
August 2013 (revised March 2015 and January 2016) Report LIDS - 2909

Stochastic Shortest Path Problems

Under Weak Conditions

Dimitri P. Bertsekas† and Huizhen Yu‡

Abstract

In this paper we consider finite-state stochastic shortest path problems, and we address some of the

complications due to the presence of transition cycles with nonpositive cost. In particular, we assume that

the optimal cost function is real-valued, that a standard compactness and continuity condition holds, and

that there exists at least one proper policy, i.e., a stationary policy that terminates with probability one.

Under these conditions, value and policy iteration may not converge to the optimal cost function, which in

turn may not satisfy Bellman’s equation. Moreover, an improper policy may be optimal and superior to

all proper policies. We propose and analyze forms of value and policy iteration for finding a policy that

is optimal within the class of proper policies. In the special case where all expected transition costs are

nonnegative we provide a transformation method and algorithms for finding a policy that is optimal over all

policies.

1. INTRODUCTION

Stochastic shortest path (SSP) problems are a major class of infinite horizon total cost Markov decision

processes (MDP) with a termination state. In this paper, we consider SSP problems with a state space

X = {t, 1, . . . , n}, where t is the termination state. The control space is denoted by U , and the set of feasible

controls at state x is denoted by U(x). From state x under control u ∈ U(x), a transition to state y occurs

with probability pxy(u) and incurs an expected one-stage cost g(x, u), which is assumed real-valued. At state

t we have ptt(u) = 1, g(t, u) = 0, for all u ∈ U(t), i.e., t is absorbing and cost-free. The goal is to reach t

with minimal total expected cost.

The principal issues here revolve around the solution of Bellman’s equation and the convergence of

the classical algorithms of value iteration (VI for short) and policy iteration (PI for short). An important

classification of stationary policies in SSP is between proper (those that guarantee eventual termination and

are of principal interest in shortest path applications) and improper (those that do not). It is well-known

that the most favorable results hold under the assumption that there exists at least one proper policy and

that each improper policy generates infinite cost starting from at least one initial state. Then, assuming also

a finiteness or compactness condition on U , and a continuity condition on pxy(·) and g(x, ·), the optimal cost

function J* is the unique solution of Bellman’s equation, and appropriate forms of VI and PI yield J* and

an optimal policy that is proper [BeT91].

† Dimitri Bertsekas is with the Dept. of Electr. Engineering and Comp. Science, and the Laboratory for Infor-

mation and Decision Systems, M.I.T., Cambridge, Mass., 02139.

‡ Huizhen Yu is with the Dept. of Computing Science, University of Alberta, Edmonton, Canada, and has been

supported by a grant from Alberta Innovates – Technology Futures.

1



In this paper, we will consider the SSP problem under weaker assumptions, where the preceding

favorable results cannot be expected to hold. In particular, we will replace the infinite cost assumption for

improper policies with the condition that J* is real-valued. Under our assumptions, J* need not be a solution

of Bellman’s equation, and even when it is, it may not be obtained by VI starting from any initial condition

other than J* itself, while the standard form of PI may not be convergent. We will show instead that Ĵ ,

which is the optimal cost function over proper policies only, is the unique solution of Bellman’s equation

within the class of functions J ≥ Ĵ . Moreover VI converges to Ĵ from any initial condition J ≥ Ĵ , while

a form of PI yields a sequence of proper policies that asymptotically attains the optimal value Ĵ . Our line

of analysis relies on a perturbation argument, which induces a more effective discrimination between proper

and improper policies in terms of finiteness of their cost functions. This argument depends critically on the

assumption that J* is real-valued.

In what follows in this section we will introduce our notation, terminology, and assumptions, and we

will explain the nature of our analysis and its relation to the existing literature. In Section 2, we will prove

our main results. In Section 3, we will consider the important special case where g(x, u) ≥ 0 for all (x, u),

and show how we can effectively overcome the pathological behaviors we described. In particular, we will

show how we can transform the problem to an equivalent favorably structured problem, for which J* is the

unique solution of Bellman’s equation and is equal to Ĵ , while powerful VI and PI convergence results hold.

1.1. Notation and Terminology

We first introduce definitions of various types of policies and cost functions. By a nonstationary policy we

mean a sequence of the form π = {µ0, µ1, . . .}, where each function µk, k = 0, 1, . . ., maps each state x to a

control in U(x). We define the total cost of a nonstationary policy π for initial state x to be

Jπ(x) = lim sup
N→∞

Jπ,N (x) (1.1)

with Jπ,N (x) being the expected N -stage cost of π for state x:

Jπ,N (x) = E

[
N−1∑

k=0

g
(
xk, µk(xk)

) ∣∣∣ x0 = x

]
,

where xk denotes the state at time k. The expectation above is with respect to the probability law of

{x0, . . . , xN−1} induced by π; this is the probability law for the (nonstationary) finite-state Markov chain

that has transition probabilities P (xk+1 = y | xk = x) = pxy
(
µk(x)

)
. The use of lim sup in the definition

of Jπ is necessary because the limit of Jπ,N (x) as N → ∞ may not exist. However, the statements of our

results, our analysis, and our algorithms are also valid if lim sup is replaced by lim inf. The optimal cost at

state x, denoted J*(x), is the infimum of Jπ(x) over π. Note that in general there may exist states x such

that Jπ(x) =∞ or Jπ(x) = −∞ for some policies π, as well as J*(x) =∞ or J*(x) = −∞.

Regarding notation, we denote by < the set of real numbers, and by E the set of extended real numbers:

E = < ∪ {∞,−∞}. Vector inequalities of the form J ≤ J ′ are to be interpreted componentwise, i.e.,

J(x) ≤ J ′(x) for all x. Similarly, limits of function sequences are to be interpreted pointwise. Since

Jπ(t) = 0 for all π and J*(t) = 0, we will ignore in various expressions the component J(t) of a cost function.

Thus the various cost functions arising in our development are of the form J =
(
J(1), . . . , J(n)

)
, and they

will be viewed as elements of the space En, the set of n dimensional vectors whose entries are either real

numbers or −∞ or +∞, or of the space <n if their components are real. In Section 3, where we will focus

2



on vectors with nonnegative components, J will belong to the nonnegative orthant of <n, denoted <n+, or

the nonnegative orthant of En, denoted En+.

If π = {µ0, µ1, . . .} is a stationary policy, i.e., all µk are equal to some µ, then π and Jπ are also denoted

by µ and Jµ, respectively. The set of all stationary policies is denoted by M. In this paper, we will aim to

find optimal policies exclusively within M, so in the absence of a statement to the contrary, by “policy” we

will mean a stationary policy.

We say that µ ∈ M is proper if when using µ, there is positive probability that the termination state

t will be reached after at most n stages, regardless of the initial state; i.e., if

ρµ = max
x=1,...,n

P{xn 6= t | x0 = x, µ} < 1.

Otherwise, we say that µ is improper . It can be seen that µ is proper if and only if in the Markov chain

corresponding to µ, each state x is connected to the termination state with a path of positive probability

transitions, i.e., the only recurrent state is t and all other states are transient.

Let us introduce some notation relating to the mappings that arise in optimality conditions and algo-

rithms. We consider the mapping H : {1, . . . , n} × U × En 7→ E defined by

H(x, u, J) = g(x, u) +

n∑

y=1

pxy(u)J(y), x = 1, . . . , n, u ∈ U(x), J ∈ En.

For vectors J ∈ En with components that take the values ∞ and −∞, we adopt the rule ∞−∞ = ∞ in

the above definition of H. However, the sum ∞−∞ never appears in our analysis. We also consider the

mappings Tµ, µ ∈M, and T defined by

(TµJ)(x) = H
(
x, µ(x), J

)
, (TJ)(x) = inf

u∈U(x)
H(x, u, J), x = 1, . . . , n, J ∈ En.

We will frequently use the monotonicity property of Tµ and T , i.e.,

J ≤ J ′ ⇒ TµJ ≤ TµJ ′, TJ ≤ TJ ′.

The fixed point equations J* = TJ* and Jµ = TµJµ are referred to as Bellman’s equations for the optimal

cost function and for the cost function of µ, respectively. They are generally expected to hold in MDP

models. We will see, however, in Section 2.3 that this is not the case if µ is improper and g(x, u) can take

both positive and negative values.

1.2. Background and Motivation

The SSP problem has been discussed in many sources, including the books [Pal67], [Der70], [Whi82], [Ber87],

[BeT89], [Alt99], [HeL99], and [Ber12a], where it is sometimes referred to by other names such as “first

passage problem” and “transient programming problem.” We may also view the SSP problem as a special

case of undiscounted total cost MDP; see e.g., [Sch75], [van76], [Put94] (Section 7.2), [Fei02], [DuP13],

[Yu14] for analyses of these MDP under various model conditions. One difference, however, is that these

total cost MDP models typically require each policy to have finite expected total cost with respect to either

the positive or the negative part of the cost function, and this excludes certain shortest path problems with

zero-length cycles. Our SSP problem formulation does not require this condition on policy costs; indeed it

3



was motivated originally as an extension of the deterministic shortest path problem, where zero-length cycles

are often present.

We will now summarize the current SSP methodology, and the approaches and contributions of this

paper. We first note that for any policy µ, the matrix that has components pxy
(
µ(x)

)
, x, y = 1, . . . , n, is

substochastic (some of its row sums may be less than 1) because there may be positive transition probability

from x to t. Consequently Tµ may be a contraction for some µ, but not necessarily for all µ ∈ M. For a

proper policy µ, Tµ is a contraction with respect to some weighted sup-norm ‖ · ‖v, defined for some vector

v ∈ <n with positive components v(i), i = 1, . . . , n, by

‖J‖v = max
i=1,...,n

∣∣J(i)
∣∣

v(i)
, J ∈ <n,

(see e.g., [Ber12a], Section 3.3). It follows that Jµ = limk→∞ T kµJ for all J ∈ <n [this is because Jµ is

the unique fixed point of Tµ within <n, and by definition Jµ = limk→∞ T kµJ0, where J0 is the zero vector,

J0(x) ≡ 0]. For an improper policy µ, Tµ is not a contraction with respect to any norm. Moreover, T also

need not be a contraction with respect to any norm. However, T is a weighted sup-norm contraction in

the important special case where the control space is finite and all policies are proper. This was shown in

[BeT96], Prop. 2.2 (see also [Ber12a], Prop. 3.3.1).

