x can be identified with the outgoing neighbors of x
[the nodes u such that (x, u) is an arc]. The mapping H that defines the
corresponding abstract DP problem is

H(x, u, J) =

⇢
axu + J(u) if u 6= t,
axt if u = t,

x = 1, . . . , n.

A stationary policy µ defines the subgraph whose arcs are
�
x, µ(x)

�
,

x = 1, . . . , n. We say that µ is proper if this graph is acyclic, i.e., it consists
of a tree of paths leading from each node to the destination. If µ is not
proper, it is called improper . Thus there exists a proper policy if and only
if each node is connected to t with a path. Furthermore, an improper policy
has cost greater than �1 starting from every initial state if and only if all
the cycles of the corresponding subgraph have nonnegative cycle cost.

Let us now get a sense of what may happen by considering the simple
one-node example shown in Fig. 3.1.1. Here there is a single state 1 in
addition to the termination state t. At state 1 there are two choices: a

Bellman’s equation: J(1) = min
{

b, J(1)
}

. Set of solutions: All J(1) ≤ b

µ is well-behaved/regular, but µ′ is not; here Ĵ = b, J∗ = min{b, 0}

Value iteration (VI) starting from any J0(1): Jk+1(1) = min
{

b, Jk (1)
}

If b < 0: Jk (1)→ J∗(1) starting with J0(1) ≥ b (works depending on J0)

If b > 0: Jk (1)→ J∗(1) only if J0(1) = 0; starting from J0(1) ≥ b, Jk (1)→ Ĵ(1)

VI for the regular policy µ: Jµ, k (1) = b (works)

VI for the irregular policyµ′: Jµ′, k+1(1) = Jµ′, k (1) (fails)

Policy iteration (PI) starting from µ

If b < 0: Oscillates between µ and µ′. If b > 0: Converges to suboptimal µ
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A Stochastic Shortest Path Problem (from Bertsekas and Yu, 2015)

A single policy µ. The only uncertainty is at the first stage starting at state 1.
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the most part, they are used to exclude from optimality the policies that
are not “well-behaved,” and to obtain results that are nearly as powerful
as their counterparts for the contractive models of Chapter 2.

3.1.1 Deterministic Shortest Path Problems

Let us consider the classical deterministic shortest path problem, discussed
in Example 1.2.7. Here, we have a graph of n nodes x = 1, . . . , n, plus
a destination t , and an arc length axy for each directed arc (x, y). The
objective is to find for each x a directed path that starts at x, ends at t,
and has minimum length (the length of a path is defined as the sum of the
lengths of its arcs). A standard assumption, which we will adopt here, is
that every node x is connected to the destination, i.e., there exists a path
from every x to t.

To formulate this shortest path problem as a DP problem, we embed
it within a “larger” problem, whereby we view all paths as admissible,
including those that do not terminate at t. We also view t as a cost-
free and absorbing node. Of course, we need to deal with the presence of
policies that do not terminate, and the most common way to do this is to
assume that all cycles have strictly positive length, in which case policies
that do not terminate cannot be optimal. However, it is not uncommon to
encounter shortest path problems with zero length cycles, and even negative
length cycles. We will thus not impose any assumption on the sign of the
cycle lengths, particularly since we aim to use the shortest path problem
to illustrate behavior that arises in a broader undicounted/noncontractive
DP setting.

As noted in Section 1.2, we can formulate the problem in terms of an
abstract DP model where the states are the nodes x = 1, . . . , n, and the
controls available at x can be identified with the outgoing neighbors of x
[the nodes u such that (x, u) is an arc]. The mapping H that defines the
corresponding abstract DP problem is

H(x, u, J) =

⇢
axu + J(u) if u 6= t,
axt if u = t,

x = 1, . . . , n.

A stationary policy µ defines the subgraph whose arcs are
�
x, µ(x)

�
,

x = 1, . . . , n. We say that µ is proper if this graph is acyclic, i.e., it consists
of a tree of paths leading from each node to the destination. If µ is not
proper, it is called improper . Thus there exists a proper policy if and only
if each node is connected to t with a path. Furthermore, an improper policy
has cost greater than �1 starting from every initial state if and only if all
the cycles of the corresponding subgraph have nonnegative cycle cost.

Let us now get a sense of what may happen by considering the simple
one-node example shown in Fig. 3.1.1. Here there is a single state 1 in
addition to the termination state t. At state 1 there are two choices: a
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The Bellman Eq. is violated at 1: Jµ(1) 6= 1
2 Jµ(2) + 1

2 Jµ(5)

A peculiar phenomenon
Consider the deterministic optimal control problem where at state 1 we may choose
either to go to 2 or to 5 at zero cost

Then J∗(x) = 1 for all x , including J∗(1) = 1

Belman’s equation J∗(1) = min
{

J∗(2), J∗(5)
}

is satisfied

Randomization lowers the optimal cost and invalidates Bellman’s equation
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The Blackmailer’s Dilemma
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Every policy µ terminates with probability 1, and Jµ(1) = − 1
µ(1)

We have J∗(1) = −∞ and there exists no optimal policy
Bellman’s equation is

J(1) = min
0<u≤1

{
− u + (1− u2)J(1)

}
It is satisfied by J∗ = −∞ (also by J =∞)
VI converges to J∗ starting from any scalar J
In PI we have Jµk → J∗, but µk (1)→ 0 (which is not an admissible policy)

A variation of the problem: Replacing the probability u2 by u. Then J∗(1) = −1 is
a solution of Bellman’s Eq., but all J ≤ −1 are also solutions, and still there is no
optimal policy
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A Linear Quadratic Problem

System: xk+1 = γxk + uk , Cost per stage: g(x ,u) = u2

Here J∗(x) ≡ 0 and the optimal policy is µ∗(x) ≡ 0

Bellman’s equation is

J(x) = min
u∈<

{
u2 + J(γx + u)

}
, x ∈ <,

and is satisfied by J∗. Are there any other solutions?

Let γ > 1, so the system is unstable
The optimal policy yields an unstable closed-loop system

Bellman’s equation has a second solution: Ĵ(x) = (γ2 − 1)x2

Ĵ is the optimal cost function over the class of policies that stabilize the system
(these are the “well-behaved" or “regular" policies)

Both VI and PI typically converge to Ĵ (not J∗!)
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A Summary from the Examples

Bellman’s equation may have multiple solutions

Often but not always, J∗ is a solution

A restricted problem, involving “well-behaved" policies, is meaningful and plays an
important role

The appropriate set of “well-behaved" policies is problem-dependent (e.g.,
terminating in shortest path problems, or stabilizing in the linear quadratic case)

The optimal cost function over all policies, J∗, may differ from Ĵ, the optimal cost
function over the “well-behaved" policies

Ĵ is the likely limit of the VI and the PI algorithms, starting from an appropriate set
of initial conditions

In the next lecture, we will aim to:
Explain this behavior through analysis

Formalize the notion of “well-behaved" policy through a notion of regularity

Introduce the kind of assumptions under which anomalous behavior can be
avoided or mitigated

Provide results of the type that are available for contractive problems
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