Topics in Reinforcement Learning:
Lessons from AlphaZero for
(Sub)Optimal Control and Discrete Optimization

Arizona State University
Course CSE 691, Spring 2022

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 8
We start the second part of the course
We transition from on-line play to off-line training algorithms
In this lecture: Neural Nets, and Other Parametric Architectures

Bertsekas Reinforcement Learning 1/37

o Review

e Parametric Approximation Architectures

e Training of Architectures

0 Incremental Optimization of Sums of Differentiable Functions
e Neural Networks

e Neural Nets and Finite Horizon DP

Bertsekas Reinforcement Learning 2/37

The AlphaZero/MPC Model: A Review

—fmm e L--»>@

Lookahead
Minimization

Tg;ﬁfiid Cost Approximafion
ON-LINE
PLAY i i --->®
— .
—fmmmm e --->@

Rollout Policy

. . Terminal Cost
Policy Network :

Value Network

\J)FF-LINE

. [TRAINING

States zj4o

States j41]

NEWTON
STEP
for Bellman Eq.

Bertsekas Reinforcement Learning 4/37

What We Have Done So Far

We started with four overview/big picture lectures J

Then focused at on-line play algorithms

@ Rollout algorithms and variations (fortified, simplified, constrained, minimax)
@ Multiagent rollout for multiagent/multicomponent control problems
@ On-line replanning and adaptive control

@ Model predictive control and related issues

Bertsekas Reinforcement Learning 5/37

Where We Are Going: Off-line Training Algorithms

Our plan for future lectures: We will cover in some depth and detail

@ Approximation of values and policies with neural nets and other architectures
@ Infinite horizon: Theory and algorithms

@ Approximate policy iteration and Q-learning

@ Approximation in policy space - Policy gradient methods

@ Aggregation

From this point on the course will be similar to the 2021 course
We will selectively use videoclips from 2021

Bertsekas Reinforcement Learning 6/37

Recall Approximation in Value Space (Mostly Used for On-Line Control

Selection)

Approximate Min

i “ ”
Hllin E{gk(mk, Uk, wk)+Jk+1(q;k+1)}
Li \
Approximate E{-} Approximate Cost-to-Go Jy41
Certainty equivalence Problem approximat.iop
Adaptive simulation Rollout, Model Predictive Control

Parametric approximation
Neural nets
Aggregation

ONE-STEP LOOKAHEAD

Monte Carlo tree search

At State z

DP minimization

!

k-1
min E {gk<;l,';, S Ug, W) + Z gk(.’l?m‘ fom (T), u'm) + Jk,+(($k+1,)}

UksP k415 k+£—1 it

First ¢ Steps “Future”

Cost-to-go

Lookahead Minimization Approximation

MULTISTEP LOOKAHEAD

Bertsekas Reinforcement Learning 7137

Types of Approximations Used in Off-Line Training

There are two types of off-line approximations in RL:
@ Cost approximation in finite and infinite horizon problems
Optimal cost function J (xk) or J*(x), optimal Q-function Qj (xk, ux) or Q*(x, u)

Cost function of a policy J k(Xk) or Ju(x), Q-function of a policy Q. x(xk, ux) or
OM(Xv U)

@ Policy approximation in finite and infinite horizon problems
Optimal policy pu; (k) or p*(x)
A given policy rux(Xk) or p(x)

We will focus on parametric approximations J(x, r) and fi(x, r)
@ These are functions of x that depend on a parameter vector r

@ An example is neural networks (r is the set of weights)

Bertsekas Reinforcement Learning

9/37

General Parametric Cost Approximation

Target Cost
Function

J(x)

Training Data

(zs, J(x%)) i
s=1,

Approximation
Architecture
Parameter r

Approximating
Function

J(x,7)

TRAINING CAN BE DONE WITH SPECIALIZED OPTIMIZATION SOFTWARE
SUCH AS
GRADIENT-LIKE METHODS OR OTHER LEAST SQUARES METHODS

Bertsekas

Reinforcement Learning

10/37

Parametric Policy Approximation - Finite Control Space

@ If the control has continuous/real-valued components, the training is similar to the
cost function case