To deal with the lack of contraction property of T , various assumptions have been formulated in the

literature, under which results similar to the case of discounted finite-state MDP have been shown for SSP

problems. These assumptions typically include the following condition, or the stronger version whereby U(x)

is a finite set for all x. An important consequence of this condition is that the infimum of H(x, ·, J) over

U(x) is attained for all J ∈ <n, i.e., there exists µ ∈M such that TµJ = TJ . However, the assumption does

not guarantee the existence of an optimal policy, as shown by Example 6.7 of the total cost MDP survey

[Fei02], which is attributed to [CFM00]. This will also be seen in a very similar example, given in Section

2.2 in the context of a pathology relating to PI.

Compactness and Continuity Condition: The control space U is a metric space. Moreover, for

each state x, the set U(x) is a compact subset of U , the functions pxy(·), y = 1, . . . , n, are continuous

over U(x), and the function g(x, ·) is lower semicontinuous over U(x).

In this paper we will generally assume the compactness and continuity condition, since serious anomalies

may occur without it. An example is the classical blackmailer’s problem (see [Ber12a], Example 3.2.1), where

X = {t, 1}, U(1) = (0, 1], g(1, u) = −u, p11(u) = 1− u2, H(1, u, J) = −u+ (1− u2)J(1).

Here every stationary policy µ is proper and Tµ is a contraction, but T is not a contraction, there is no

optimal stationary policy, while the optimal cost J*(1) (which is −∞) is attained by a nonstationary policy.

A popular set of assumptions that we will aim to generalize, is the following.

Classical SSP Conditions:

(a) The compactness and continuity condition holds.

(b) There exists at least one proper policy.

(c) For every improper policy there is an initial state that has infinite cost under this policy.

4



a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b Destination

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 0 1 2 t b c Destination

Prob. u Prob. 1 − u Cost 1 Cost 1 −√
u

J(1) = min
�
c, a + J(2)

�

J(2) = b + J(1)

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 t b c Destination

Prob. u Prob. 1 − u Cost 1 Cost 1 −√
u

J(1) = min
�
c, a + J(2)

�

J(2) = b + J(1)

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

Figure 1.1. A deterministic shortest path problem with a single node 1 and a termination node t. At 1 there are

two choices; a self-transition, which costs a, and a transition to t, which costs b.

Under the classical SSP conditions, it has been shown that J* is the unique fixed point of T within

<n. Moreover, a policy µ∗ is optimal if and only if Tµ∗J* = TJ*, and an optimal proper policy exists (so in

particular J*, being the cost function of a proper policy, is real-valued). In addition, J* can be computed

by VI, J* = limk→∞ T kJ, starting with any J ∈ <n. These results were given in [BeT91], following related

results in several other works [Pal67], [Der70], [Whi82], [Ber87] (see [BeT91] for detailed references). An

alternative assumption is that g(x, u) ≥ 0 for all (x, u), and that there exists a proper policy that is optimal.

Our results bear some similarity to those obtained under this assumption (see [BeT91]), but are considerably

stronger; see the comment preceding Prop. 2.3.

The standard form of PI generates a sequence {µk} according to

Tµk+1Jµk = TJµk ,

starting from some initial policy µ0. It works in its strongest form when there are no improper policies.

When there are improper policies and the classical SSP conditions hold, the initial policy should be proper

(in which case subsequently generated policies are guaranteed to be proper). Otherwise, modifications to PI

are needed, which allow it to work with improper initial policies, and also in the presence of approximate

policy evaluation and asynchronism. Several types of modifications have been proposed, including a mixed

VI and PI algorithm where policy evaluation is done through the use of an optimal stopping problem [BeY12],

[YuB13a] (see the summary in [Ber12a], Section 3.5.3, for a discussion of this and other methods).

An important special case, with extensive literature and applications, is the deterministic shortest path

problem, where for all (x, u), pxy(u) is equal to 1 for a single state y. Part (b) of the classical SSP conditions

is equivalent to the existence of a proper policy, while part (c) is equivalent to all cycles of the graph of

probability 1 transitions have positive length.

Many algorithms, including value iteration (VI for short) and policy iteration (PI for short), can be

used to find a shortest path from every x to t. However, if there are cycles of zero length, difficulties arise:

the optimality equation can have multiple solutions, while VI and PI may break down, even in very simple

problems. These difficulties are illustrated by the following example, and motivate the analysis of this paper.

Example 1.1 (Deterministic Shortest Path Problem)

Here there is a single state 1 in addition to the termination state t (cf. Fig. 1.1). At state 1 there are two

choices: a self-transition which costs a and a transition to t, which costs b. The mapping H has the form

H(1, u, J) =

{
a+ J if u: self transition,

b if u: transition to t,
J ∈ <,

and the mapping T has the form

TJ = min{a+ J, b}, J ∈ <.

5



There are two policies: the policy that self-transitions at state 1, which is improper, and the policy that

transitions from 1 to t, which is proper. When a < 0 the improper policy is optimal and we have J∗(1) = −∞.

The optimal cost is finite if a > 0 or a = 0, in which case the cycle has positive or zero length, respectively.

Note the following:

(a) If a > 0, the classical SSP conditions are satisfied, and the optimal cost, J∗(1) = b, is the unique fixed

point of T .

(b) If a = 0 and b ≥ 0, the set of fixed points of T (which has the form TJ = min{J, b}), is the interval

(−∞, b]. Here the improper policy is optimal for all b ≥ 0, and the proper policy is also optimal if b = 0.

(c) If a = 0 and b > 0, the proper policy is strictly suboptimal, yet its cost at state 1 (which is b) is a fixed

point of T . The optimal cost, J∗(1) = 0, lies in the interior of the set of fixed points of T , which is (−∞, b].
Thus the VI method that generates {T kJ} starting with J 6= J∗ cannot find J∗; in particular if J is a fixed

point of T , VI stops at J , while if J is not a fixed point of T (i.e., J > b), VI terminates in two iterations at

b 6= J∗(1). Moreover, the standard PI method is unreliable in the sense that starting with the suboptimal

proper policy µ, it may stop with that policy because (TµJµ)(1) = b = min
{
Jµ(1), b

}
= (TJµ)(1) [the

other/optimal policy µ∗ also satisfies (Tµ∗Jµ)(1) = (TJµ)(1), so a rule for breaking the tie in favor of µ∗

is needed but such a rule may not be obvious in general].

(d) If a = 0 and b < 0, only the proper policy is optimal, and we have J∗(1) = b. Here it can be seen that

the VI sequence {T kJ} converges to J∗(1) for all J ≥ b, but stops at J for all J < b, since the set of

fixed points of T is (−∞, b]. Moreover, starting with either the proper policy µ∗ or the improper policy

µ, the standard form of PI may oscillate, since (Tµ∗Jµ)(1) = (TJµ)(1) and (TµJµ∗)(1) = (TJµ∗)(1), as

can be easily verified [the optimal policy µ∗ also satisfies (Tµ∗Jµ∗)(1) = (TJµ∗)(1) but it is not clear how

to break the tie; compare also with case (c) above].

As we have seen in case (c), VI may fail starting from J 6= J∗. Actually in cases (b)-(d) the one-

stage costs are either all nonnegative or nonpositive, so they belong to the classes of negative and positive

DP models, respectively. From known results for such models, there is an initial condition, namely J =

0, starting from which VI converges to J∗. However, this is not necessarily the best initial condition; for

example in deterministic shortest path problems initial conditions J ≥ J∗ are generally preferred and result

in polynomial complexity computation assuming that all cycles have positive length. By contrast VI has only

pseudopolynomial complexity when started from J = 0. We will also see in the next section, that if there are

both positive and negative one-stage costs and the problem is nondeterministic, it may happen that J∗ is not

a fixed point of T , so it cannot be obtained by VI or PI.

To address the distinction between the optimal cost J*(x) and the optimal cost that may be achieved

starting from x and using a proper policy [cf. case (c) of the preceding example], we introduce the optimal

cost function over proper policies:

Ĵ(x) = inf
µ: proper

Jµ(x), x ∈ X. (1.2)

Aside from its potential practical significance, the function Ĵ plays a key role in the analysis of this paper,

because when Ĵ 6= J*, our VI and PI algorithms of Section 2 can only obtain Ĵ , and not J*.

In Section 2, we weaken part (c) of the classical SSP conditions, by assuming that J* is real-valued

instead of requiring that each improper policy has infinite cost from some initial states. We show that Ĵ is

the unique fixed point of T within the set {J | J ≥ Ĵ}, and can be computed by VI starting from any J

within that set. In the two special cases where either there exists a proper policy µ∗ that is optimal, i.e.,

J* = Jµ∗ , or the cost function g is nonpositive, we show that J* is the unique fixed point of T within the set

6



{J | J ≥ J*}, and the VI algorithm converges to J* when started within this set. We provide an example

showing that J* may not be a fixed point of T if g can take both positive and negative values, and the SSP

problem is nondeterministic.

The idea of the analysis is to introduce an additive perturbation δ > 0 to the cost of each transition.

Since J* is real-valued, the cost function of each improper policy becomes infinite for some states, thereby

bringing to bear the classical SSP conditions for the perturbed problem, while the cost function of each

proper policy changes by an O(δ) amount. We will also propose a valid version of PI that is based on this

perturbation idea and converges to Ĵ , as a replacement of the standard form of PI, which may oscillate as

we have seen in Example 1.1.

Since the VI and PI algorithms aim to converge to Ĵ , they cannot be used to compute J* and an optimal

policy in general. In Section 3 we resolve this issue for the case where, in addition to the compactness and

continuity condition, all transition costs are nonnegative: g(x, u) ≥ 0 for all x and u ∈ U(x) (the negative

DP model). Under these conditions the classical forms of VI and PI may again fail, as demonstrated by cases

(c) and (d) of Example 1.1. However, we will provide a transformation to an “equivalent” SSP problem for

which the classical SSP conditions hold. Following this transformation, we may use the corresponding VI,

which converges to J* starting from any J ∈ <n.

2. FINITE OPTIMAL COST CASE - A PERTURBATION APPROACH

In this section we allow the one-stage costs to be both positive and negative, but assume that J* is real-

valued and that there exists at least one proper policy. As a result, by adding a positive perturbation δ to g,

we are guaranteed to drive to ∞ the cost Jµ(x) of each improper policy µ, for at least one state x, thereby

differentiating proper and improper policies.

We thus consider for each scalar δ > 0 an SSP problem, referred to as the δ-perturbed problem, which

is identical to the original problem, except that the cost per stage is

gδ(x, u) =

{
g(x, u) + δ if x = 1, . . . , n,

0 if x = t,

and the corresponding mappings Tµ,δ and Tδ are given by

Tµ,δJ = TµJ + δe, TδJ = TJ + δe, ∀ J ∈ <n,

where e is the unit function [e(x) ≡ 1]. This problem has the same proper and improper policies as the

original. The corresponding cost function of a policy π = {µ0, µ1, . . .} ∈ Π is given by

Jπ,δ(x) = lim sup
N→∞

Jπ,δ,N (x),

with

Jπ,δ,N (x) = E

[
N−1∑

k=0

gδ
(
xk, µk(xk)

) ∣∣∣ x0 = x

]
.

We denote by Jµ,δ the cost function of a stationary policy µ for the δ-perturbed problem, and by J*
δ the

corresponding optimal cost function,

J*
δ = inf

π∈Π
Jπ,δ.

7



Note that for every proper policy µ, the function Jµ,δ is real-valued, and that

lim
δ↓0

Jµ,δ = Jµ.

This is because for a proper policy, the extra δ cost per stage will be incurred only a finite expected number

of times prior to termination, starting from any state. This is not so for improper policies, and in fact the

idea behind perturbations is that the addition of δ to the cost per stage in conjunction with the assumption

that J* is real-valued imply that if µ is improper,

Jµ,δ(x) = lim
k→∞

(T kµ,δJ)(x) =∞ for all x 6= t that are recurrent under µ and all J ∈ <n. (2.1)

Thus part (c) of the classical SSP conditions holds for the δ-perturbed problem, and the associated strong

results noted in Section 1 come into play. In particular, we have the following proposition.

Proposition 2.1: Assume that the compactness and continuity condition holds, that there exists

at least one proper policy, and that J* is real-valued. Then for each δ > 0:

(a) J*
δ is the unique solution of the equation

J(x) = (TJ)(x) + δ, x = 1, . . . , n.

(b) A policy µ is optimal for the δ-perturbed problem (Jµ,δ = J*
δ ) if and only if TµJ*

δ = TJ*
δ .

Moreover, all optimal policies for the δ-perturbed problem are proper and there exists at least

one such policy.

(c) The optimal cost function over proper policies Ĵ [cf. Eq. (1.2)] satisfies

Ĵ(x) = lim
δ↓0

J∗δ (x), x = 1, . . . , n.

(d) If the control constraint set U(i) is finite for all states i = 1, . . . , n, there exists a proper policy

µ̂ that attains the minimum over all proper policies, i.e., Jµ̂ = Ĵ .

Proof: (a), (b) These parts follow from the discussion preceding the proposition, and the results of [BeT91]

noted in the introduction, which hold under the classical SSP conditions [the equation of part (a) is Bellman’s

equation for the δ-perturbed problem].

(c) We note that for an optimal proper policy µ∗δ of the δ-perturbed problem [cf. part (b)], we have

Ĵ = inf
µ: proper

Jµ ≤ Jµ∗
δ
≤ Jµ∗

δ
,δ = J*

δ ≤ Jµ′,δ, ∀ µ′ : proper.

Since for every proper policy µ′, we have limδ↓0 Jµ′,δ = Jµ′ , it follows that

Ĵ ≤ lim
δ↓0

Jµ∗
δ
≤ Jµ′ , ∀ µ′ : proper.

8



By taking the infimum over all µ′ that are proper, the result follows.

(d) Let {δk} be a positive sequence with δk ↓ 0, and consider a corresponding sequence {µk} of optimal

proper policies for the δk-perturbed problems. Since the set of proper policies is finite, some policy µ̂ will be

repeated infinitely often within the sequence {µk}, and since {J*
δk
} is monotonically nonincreasing, we will

have

Ĵ ≤ Jµ̂ ≤ J*
δk
,

for all k sufficiently large. Since by part (c), J*
δk
↓ Ĵ , it follows that Jµ̂ = Ĵ . Q.E.D.

Note that the finiteness of U(i) is an essential assumption for the existence result of part (d) of the

preceding proposition. In particular, the result may not be true under the more general compactness and

continuity condition, even if Ĵ = J* (see the subsequent Example 2.1).

2.1. Convergence of Value Iteration

The preceding perturbation-based analysis, can be used to investigate properties of Ĵ by using properties of

J*
δ and taking limit as δ ↓ 0. In particular, we use the preceding proposition to show that Ĵ is a fixed point

of T , and can be obtained by VI starting from any J ≥ Ĵ .

Proposition 2.2: Assume that the compactness and continuity condition holds, that there exists

at least one proper policy, and that J* is real-valued. Then:

(a) The optimal cost function over proper policies Ĵ is the unique fixed point of T within the set

{J ∈ <n | J ≥ Ĵ}.

(b) We have T kJ → Ĵ for every J ∈ <n with J ≥ Ĵ .

(c) Let µ be a proper policy. Then µ is optimal within the class of proper policies (i.e., Jµ = Ĵ) if

and only if TµĴ = T Ĵ .

Proof: (a), (b) For all proper µ, we have Jµ = TµJµ ≥ TµĴ ≥ T Ĵ. Taking infimum over proper µ, we

obtain Ĵ ≥ T Ĵ . Conversely, for all δ > 0 and µ ∈M, we have

J*
δ = TJ*

δ + δe ≤ TµJ*
δ + δe.

Taking limit as δ ↓ 0, and using Prop. 2.1(c), we obtain Ĵ ≤ TµĴ for all µ ∈ M. Taking infimum over

µ ∈M, it follows that Ĵ ≤ T Ĵ . Thus Ĵ is a fixed point of T .

For all J ∈ <n with J ≥ Ĵ and proper policies µ, we have by using the relation Ĵ = T Ĵ just shown,

Ĵ = lim
k→∞

T kĴ ≤ lim
k→∞

T kJ ≤ lim
k→∞

T kµJ = Jµ.

Taking the infimum over all proper µ, we obtain

Ĵ ≤ lim
k→∞

T kJ ≤ Ĵ , ∀ J ≥ Ĵ .

9



This proves part (b) and also the claimed uniqueness property of Ĵ in part (a).

(c) If µ is a proper policy with Jµ = Ĵ , we have Ĵ = Jµ = TµJµ = TµĴ , so, using also the relation Ĵ = T Ĵ

[cf. part (a)], we obtain TµĴ = T Ĵ . Conversely, if µ satisfies TµĴ = T Ĵ , then from part (a), we have TµĴ = Ĵ

and hence limk→∞ T kµ Ĵ = Ĵ . Since µ is proper, we have Jµ = limk→∞ T kµ Ĵ , so Jµ = Ĵ . Q.E.D.

Note that if there exists a proper policy but J* is not real-valued, the mapping T cannot have any real-

valued fixed point. To see this, let J̃ be such a fixed point, and let ε be a scalar such that J̃ ≤ J0+εe, where J0

is the zero vector. Since T (J0+εe) ≤ TJ0+εe, it follows that J̃ = TN J̃ ≤ TN (J0+εe) ≤ TNJ0+εe ≤ Jπ,N+εe

for any N and policy π. Taking lim sup with respect to N and then infimum over π, it follows that J̃ ≤ J*+εe.

Since J* cannot take the value∞ (by the existence of a proper policy), this shows that J* must be real-valued.

Note also that there may exist an improper policy µ that is strictly suboptimal and yet satisfies the

optimality condition TµJ* = TJ* [cf. case (d) of Example 1.1], so properness of µ is an essential assumption

in Prop. 2.2(c). It is also possible that Ĵ = J*, but the only optimal policy is improper, as we will show by

example in the next section (see Example 2.1).

The following proposition shows that starting from any J ≥ Ĵ , the convergence rate of VI to Ĵ is linear,

and provides a corresponding error bound. The proposition assumes that there exists a proper policy that

attains the optimal value Ĵ . By Prop. 2.1(d), this is true if the control constraint set U(i) is finite for all

states i = 1, . . . , n.

Proposition 2.3: (Convergence Rate of VI) Assume that the compactness and continuity

condition holds and that J* is real-valued. Assume further that there exists a proper policy µ̂ that is

optimal within the class of proper policies, i.e., Jµ̂ = Ĵ . Then

∥∥TJ − Ĵ‖v ≤ β‖J − Ĵ‖v, ∀ J ≥ Ĵ , (2.2)

where ‖·‖v is a weighted sup-norm with respect to which Tµ̂ is a contraction and β is the corresponding

modulus of contraction. Moreover we have

‖J − Ĵ‖v ≤
1

1− β max
i=1,...,n

J(i)− (TJ)(i)

v(i)
, ∀ J ≥ Ĵ . (2.3)

Proof: By using the optimality of µ̂ and Prop. 2.2, we have Tµ̂Ĵ = T Ĵ = Ĵ , so for all states i and J ≥ Ĵ ,

(TJ)(i)− Ĵ(i)

v(i)
≤ (Tµ̂J)(i)− (Tµ̂Ĵ)(i)

v(i)
≤ β max

i=1,...,n

J(i)− Ĵ(i)

v(i)
.

By taking the maximum of the left-hand side over i, and by using the fact that the inequality J ≥ Ĵ implies

that TJ ≥ T Ĵ = Ĵ , we obtain Eq. (2.2).

10



By using again the relation Tµ̂Ĵ = Ĵ , we have for all states i and all J ≥ Ĵ ,

J(i)− Ĵ(i)

v(i)
=
J(i)− (TJ)(i)

v(i)
+

(TJ)(i)− Ĵ(i)

v(i)

≤ J(i)− (TJ)(i)

v(i)
+

(Tµ̂J)(i)− (Tµ̂Ĵ)(i)

v(i)

≤ J(i)− (TJ)(i)

v(i)
+ β‖J − Ĵ‖v.