@ If the control comes from a finite control space {u', ..., u™}, a modified approach
is needed

@ View a policy i as a classifier: A function that maps x into a “category” p(x)

Approximating
Classifier Randomized Policy
Target Policy | Training Data Assigns State z to Max
u(z)) Class/Control u o Operation[
s—=1..... q Parameter r Control Probabilities

i (x,r), . g (e,r)

TRAINING CAN BE DONE WITH CLASSIFICATION SOFTWARE
IF THE NUMBER OF CONTROLS IS FINITE

Randomized policies have continuous components
This helps algorithmically

Bertsekas Reinforcement Learning 11/37

Cost Function Parametric Approximation Generalities

@ We select a class of functions J(x, r) that depend on x and a vector
r=(n,...,rm)of m-“unable" scalar parameters.

@ We adjust r to change J and “match” the training data from the target function.
@ Training the architecture: The algorithm to choose r (typically regression-type).
@ Local vs global: Change in a single parameter affects J locally vs globally.

@ Architectures are called linear or nonlinear, if J(x, r) is linear or nonlinear in r.

@ Architectures are feature-based if they depend on x via a feature vector ¢(x) that
captures “major characteristics" of x,

Jx,r) = J(s(x),r),

where J is some function. Intuitive idea: Features capture dominant nonlinearities.

@ A linear feature-based architecture: J(x, r) = 30, rege(x) = r'$(x), where r, and
¢e(x) are the £th components of r and ¢(x).

v

Feature Vector Linear Cost
State & | Feature Extraction B(x) Linear Approximator 7/¢(z)
—P . > . —_—
Mapping Mapping

Bertsekas Reinforcement Learning 12/37

A Simple Example of a Linear Feature-Based (Local) Architecture

T(a,r) = X5 rede(x)

Piecewise constant approximation

@ Partition the state space into subsets Si, ..., Sy. Let the ¢th feature be defined by
membership in the set S, i.e., the indicator function of S,

. 1ifxe S,
pe(x) = {o ifx ¢S,

@ The architecture

J(x,r) = Zfzcﬁz

is piecewise constant with value r, for all x within the set S,.

Bertsekas Reinforcement Learning 13/37

Generic Polynomial (Global) Architectures

Quadratic polynomial approximation
@ Let x = (x° X7
@ Consider features
do() =1, si(x)=x, g(x)=x¥, ij=1,...n,
and the linear feature-based approximation architecture

J(x, r)_ro+Zr,x +ZZ/’,,XX’

i=1 j=i

@ Here the parameter vector r has components ry, r;, and r;.

General polynomial architectures: Polynomials in the components x', ..., x” J
An even more general architecture: Polynomials of features of x
A linear feature-based architecture is a special case J

Bertsekas Reinforcement Learning 14/37

Examples of Problem-Specific Feature-Based Architectures

Features:
Material Balance,
Mobility, "
R Safety, etc Poslmqn
. . Feature | Weighting of Evaluation
g Extraction Features .
B swy ozl
Chess

Tetris

Bertsekas Reinforcement Learning 15/37

Architectures with Partitioned State Space

Feature Ky
Extraction

»
-

State Space Feature Space

A simple method to construct complex approximation architectures:

@ Partition the state space into several subsets and construct a separate cost
approximation in each subset.

@ Can use a separate architecture on each set of the partition.
@ It is often a good idea to use features to generate the partition. Rationale:

We want to group together states with similar costs

We hypothesize that states with similar features should have similar costs

Bertsekas Reinforcement Learning

16/37

Neural Networks: An Architecture that

z,v
= 7|£ o1(z,v) A Cost)
pproximation
State x y(a:l Ay(z) +b 7|£ d2(x,v) ' (x,v)
Lt 7|¢ ¢m (iL', ’U)
State Li] -
Encoding Llnear N(inhnear WLuLear
ayer ayer eighting
“Pﬁg)?gn{—nscll)i(clfﬁc” Paran;letgr Parameter
Features) v=(4) FEATURES T

A SINGLE LAYER NEURAL NETWORK

17/37

Bertsekas Reinforcement Learning

Training of Architectures

Least squares regression

@ Collect a set of state-cost training pairs (x°, 8°), s = 1,..., g, where 3° is equal to
the target cost J(x°) plus some “noise".