By taking the maximum of both sides over i, we obtain Eq. (2.3). Q.E.D.

If there exists an optimal proper policy, i.e., a proper policy µ∗ such that Jµ∗ = Ĵ = J*, we obtain

the following proposition, which is new. The closest earlier result assumes in addition that g(x, u) ≥ 0 for

all (x, u) (see [BeT91], Prop. 3). Existence of an optimal proper policy is guaranteed if somehow it can be

shown that Ĵ = J* and U(i) is finite for all i [cf. Prop. 2.1(d)].

Proposition 2.4: Assume that the compactness and continuity condition holds, and that there

exists an optimal proper policy. Then:

(a) The optimal cost function J* is the unique fixed point of T in the set {J ∈ <n | J ≥ J*}.

(b) We have T kJ → J* for every J ∈ <n with J ≥ J*.

(c) Let µ be a proper policy. Then µ is optimal if and only if TµJ* = TJ*.

Proof: Existence of a proper policy that is optimal implies both that J* is real-valued and that J* = Ĵ .

The result then follows from Prop. 2.2. Q.E.D.

Another important special case where favorable results hold is when g(x, u) ≤ 0 for all (x, u). Then, it

is well-known that J* is the unique fixed point of T within the set {J | J* ≤ J ≤ 0}, and the VI sequence

{T kJ} converges to J* starting from any J within that set (see e.g., [Ber12a], Ch. 4, or [Put94], Section 7.2).

In the following proposition, we will use Prop. 2.2 to obtain related results for SSP problems where g may

take both positive and negative values. An example is an optimal stopping problem, where at each state

x we have cost g(x, u) ≥ 0 for all u except one that leads to the termination state t with nonpositive cost.

Classical problems of this type include searching among several sites for a valuable object, with nonnegative

search costs and nonpositive stopping costs (stopping the search at every site is a proper policy guaranteeing

that Ĵ ≤ 0).

Proposition 2.5: Assume that the compactness and continuity condition holds, that Ĵ ≤ 0, and

that J* is real-valued. Then J* is equal to Ĵ and it is the unique fixed point of T within the set

{J ∈ <n | J ≥ J*}. Moreover, we have T kJ → J* for every J ∈ <n with J ≥ J*.

Proof: We first observe that the hypothesis Ĵ ≤ 0 implies that there exists at least one proper policy, so

Prop. 2.2 applies, and shows that Ĵ is the unique fixed point of T within the set {J ∈ <n | J ≥ Ĵ} and that

11



T kJ → Ĵ for all J ∈ <n with J ≥ Ĵ . We will prove the result by showing that Ĵ = J*. Since generically we

have Ĵ ≥ J*, it will suffice to show the reverse inequality.

Let J0 denote the zero function. Since Ĵ is a fixed point of T and Ĵ ≤ J0, we have

Ĵ = lim
k→∞

T kĴ ≤ lim sup
k→∞

T kJ0. (2.4)

Also, for each policy π = {µ0, µ1, . . .}, we have

Jπ = lim sup
k→∞

Tµ0 · · ·Tµk−1J0.

Since

T kJ0 ≤ Tµ0 · · ·Tµk−1J0, ∀ k ≥ 0,

it follows that lim supk→∞ T kJ0 ≤ Jπ, so by taking the infimum over π, we have

lim sup
k→∞

T kJ0 ≤ J*. (2.5)

Combining Eqs. (2.4) and (2.5), it follows that Ĵ ≤ J*, so that Ĵ = J*. Q.E.D.

The assumption Ĵ ≤ 0 of the preceding proposition will be satisfied if we can find a proper policy µ

such that Jµ ≤ 0. With this in mind, we note that the proposition applies to MDP where the compactness

and continuity condition holds, and J* is real-valued and satisfies J* ≤ 0, even if there is no termination

state. We can simply introduce an artificial termination state t, and for each x = 1, . . . , n, a control of cost

0 that leads from x to t, thereby creating a proper policy µ with Jµ = 0, without affecting J*. What is

happening here is that for the subset of states x for which J*(x) is maximum we must have J*(x) = 0, so

this subset plays the role of a termination state. Without the assumption Ĵ ≤ 0, we may have J* 6= Ĵ even

if J* ≤ 0, as case (c) of Example 1.1 shows.

In all of the preceding results, there is the question of finding J ≥ Ĵ with which to start VI. One

possibility that may work is to use the cost function of a proper policy or an upper bound thereof. For

example in a stopping problem we may use the cost function of the policy that stops at every state. More

generally we may try to introduce an artificial high stopping cost, which is our approach in Section 3. If

it can be guaranteed that Ĵ = J*, this approach will also yield J*. For example, when g ≤ 0, we may use

J = 0 to start VI, as is well known. In the case where the classical SSP conditions hold, we may of course

start VI with any J ∈ <n, and it is generally recommended to use an upper bound to J* rather than a lower

bound, as noted earlier. In the case of the general convergence model, a method provided in [Fei02], p. 189,

may be used to find an upper bound to J*.

We finally note that once the optimal cost function over proper policies Ĵ is found by VI, there may

still be an issue of finding a proper policy that attains Ĵ (see the discussion following Prop. 2.5). When

Ĵ = J*, a polynomial complexity algorithm for this is given in [FeY08]. The PI algorithm of the next section

can also be used for this purpose, even if Ĵ 6= J*, although its complexity properties are unknown at present.

2.2. A Policy Iteration Algorithm with Perturbations

We will now use our perturbation framework to deal with the oscillatory behavior of PI, which is illustrated

in case (d) of Example 1.1. We will develop a perturbed version of the PI algorithm that generates a sequence

12



of proper policies {µk} such that Jµk → Ĵ , under the assumptions of Prop. 2.2, which include the existence

of a proper policy and that J* is real-valued. The algorithm generates the sequence {µk} as follows.

Let {δk} be a positive sequence with δk ↓ 0, and let µ0 be any proper policy. At iteration k, we have a

proper policy µk, and we generate µk+1 according to

Tµk+1Jµk,δk = TJµk,δk . (2.6)

Note that since µk is proper, Jµk,δk is the unique fixed point of the mapping Tµk,δk given by

Tµk,δkJ = TµkJ + δke.

The policy µk+1 of Eq. (2.6) exists by the compactness and continuity condition. We claim that µk+1 is

proper. To see this, note that

Tµk+1,δk
Jµk,δk = TJµk,δk + δk e ≤ TµkJµk,δk + δk e = Jµk,δk ,

so that

Tm
µk+1,δk

Jµk,δk ≤ Tµk+1,δk
Jµk,δk = TJµk,δk + δk e ≤ Jµk,δk , ∀ m ≥ 1. (2.7)

Since Jµk,δk forms an upper bound to Tm
µk+1,δk

Jµk,δk , it follows that µk+1 is proper [if it were improper,

we would have (Tm
µk+1,δk

Jµk,δk)(x) → ∞ for some x; cf. Eq. (2.1)]. Thus the sequence {µk} generated

by the perturbed PI algorithm (2.6) is well-defined and consists of proper policies. We have the following

proposition.

Proposition 2.6: Assume that the compactness and continuity condition holds, that there exists

at least one proper policy, and that J* is real-valued. Then the sequence {Jµk} generated by the

perturbed PI algorithm (2.6) satisfies Jµk → Ĵ .

Proof: Using Eq. (2.7), we have

Jµk+1,δk+1
≤ Jµk+1,δk

= lim
m→∞

Tm
µk+1,δk

Jµk,δk ≤ TJµk,δk + δk e ≤ Jµk,δk ,

where the equality holds because µk+1 is proper, as shown earlier. Taking the limit as k → ∞, and noting

that Jµk+1,δk+1
≥ Ĵ , we see that Jµk,δk ↓ J+ for some J+ ≥ Ĵ , and we obtain

Ĵ ≤ J+ = lim
k→∞

TJµk,δk . (2.8)

We also have

inf
u∈U(x)

H(x, u, J+) ≤ lim
k→∞

inf
u∈U(x)

H(x, u, Jµk,δk) ≤ inf
u∈U(x)

lim
k→∞

H(x, u, Jµk,δk)

= inf
u∈U(x)

H(x, u, lim
k→∞

Jµk,δk) = inf
u∈U(x)

H(x, u, J+),

where the first inequality follows from the fact J+ ≤ Jµk,δk , which implies that H(x, u, J+) ≤ H(x, u, Jµk,δk),

and the first equality follows from the continuity of H(x, u, ·). Thus equality holds throughout above, so

that

lim
k→∞

TJµk,δk = TJ+. (2.9)

13



a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b Destination

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 0 1 2 t b c Destination

J(1) = min
�
c, a + J(2)

�

J(2) = b + J(1)

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

1

a 0 1 2 t b c Destination

Prob. u Prob. 1 − u Cost 1 Cost 1 −√
u

J(1) = min
�
c, a + J(2)

�

J(2) = b + J(1)

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 t b c Destination

Prob.
√

u Prob. 1 − √
u Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 t b c Destination

Prob.
√

u Prob. 1 − √
u Cost u Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 t b c Destination

Prob.
√

u Prob. 1 − √
u Cost u Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 t b c Destination

Prob.
√

u Prob. 1 − √
u Cost u Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

Figure 2.1. A stochastic shortest path problem with two states 1, 2, and a termination state t. Here we have

Ĵ = J∗, but there is no optimal policy. Any sequence of proper policies {µk} with µk(1) → 0 is asymptotically

optimal in the sense that Jµk → J∗, yet {µk} converges to the strictly suboptimal improper policy for which u = 0

at state 1.

Combining Eqs. (2.8) and (2.9), we obtain Ĵ ≤ J+ = TJ+. Since by Prop. 2.2, Ĵ is the unique fixed point

of T within {J ∈ <n | J ≥ Ĵ}, it follows that J+ = Ĵ . Thus Jµk,δk ↓ Ĵ , and since Jµk,δk ≥ Jµk ≥ Ĵ , we have

Jµk → Ĵ . Q.E.D.

Proposition 2.6 guarantees the monotonic convergence Jµk,δk ↓ Ĵ (see the preceding proof) and the

(possibly nonmonotonic) convergence Jµk → Ĵ . When the control space U is finite, Prop. 2.6 also implies

that the generated policies µk will be optimal for all k sufficiently large. The reason is that the set of policies

is finite and there exists a sufficiently small ε > 0, such that for all nonoptimal µ there is some state x such

that Jµ(x) ≥ Ĵ(x) + ε. This convergence behavior should be contrasted with the behavior of PI without

perturbations, which may lead to difficulties, as noted earlier [cf. case (d) of Example 1.1].

However, when the control space U is infinite, the generated sequence {µk} may exhibit some serious

pathologies in the limit. If {µk}K is a subsequence of policies that converges to some µ̄, in the sense that

lim
k→∞, k∈K

µk(x) = µ̄(x), ∀ x = 1, . . . , n,

then from the preceding proof [cf. Eq. (2.9)], we have

TµkJµk−1,δk−1
= TJµk−1,δk−1

→ T Ĵ.

Taking the limit as k →∞, k ∈ K, we obtain

Tµ̄Ĵ ≤ lim
k→∞, k∈K

TJµk−1,δk−1
= T Ĵ,

where the inequality follows from the lower semicontinuity of g(x, ·) and the continuity of pxy(·). Since we

also have Tµ̄Ĵ ≥ T Ĵ , we see that Tµ̄Ĵ = T Ĵ . Thus µ̄ satisfies the optimality condition of Prop. 2.2(c), and µ̄

is optimal if it is proper. On the other hand, properness of the limit policy µ̄ may not be guaranteed, even

if Ĵ = J*. In fact the generated sequence of proper policies {µk} satisfies limk→∞ Jµk → Ĵ = J*, yet {µk}
may converge to an improper policy that is strictly suboptimal, as shown by the following example, which

is similar to Example 6.7 of [Fei02].

Example 2.1 (A Counterexample for the Perturbation-Based PI Algorithm)

Consider two states 1 and 2, in addition to the termination state t; see Fig. 2.1. At state 1 we must choose

u ∈ [0, 1], with expected cost equal to u. Then, we transition to state 2 with probability
√
u, and we self-

transition to state 1 with probability 1−
√
u. From state 2 we transition to t with cost -1. Thus we have

H(1, u, J) = u+
(
1−
√
u
)
J(1) +

√
uJ(2), ∀ J ∈ <2, u ∈ [0, 1],

14



H(2, u, J) = −1, ∀ J ∈ <2, u ∈ U(2).

Here there is a unique improper policy µ: it chooses u = 0 at state 1, and has cost Jµ(1) = 1. Every policy µ

with µ(1) ∈ (0, 1] is proper, and Jµ can be obtained by solving the equation Jµ = TµJµ. We have Jµ(2) = −1,

so that

Jµ(1) = µ(1) +
(

1−
√
µ(1)

)
Jµ(1)−

√
µ(1),

and we obtain Jµ(1) =
√
µ(1) − 1. Thus, Ĵ(1) = J∗(1) = −1. The perturbation-based PI algorithm will

generate a sequence of proper policies {µk} with µk(1) → 0. Any such sequence is asymptotically optimal in

the sense that Jµk → Ĵ = J∗, yet it converges to the strictly suboptimal improper policy. Note that in this

example, the compactness and continuity condition is satisfied.

2.3. Discussion: Fixed Points of T

While Ĵ is a fixed point of T under our assumptions, as shown in Prop. 2.2(a), an interesting question is

whether and under what conditions J* is also a fixed point of T . The following example shows that if g(x, u)

can take both positive and negative values, and the problem is stochastic, J* may not be a fixed point of T .

Moreover, Jµ need not be a fixed point of Tµ, when µ is improper.

Example 2.2 (A Problem Where J∗ is not a Fixed Point of T )

Consider the SSP problem of Fig. 2.2, which involves a single improper policy µ (we will introduce a proper

policy later). All transitions under µ are deterministic as shown, except at state 1 where the successor state is

3 or 5 with equal probability 1/2. Under the definition (1.1) of Jµ in terms of lim sup, we have

Jµ(1) = 0, Jµ(2) = Jµ(5) = 1, Jµ(3) = Jµ(7) = 0, Jµ(4) = Jµ(6) = 2,

so that the Bellman equation at state 1,

Jµ(1) =
1

2

(
Jµ(2) + Jµ(5)

)
,

is not satisfied. Thus Jµ is not a fixed point of Tµ. If for x = 1, . . . , 7, we introduce another control that leads

from x to t with cost c > 2, we create a proper policy that is strictly suboptimal, while not affecting J∗, which

again is not a fixed point of T .

Of course there are known cases where J* is a fixed point of T , including the SSP problem under the

classical SSP conditions, the case where g ≥ 0, the case where g ≤ 0, the positive bounded model discussed in

Section 7.2 of [Put94], and the general convergence models discussed in [Fei02] and [Yu14]. The assumptions

of all these models are violated by the preceding example.

It turns out that J* is a fixed point of T in the special case of a deterministic shortest path problem,

i.e., an SSP problem where for each x and u ∈ U(x), there is a unique successor state denoted f(x, u). For

such a problem, the mappings Tµ and T take the form

(TµJ)(x) = g
(
x, µ(x)

)
+ J

(
f(x, µ(x))

)
, (TJ)(x) = inf

µ∈M
(TµJ)(x).

Moreover, by using the definition (1.1) of Jµ in terms of lim sup, we have for all µ ∈M (proper or improper),

Jµ(x) = g
(
x, µ(x)

)
+ Jµ

(
f(x, µ(x))

)
= (TµJµ)(x), x = 1, . . . , n.

15



a 1 2 t b Destination

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost 2 Cost −2 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost 2 Cost −2 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 6 7 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost 2 Cost −2 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 3 4 5 6 7 t b c Destination

Prob. 1/2
√

u Prob. 1 − √
u Cost 0 Cost 2 Cost −2 Cost u Cost −1 Cost 1 − √

u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

Figure 2.2. An example of an improper policy µ, where Jµ is not a fixed point of Tµ. All transitions under µ are

deterministic as shown, except at state 1 where the next state is 2 or 5 with equal probability 1/2.

For any policy π = {µ0, µ1, . . .}, using the definition (1.1) of Jπ in terms of lim sup, we have for all x,

Jπ(x) = g
(
x, µ0(x)

)
+ Jπ1

(
f(x, µ0(x))

)
, (2.10)

where π1 = {µ1, µ2, . . .}. By taking the infimum of the left-hand side over π and the infimum of the right-hand

side over π1 and then µ0, we obtain J* = TJ*. Note that this argument does not require any assumptions

other than the deterministic character of the problem, and holds even if the state space is infinite. The

mathematical reason why Bellman’s equation Jµ = TµJµ may not hold for stochastic problems and improper

µ (cf. Example 2.2) is that lim sup may not commute with the expected value that is inherent in Tµ, and

the preceding proof breaks down.

The improper policy of Example 2.2 may be viewed as a randomized policy for a deterministic shortest

path problem, where from state 1 one can go to state 2 or state 5, and the randomized policy chooses either

one with equal probability. For this problem, J* takes the same values as in Example 2.2 for all x 6= 1, but

it takes the value J*(1) = 1 rather than J*(1) = 0. Thus, surprisingly, once we allow randomized policies

into the problem in the manner of Example 2.2, the optimal cost function ceases to be a fixed point of T

and simultaneously its optimal cost at state 1 is improved.

On the other hand, under the assumptions of Prop. 2.2, if we allow randomization, the optimal cost

function Ĵr over randomized policies that are proper will not be improved over Ĵ . To formalize this assertion,

let us note that given the SSP problem of Section 1, where no randomized policies are explicitly allowed,

we can introduce another SSP problem where the control space is enlarged to include randomized controls.

This is the problem where the set of feasible controls at state x is taken to be the set of probability measures

over U(x), denoted by P
(
U(x)

)
, and the cost function and transition probabilities, g(x, ·) and pxy(·), are

appropriately redefined over P
(
U(x)

)
. Note that P

(
U(x)

)
is a compact metric space by Prop. 7.22 of [BeS78]

(with any metric that metrizes weak convergence of probability measures; cf. Chap. 11.3 of [Dud02]). Also,

Prop. 7.31 of [BeS78] can be used to show that the one-stage cost remains lower semicontinuous with respect

to randomized controls, while the compactness and continuity condition holds for the randomized controls

problem, assuming it holds for the nonrandomized controls problem. Moreover, the set of proper policies for

16



the randomized controls problem is nonempty as it contains the proper nonrandomized policies. Thus we

have Ĵ ≥ Ĵr, while the analysis of the preceding section applies to the randomized controls problem. Let Tr

be the DP mapping defining Bellman’s equation for this problem, and let J*
r be the corresponding optimal

cost function. Then it can be seen that TrJ = TJ for all J ∈ <n. Since Ĵ is a real-valued fixed point of T

and hence of Tr, it follows that J*
r is real-valued (see the comment following the proof of Prop. 2.2). Thus

from Prop. 2.2(a), Ĵr is the unique fixed point of Tr, and hence also of T , over all J ≥ Ĵr. We have Ĵ ≥ Ĵr
while Ĵ is a fixed point of T , so we obtain that Ĵ = Ĵr.

3. THE NONNEGATIVE ONE-STAGE COSTS CASE

In this section we aim to eliminate the difficulties of the VI and PI algorithms in the case where g(x, u) ≥ 0

for all x. Under this assumption we can appeal to the results of nonnegative-cost MDP, which we summarize

in the following proposition.

Proposition 3.1: Assume that g(x, u) ≥ 0 for all x and u ∈ U(x). Then:

(a) J* = TJ*, and if J ∈ En+ satisfies J = TJ , then J ≥ J*.

(b) A policy µ∗ is optimal if and only if Tµ∗J* = TJ*.

(c) If the compactness and continuity condition holds, then there exists at least one optimal policy,

and we have T kJ → J* for all J ∈ En+ with J ≤ J*.

For proofs of the various parts of the proposition and related textbook accounts, see [Put94], Ch. 7, and

[Ber12a], Ch. 4. The monograph [BeS78] contains extensions to infinite state space frameworks that address

the associated measurability issues, including the convergence of VI starting from J with 0 ≤ J ≤ J*. The

recent paper [YuB13c] provides PI algorithms that can deal with these measurability issues, and establishes

the convergence of VI for a broader range of initial conditions. The paper [Ber77], and the monographs

[BeS78], Ch. 5, and [Ber13], Ch. 4, provide an abstract DP formulation that points a way to extensions of

the results of this section.

It is well-known that for nonnegative-cost MDP, the standard PI and VI algorithms may encounter

difficulties. In particular, case (c) of Example 1.1 shows that there may exist a strictly suboptimal policy µ

satisfying TµJµ = TJµ, so PI will terminate with such a policy. Moreover, there may exist fixed points J of

T satisfying J ≥ J* and J 6= J*, and VI will terminate starting with such a fixed point; this occurs in case

(c) of Example 1.1, where Ĵ is a fixed point of T and Ĵ(1) > J*(1). In the next subsection, we will address

these difficulties by introducing a suitable transformation.

3.1. Reformulation to an Equivalent Problem

We will define another SSP problem, which will be shown to be “equivalent” to the given problem. In the

new SSP problem, all the states x in the set

X0 =
{
x ∈ X | J*(x) = 0

}
,

17



including the termination state t, are merged into a new termination state t. This idea was inspired from

a result of our recent paper [YuB13c] on convergence of VI, which shows that for a class of Borel space

nonnegative-cost DP models we have T kJ → J* for all J such that J* ≤ J ≤ cJ* for some c > 1 (or

0 ≤ J ≤ cJ* for some c > 1 if the compactness and continuity condition holds in addition); a related result

is given by [Whi79]. Similar ideas, based on eliminating cycles of zero cost transitions by merging them

to a single state have been mentioned in the context of deterministic shortest path algorithms. Moreover,

while our focus will be on VI and PI, we mention that an alternative approach based on linear programming

has been given in the paper [DHP12]. When J* is real-valued, this approach can construct an optimal

randomized stationary policy from a linear programming solution and the information about the optimal

controls for the states in the set X0.

Note that from the Bellman equation J* = TJ* [cf. Prop. 3.1(a)], and assuming the compactness and

continuity condition (which implies that there exists µ such that TµJ = TJ for all J ∈ En+), we obtain the

following useful characterization of X0:

x ∈ X0 if and only if there exists u ∈ U(x) such that g(x, u) = 0 and pxy(u) = 0 for all y /∈ X0. (3.1)

Algorithms for constructing X0, to be given later in this section, will rely on this characterization.

It is possible that J* is the zero vector and X0 = X [this is true in case (b) of Example 1.1]. The

algorithm for finding X0, to be given later in this section, can still be used to verify that this is the case

thereby solving the problem, but to facilitate the exposition, we assume without essential loss of generality

that the set X+ given by

X+ =
{
x ∈ X | J*(x) > 0

}
,

is nonempty . We introduce a new SSP problem as follows.

Definition of Equivalent SSP Problem:

State space: X = X+ ∪ {t}, where t is a cost-free and absorbing termination state.

Controls and one-stage costs: For x ∈ X+, we have U(x) = U(x) and g(x, u) = g(x, u), for all

u ∈ U(x).

Transition probabilities: For x ∈ X+ and u ∈ U(x), we have

pxy(u) =

{
pxy(u) if y ∈ X+,∑
z∈X0 pxz(u) if y = t.

The optimal cost vector for the equivalent SSP problem is denoted by J̄ , and is the smallest nonnegative

solution of the corresponding Bellman equation J = TJ , where

(TJ)(x)
def
= inf

u∈U(x)


g(x, u) +

∑

y∈X+

pxy(u)J(y)


 = inf

u∈U(x)


g(x, u) +

∑

y∈X+

pxy(u)J(y)


 , x ∈ X+, (3.2)

[cf. Prop. 3.1(a)].

We will now clarify the relation of the equivalent SSP problem with the given SSP problem (also referred

to as the “original” SSP problem). The key fact for our purposes, given in the following proposition, is that

18



J̄ coincides with J* on the set X+. Moreover, if J* is real-valued (which can be guaranteed by the existence

of a proper policy for the original SSP problem), then the equivalent SSP problem satisfies the classical SSP

conditions given in the introduction. As a result we may transfer the available analytical results from the

equivalent SSP problem to the original SSP problem. We may also apply the VI and PI methods discussed

in Section 1 to the equivalent SSP problem, after first obtaining the set X0, in order to compute the solution

of the original problem.

Proposition 3.2: Assume that g(x, u) ≥ 0 for all x and u ∈ U(x), and that the compactness and

continuity condition holds. Then:

(a) J*(x) = J̄(x) for all x ∈ X+.

(b) A policy µ∗ is optimal for the original SSP problem if and only if

µ∗(x) = µ(x), ∀ x ∈ X+,

g
(
x, µ∗(x)

)
= 0, pxy

(
µ∗(x)

)
= 0, ∀ x ∈ X0, y ∈ X+, (3.3)

where µ is an optimal policy for the equivalent SSP problem.

(c) If J* is real-valued, then in the equivalent SSP problem every improper policy has infinite

cost starting from some initial state. Moreover, there exists at least one proper policy, so the

equivalent SSP problem satisfies the classical SSP conditions.

(d) If 0 < J*(x) < ∞ for all x = 1, . . . , n, then the original SSP problem satisfies the classical SSP

conditions.

Proof: (a) Let us extend J̄ to a vector Ĵ that has domain X:

Ĵ(x) =

{
J̄(x) if x ∈ X+,

0 if x ∈ X0.

Then from the Bellman equation J̄ = T J̄ [cf. Prop. 3.1(a)], and the definition (3.2) of T , we have Ĵ(x) =

(T Ĵ)(x) for all x ∈ X+, while from Eq. (3.1), we have (T Ĵ)(x) = 0 = Ĵ(x) for all x ∈ X0. Thus Ĵ is a

fixed point of T , so that Ĵ ≥ J* [since J* is the smallest nonnegative fixed point of T , cf. Prop. 3.1(a)], and

hence J̄(x) ≥ J*(x) for all x ∈ X+. Conversely, the restriction of J* to X+ is a solution of the Bellman

equation J = T̄ J , with T̄ given by Eq. (3.2), so we have J̄(x) ≤ J*(x) for all x ∈ X+ [since J̄ is the smallest

nonnegative fixed point of T , cf. Prop. 3.1(a)].

(b) A policy µ∗ is optimal for the original SSP problem if and only if J* = TJ* = Tµ∗J* [cf. Prop. 3.1(b)],

or

J*(x) = inf
u∈U(x)

[
g(x, u) +

n∑

y=1

pxy(u)J∗(y)

]
= g
(
x, µ∗(x)

)
+

n∑

y=1

pxy
(
µ∗(x)

)
J∗(y), ∀ x = 1, . . . , n.

Equivalently, µ∗ is optimal if and only if

J*(x) = inf
u∈U(x)


g(x, u) +

∑

y∈X+

pxy(u)J∗(y)


 = g

(
x, µ∗(x)

)
+
∑

y∈X+

pxy
(
µ∗(x)

)
J∗(y), ∀ x ∈ X+, (3.4)

19



and Eq. (3.3) holds. Using part (a), the Bellman equation J̄ = T J̄ , and the definition (3.2) of T , we see

that Eq. (3.4) is the necessary and sufficient condition for optimality of the restriction of µ∗ to X+ in the

equivalent SSP problem, and the result follows.

(c) Let µ be an improper policy of the equivalent SSP problem. Then the Markov chain induced by µ contains

a recurrent class R that consists of states x with J*(x) > 0 [since we have J*(x) > 0, for all x ∈ X+]. We

have g
(
x, µ(x)

)
> 0 for some x ∈ R [otherwise, g

(
x, µ(x)

)
= 0 for all x ∈ R, implying that Jµ(x) = 0 and

hence J*(x) = 0 for all x ∈ R]. From this it follows that J̄(x) = J*(x) =∞ for all x ∈ R, since under µ, all

states x ∈ R are visited infinitely often with probability 1 starting from within R. To prove the existence of

a proper policy, we note that by the compactness and continuity condition, the original SSP problem has an

optimal policy [cf. Prop. 3.1(c)], and since J* is real-valued this policy cannot be improper (as we have just

shown, improper policies have infinite cost starting from at least one initial state).

(d) Here the original and equivalent SSP problems coincide, so the result follows from part (c). Q.E.D.

The following proposition provides analytical and computational results for the original SSP problem,

using the equivalent SSP problem.

Proposition 3.3: Assume that g(x, u) ≥ 0 for all x and u ∈ U(x), that the compactness and

continuity condition holds, and that J* is real-valued. Consider the set

J = <n+ ∪
{
J /∈ <n+ | J(x) = 0, ∀ x = 1, . . . , n, with J*(x) = 0

}
.

Then:

(a) J* is the unique fixed point of T within J .

(b) We have T kJ → J* for any J ∈ J .

Proof: (a) Since the classical SSP conditions hold for the equivalent SSP problem by Prop. 3.2(c), J̄ is the

unique fixed point of T̄ . From Prop. 3.2(a) and the definition of the equivalent SSP problem, it follows that

J* is the unique fixed point of T within the set of J ∈ <n with J(x) = 0 for all x ∈ X0. From Prop. 3(a) of

[BeT91], we also have that J* is the unique fixed point of T within <n+, thus completing the proof.

(b) Similar to the proof of part (a), the VI algorithm for the equivalent SSP problem is convergent to J̄

from any initial condition. Together with the convergence of VI starting from any J ∈ <n+ [cf. Prop. 3(b) of

[BeT91]], this implies the result. Q.E.D.

Note that Prop. 3.3(a) narrows down the range of possible fixed points of T relative to known results

under the nonnegativity conditions ([BeT91], Prop. 3, asserts uniqueness of the fixed point of T only within

<n+). In particular, if J*(x) > 0 for all x = 1, . . . , n, J* is the unique fixed point of T within <n. However,

case (b) of Example 1.1 shows that the set J cannot be replaced by <n in the statement of the proposition.

To make use of the proposition we should know the sets X0 and X+, and also be able to deal with the case

where J* is not real-valued. We will provide an algorithm to determine X0 next, and we will consider the

case where J* can take infinite values in the next subsection.

20



Algorithm for Constructing X0 and X+

In practice, the sets X0 and X+ can often be determined by a simple analysis that relies on the special

structure of the given problem. When this is not so, we may compute these sets with a simple algorithm

that requires at most n iterations. Let

Û(x) =
{
u ∈ U(x) | g(x, u) = 0

}
, x ∈ X.

Denote X1 =
{
x ∈ X | Û(x) 6= ∅

}
, and define for k ≥ 1,

Xk+1 =
{
x ∈ Xk | there exists u ∈ Û(x) such that y ∈ Xk for all y with pxy(u) > 0

}
.

It can be seen with a straightforward induction that

Xk =
{
x ∈ X | (T kJ0)(x) = 0

}
,

where J0 is the zero vector. Clearly we have Xk+1 ⊂ Xk for all k, and since X is finite, the algorithm

terminates at some iteration k̄ with Xk̄+1 = Xk̄. Moreover the set Xk̄ is equal to X0, since we have

T kJ0 ↑ J* under the compactness and continuity condition [cf. Prop. 3.1(c)]. If the number of state-control

pairs is finite, say m, each iteration requires O(m) computation, so the complexity of the algorithm for

finding X0 and X+ is O(mn). Note that this algorithm finds X0 even when X0 = X and X+ is empty.

3.2. The Case Where J* is not Real-Valued

In order to use effectively the equivalent SSP problem, J* must be real-valued, so that Prop. 3.3 can apply.

It turns out that this restriction can be circumvented by introducing an artificial high-cost stopping action

at each state, thereby making J* real-valued.

In particular, let us introduce for each scalar c > 0, an SSP problem that is identical to the original,

except that an additional control is added to each U(x), under which the transition to the termination state

t occurs with probability 1 and a cost c is incurred. We refer to this problem as the c-SSP problem, and we

denote its optimal cost vector by Ĵc. Note that

Ĵc(x) ≤ c, Ĵc(x) ≤ J*(x), ∀ x ∈ X, c > 0,

and that Ĵc is the unique fixed point of the corresponding mapping T̂c given by

(T̂cJ)(x) = min

[
c, inf
u∈U(x)

[
g(x, u) +

n∑

y=1

pxy(u)J(y)

]]
, x = 1, . . . , n, (3.5)

within the set of J ∈ <n with J(x) = 0 for all x ∈ X0 [cf. Prop. 3.3(a)]. Let

Xf =
{
x ∈ X | J*(x) <∞

}
, X∞ =

{
x ∈ X | J*(x) =∞

}
.

We have the following proposition.

21



Proposition 3.4: Assume that g(x, u) ≥ 0 for all x and u ∈ U(x), and that the compactness and

continuity condition holds. Then:

(a) We have

lim
c→∞

Ĵc(x) = J*(x), ∀ x ∈ X.

(b) If the control space U is finite, there exists c > 0 such that for all c ≥ c, we have

Ĵc(x) = J*(x), ∀ x ∈ Xf ,

and if µ̂ is an optimal policy for the c-SSP problem, then any policy µ∗ such that µ∗(x) = µ̂(x)

for x ∈ Xf is optimal for the original SSP problem.

We will first state the following preliminary lemma, which can be easily proved by induction.

Lemma 3.1: Let

ck = max
x∈X

(T kJ0)(x), k = 0, 1, . . . , (3.6)

where J0 is the zero vector. Then for all c ≥ ck, the VI algorithm, starting from J0, produces identical

results for the c-SSP and the original SSP problems up to iteration k:

T̂mc J0 = TmJ0, ∀ m ≤ k.

Proof of Prop. 3.4: (a) Let J0 be the zero vector. We have

J* ≥ lim
c→∞

Ĵc ≥ Ĵck ≥ T̂ kckJ0 = T kJ0,

where ck is given by Eq. (3.6), and the last equality follows from Lemma 3.1. Since T kJ0 ↑ J* [cf. Prop.

3.1(c)], we obtain limc→∞ Ĵc = J*.

(b) The result is clearly true if J* is real-valued, since then for c ≥ maxx∈X J*(x), the VI algorithm starting

from J0 produces identical results for the c-SSP and original SSP problems, so for such c, Ĵc = J*. For the

case where X∞ is nonempty, we will formulate “reduced” versions of these two problems, where the states

in Xf do not communicate with the states in X∞, so that by restricting the reduced problems to Xf , we

revert to the case where J* is real-valued.

Indeed, for both the c-SSP problem and the original problem, let us replace the constraint set U(x) by

the set

Û(x) =

{
U(x) if x ∈ X∞,{
u ∈ U(x) | pxy(u) = 0, ∀ y ∈ X∞

}
if x ∈ Xf ,

so that the infinite cost states in X∞ are unreachable from the finite cost states in Xf . We refer to the

problems thus created as the “reduced” c-SSP problem and the “reduced” original SSP problem.

22



We now apply Prop. 3.1(b) to both the original and the “reduced” original SSP problems. In the

original SSP problem, for each x ∈ Xf , the infimum in the expression

min
u∈U(x)

[
g(x, u) +

n∑

y=1

pxy(u)J*(y)

]
,

is attained for some u ∈ Û(x) [controls u /∈ Û(x) are inferior because they lead with positive probability to

states y ∈ X∞]. Thus an optimal policy for the original SSP problem is feasible for the reduced original SSP

problem, and hence also optimal since the optimal cost cannot become smaller at any state when passing

from the original to the reduced original problem. Similarly, for each x ∈ Xf , the infimum in the expression

min

[
c, min
u∈U(x)

[
g(x, u) +

n∑

y=1

pxy(u)Jc(y)

]]
,

[cf. Eq. (3.5)] is attained for some u ∈ Û(x) once c becomes sufficiently large. The reason is that for y ∈ X∞,

Ĵc(y) ↑ J*(y) =∞, so for sufficiently large c, each control u /∈ Û(x) becomes inferior to the controls u ∈ Û(x),

for which pxy(u) = 0. Thus by taking c large enough, an optimal policy for the original c-SSP problem,

becomes feasible and hence optimal for the reduced c-SSP problem [here the size of the “large enough” c

depends on x and u, so finiteness of X and U(x) is important for this argument]. We have thus shown that

the optimal cost vector of the reduced original SSP problem is also J*, and the optimal cost vector of the

reduced c-SSP problem is also Ĵc for sufficiently large c.

Clearly, starting from any state in Xf it is impossible to transition to a state x ∈ X∞ in the reduced

original SSP problem and the reduced c-SSP problem. Thus if we restrict these problems to the set of states

in Xf , we will not affect their optimal costs for these states. Since J* is real-valued in Xf , it follows that

for sufficiently large c, these optimal cost vectors are equal (as noted in the beginning of the proof), i.e.,

Ĵc(x) = J*(x) for all x ∈ Xf . Q.E.D.

We note that the compactness and continuity condition is needed for Prop. 3.4(a) to hold, while the

finiteness of U is needed for Prop. 3.4(b) to hold. We demonstrate this with examples.

Example 3.1 (Counterexamples)

Consider the SSP problem of Fig. 3.1, and two cases:

(a) U(2) = (0, 1], so the compactness and continuity condition is violated. Then we have J∗(1) = J∗(2) =∞.

Let us now calculate Ĵc(1) and Ĵc(2) from the Bellman equation

Ĵc(1) = min
[
c, 1 + Ĵc(1)

]
, Ĵc(2) = min

[
c, inf
u∈(0,1]

[
1−
√
u+ uĴc(1)

]]
.

The equation on the left yields Ĵc(1) = c, and for c ≥ 1, the minimization in the equation on the right

takes the form

inf
u∈(0,1]

[
1−
√
u+ uc

]
.

By setting to 0 the derivative with respect to u, we see that the infimum is attained at u = 1/(2c)2,

yielding

Ĵc(2) = 1− 1

4c
, for c ≥ 1.

23



a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b Destination

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 0 1 2 t b c Destination

J(1) = min
�
c, a + J(2)

�

J(2) = b + J(1)

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

1

a 0 1 2 t b c Destination

Prob. u Prob. 1 − u

J(1) = min
�
c, a + J(2)

�

J(2) = b + J(1)

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 t b c Destination

Prob. u Prob. 1 − u

J(1) = min
�
c, a + J(2)

�

J(2) = b + J(1)

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 t b c Destination

Prob. u Prob. 1 − u Cost 1 Cost 1 −√
u

J(1) = min
�
c, a + J(2)

�

J(2) = b + J(1)

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 t b c Destination

Prob. u Prob. 1 − u Cost 1 Cost 1 −√
u

J(1) = min
�
c, a + J(2)

�

J(2) = b + J(1)

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

a 0 1 2 t b c Destination

Prob. u Prob. 1 − u Cost 1 Cost 1 −√
u

J(1) = min
�
c, a + J(2)

�

J(2) = b + J(1)

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

1

Figure 3.1. The SSP problem of Example 3.1. There are states 1 and 2, in addition to the termination state

t. At state 2, upon selecting control u, we incur cost 1−
√
u, and move to state 1 with probability u and to t

with probability 1− u. At state 1 we incur cost 1 and stay at 1 with probability 1.

Thus we have limc→∞ Ĵc(2) = 1, while J∗(2) =∞, so the conclusion of Prop. 3.4(a) fails to hold.

(b) U(2) = [0, 1], so the compactness and continuity condition is satisfied, but U is not finite. Then we have

J∗(1) =∞, J∗(2) = 1. Similar to case (a), we calculate Ĵc(1) and Ĵc(2) from the Bellman equation. An

essentially identical calculation to the one of case (a) yields the same results for c ≥ 1:

Ĵc(1) = c, Ĵc(2) = 1− 1

4c
.

Thus we have limc→∞ Ĵc(1) = J∗(1) =∞, and limc→∞ Ĵc(2) = J∗(2) = 1, consistently with Prop. 3.4(a).

However, Ĵc(2) < J∗(2) for all c, so the conclusion of Prop. 3.4(b) fails to hold.

Proposition 3.4(b) suggests a procedure to solve a problem for which J* is not real-valued, but the

one-stage cost is nonnegative and the control space is finite:

(1) Use the algorithm of Section 3.1 to compute the sets X0 and X+.

(2) Introduce for all x ∈ X+ a stopping action with a cost c > 0.

(3) Solve the equivalent SSP problem and obtain a candidate optimal policy for the original SSP problem

using Prop. 3.2(b). This step can be done with any one of the PI and VI algorithms noted in Section

1.

(4) Check that c is high enough, by testing to see if the candidate optimal policy changes as c is increased,

or satisfies the optimality condition of Prop. 3.1(b). If it does, the current policy is optimal; if it does

not, increase c by some fixed factor and repeat from Step (3).

By Prop. 3.4(b), this procedure terminates with an optimal policy in a finite number of steps.

Finally, let us note that the analysis and algorithms of this section are essentially about general (not

necessarily SSP-type) nonnegative-cost finite-state MDP under the compactness and continuity condition.

The reason is that such MDP can be trivially converted to SSP problems by adding an artificial termination

state that is not reachable from any of the other states with a feasible transition. For these MDP, with the

exception of the mixed VI and PI algorithm of our recent work [YuB13c] (Section 5.2), no valid exact or

approximate PI method has been known. The transformation also brings to bear the available extensive

methodology for SSP under the classical SSP conditions (VI, several versions of PI, including some that are

asynchronous, and linear programming), as well as simulation-based algorithms, including Q-learning and

approximate PI (see e.g., [Tsi94], [BeT96], [BeY10], [Ber12a], [YuB13a], [YuB13b]).

24



4. CONCLUDING REMARKS

There are a few issues that we have not addressed and remain subjects for further research. Extensions to

infinite-state SSP problems are interesting, as well as the further investigation of the case where the one-stage

cost can take both positive and negative values. In particular, when Ĵ 6= J*, the characterization of the

set of fixed points of T , and algorithms for computing J* and an optimal (possibly improper) policy remain

open questions. The complications arising from the use of randomized policies are worth exploring. The

computational complexity properties of the PI algorithm of Section 2.2 also require investigation. A broader

issue relates to extensions of the notion of proper policy to DP models which are more general than SSP

problems. One such extension is the notion of a regular policy, which was introduced within the context of

semicontractive models in [Ber13]. This connection points the way to generalizations of the results of this

paper, among others, to affine monotonic models, including exponential cost and risk-sensitive MDP. In such

models, regular policies can be related to policies that stabilize an associated linear discrete-time system (see

[Ber13], Section 4.5), and an analysis that parallels the one of the present paper is possible.

We also have not fully discussed the case of the SSP problem where Ĵ ≤ 0 and its special case where

g(x, u) ≤ 0 for all (x, u). While we have shown in Prop. 2.5 that Ĵ = J*, and that VI converges to J* starting

from any J ∈ <n with J ≥ J*, the standard PI algorithm may encounter difficulties [see case (d) of Example

1.1]. However, the perturbation-based PI algorithm of Section 2.2 applies. Moreover, the optimistic (or

modified) form of PI given in [Put94], Section 7.2.6, for positive bounded MDP, also applies. Another valid

PI algorithm for the case g ≤ 0, which does not require that J* be real-valued or the existence and iterative

generation of proper policies, is the λ-PI algorithm introduced in [BeI96] and further studied in [ThS10],

[Ber12b], [Sch13], [YuB12] (see Section 4.3.3 of [Ber13]). This algorithm is not specific to the SSP problem,

and does not make use of the presence of a termination state. Still another possibility is a mixed VI and

PI algorithm, given in Section 4.2 of [YuB13c], which also does not rely on proper policies. This algorithm

converges from above to J* (which need not be real-valued), and applies even in the case of infinite (Borel)

state and control spaces.

5. REFERENCES

[Alt99] Altman, E., 1999. Constrained Markov Decision Processes, CRC Press, Boca Raton, FL.

[BeI96] Bertsekas, D. P., and Ioffe, S., 1996. “Temporal Differences-Based Policy Iteration and Applications

in Neuro-Dynamic Programming,” Lab. for Info. and Decision Systems Report LIDS-P-2349, MIT.

[BeS78] Bertsekas, D. P., and Shreve, S. E., 1978. Stochastic Optimal Control: The Discrete Time Case,

Academic Press, N. Y. (republished by Athena Scientific, Belmont, MA, 1996); may be downloaded from

http://web.mit.edu/dimitrib/www/home.html.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., 1989. Parallel and Distributed Computation: Numerical

Methods, Prentice-Hall, Englewood Cliffs, N. J.

[BeT91] Bertsekas, D. P., and Tsitsiklis, J. N., 1991. “An Analysis of Stochastic Shortest Path Problems,”

Math. of OR, Vol. 16, pp. 580-595.

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming, Athena Scientific, Bel-

mont, MA.

[BeY10] Bertsekas, D. P., and Yu, H., 2010. “Asynchronous Distributed Policy Iteration in Dynamic Pro-

gramming,” Proc. of Allerton Conf. on Com., Control and Comp., Allerton Park, Ill, pp. 1368-1374.

25



[BeY12] Bertsekas, D. P., and Yu, H., 2010. “Q-Learning and Enhanced Policy Iteration in Discounted

Dynamic Programming,” Math. of OR, Vol. 37, 2012, pp. 66-94.

[Ber77] Bertsekas, D. P., 1977. “Monotone Mappings with Application in Dynamic Programming,” SIAM J.

on Control and Optimization, Vol. 15, pp. 438-464.

[Ber87] Bertsekas, D. P., 1987. Dynamic Programming: Deterministic and Stochastic Models, Prentice-Hall,

Englewood Cliffs, N. J.

[Ber12a] Bertsekas, D. P., 2012. Dynamic Programming and Optimal Control, Vol. II, 4th Edition: Approx-

imate Dynamic Programming, Athena Scientific, Belmont, MA.

[Ber12b] Bertsekas, D. P., 2012. “λ-Policy Iteration: A Review and a New Implementation,” in Reinforcement

Learning and Approximate Dynamic Programming for Feedback Control, by F. Lewis and D. Liu (eds.), IEEE

Press, 2012.

[Ber13] Bertsekas, D. P., 2013. Abstract Dynamic Programming, Athena Scientific, Belmont, MA.

[Bla65] Blackwell, D., 1965. “Positive Dynamic Programming,” Proc. Fifth Berkeley Symposium Math.

Statistics and Probability, pp. 415-418.

[CFM00] Cavazos-Cadena, R., Feinberg, E. A., and Montes-De-Oca, R., 2000. “A Note on the Existence of

Optimal Policies in Total Reward Dynamic Programs with Compact Action Sets,” Math. of OR, Vol. 25,

pp. 657-666.

[Der70] Derman, C., 1970. Finite State Markovian Decision Processes, Academic Press, N. Y.

[DHP12] Dufour, F., Horiguchi, M., and Piunovskiy, A. B., 2012. “The Expected Total Cost Criterion

for Markov Decision Processes Under Constraints: A Convex Analytic Approach,” Advances in Applied

Probability, Vol. 44, pp. 774-793.

[DuP13] Dufour, F., and Piunovskiy, A. B., 2013. “The Expected Total Cost Criterion for Markov Decision

Processes Under Constraints,” Advances in Applied Probability, Vol. 45, pp. 837-859.

[Dud02] Dudley, R. M., 2002. Real Analysis and Probability, Cambridge Univ. Press, Cambridge.

[FeY08] Feinberg, E. A., and Yang, F., 2008. “On Polynomial Cases of the Unichain Classification Problem

for Markov Decision Processes,” Operations Research Letters, Vol. 36, pp. 527-530.

[Fei02] Feinberg, E. A., 2002. “Total Reward Criteria,” in E. A. Feinberg and A. Shwartz, (Eds.), Handbook

of Markov Decision Processes, Springer, N. Y.

[HeL99] Hernandez-Lerma, O., and Lasserre, J. B., 1999. Further Topics on Discrete-Time Markov Control

Processes, Springer, N. Y.

[Pal67] Pallu de la Barriere, R., 1967. Optimal Control Theory, Saunders, Phila; Dover, N. Y., 1980.

[Put94] Puterman, M. L., 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming, J.

Wiley, N. Y.

[ThS10] Thiery, C., and Scherrer, B., 2010. “Least-Squares λ-Policy Iteration: Bias-Variance Trade-off in

Control Problems,” in ICML’10: Proc. of the 27th Annual International Conf. on Machine Learning.

[Sch13] Scherrer, B., 2013. “Performance Bounds for Lambda Policy Iteration and Application to the Game

of Tetris,” J. of Machine Learning Research, Vol. 14, pp. 1181-1227.

[Str66] Strauch, R., 1966. “Negative Dynamic Programming,” Ann. Math. Statist., Vol. 37, pp. 871-890.

[Tsi94] Tsitsiklis, J. N., 1994. “Asynchronous Stochastic Approximation and Q-Learning,” Machine Learning,

26



Vol. 16, pp. 185-202.

[Whi79] Whittle, P., 1979. “A Simple Condition for Regularity in Negative Programming,” J. Appl. Prob.,

Vol. 16, pp. 305-318.

[Whi82] Whittle, P., 1982. Optimization Over Time, Wiley, N. Y., Vol. 1, 1982, Vol. 2, 1983.

[YuB12] Yu, H., and Bertsekas, D. P., 2012. “Weighted Bellman Equations and their Applications in Dynamic

Programming,” Lab. for Info. and Decision Systems Report LIDS-P-2876, MIT.

[YuB13a] Yu, H., and Bertsekas, D. P., 2013. “Q-Learning and Policy Iteration Algorithms for Stochastic

Shortest Path Problems,” Annals of Operations Research, Vol. 208, pp. 95-132.

[YuB13b] Yu, H., and Bertsekas, D. P., 2013. “On Boundedness of Q-Learning Iterates for Stochastic Shortest

Path Problems,” Math. of OR, Vol. 38, pp. 209-227.

[YuB13c] Yu, H., and Bertsekas, D. P., 2013. “A Mixed Value and Policy Iteration Method for Stochastic

Control with Universally Measurable Policies,” Lab. for Info. and Decision Systems Report LIDS-P-2905,

MIT; to appear in Math. of OR.

[Yu14] Yu, H., 2014. “On Convergence of Value Iteration for a Class of Total Cost Markov Decision Pro-

cesses,” Technical Report, University of Alberta; arXiv preprint arXiv:1411.1459; SIAM J. Control and

Optimization, Vol. 53, pp. 1982-2016.

27