@ ris determined by solving the problem
q
min > (J(x*, r) - °)°
s=1

@ Sometimes a quadratic regularization term ~||r||? is added to the least squares
objective, to facilitate the minimization (among other reasons).

Training of linear feature-based architectures can be done exactly

o If J(x,r) = r'¢(x), where ¢(x) is the m-dimensional feature vector, the training
problem is quadratic and can be solved in closed form.

@ The exact solution of the training problem is given by
q -1 q
P= (Z ¢(x5)¢<x5)’> > o(x)s°
s=1 s=1

@ This requires a lot of computation for a large m and data set; may not be best.

Bertsekas Reinforcement Learning 19/37

Training of Nonlinear Architectures

The main training issue

How to exploit the structure of the training problem
! 2
i T vS s
mran;(J(x ,r) = B%)
S=

to solve it efficiently.

Key characteristics of the training problem

@ Possibly nonconvex with many local minima, horribly complicated graph of the cost
function (true when a neural net is used).

@ Many terms in the least least squares sum; standard gradient and Newton-like
methods are essentially inapplicable.

@ Incremental iterative methods that operate on a single term (J(x°,r) — ﬂS)Z at
each iteration have worked well enough (for many problems).

Bertsekas Reinforcement Learning 20/37

Incremental Gradient Methods

Generic sum of terms optimization problem
Minimize
m

) = > i)

where each f; is a differentiable scalar function of the n-dimensional vector y (this is
the parameter vector in the context of parametric training).

The ordinary gradient method generates y**! from y* according to
m
Y =y =) =y = VYY)
i=1

where v¥ > 0 is a stepsize parameter.

The incremental gradient counterpart
Choose an index i and iterate according to

Y = yf =V ()

where ~* > 0 is a stepsize parameter.
Bertsekas Reinforcement Learning 22/37

The Advantage of Incrementalism: An Interpretation from the NDP Book

(ciy —bi)?
. \
— min; y; R MaxX; Y
| = - — .
FAROUT REGION REGION OF CONFUSION FAROUT REGION

Minimize f(y) = 3 31", (ciy — bi)?

Compare the ordinary and the incremental gradient methods in two cases

@ When far from convergence: Incremental gradient is as fast as ordinary gradient
with 1/m amount of work.

@ When close to convergence: Incremental gradient gets confused and requires a
diminishing stepsize for convergence.

Bertsekas Reinforcement Learning 23/37

Incremental Aggregated and Stochastic Gradient Methods

Incremental aggregated method aims at acceleration
@ Evaluates gradient of a single term at each iteration.
@ Uses previously calculated gradients as if they were up to date

m—1

yk+1 _ yk o ﬁ/k Z Vfik,é(ykié)

£=0

@ Has theoretical and empirical support, and it is often preferable.

Stochastic gradient method (also called stochastic gradient descent or SGD)

@ Applies to minimization of f(y) = E{F(y. w)} where w is a random variable
@ Has the form
yk+1 _ yk o ’YKVyF(,Vk, Wk)
where w¥ is a sample of w and V, F denotes gradient of F with respect to y.

@ The incremental gradient method with random index selection is the same as SGD
[convert the sum 37, fi(y) to an expected value, where i is random with uniform
distribution].

Bertsekas Reinforcement Learning 24/37

Implementation Issues of Incremental Methods - Alternative Methods

@ How to pick the stepsize v* (usually v* = 25 or similar).

@ How to deal (if at all) with region of confusion issues (detect being in the region of
confusion and reduce the stepsize).

@ How to select the order of terms to iterate (cyclic, random, other).
@ Diagonal scaling (a different stepsize for each component of y).

@ Alternative methods (more ambitious): Incremental Newton method, extended
Kalman filter (see the textbook and references).

Bertsekas Reinforcement Learning 25/37

Neural Nets: An Architecture that Automatically Constructs Features

T,v
7'4 91(@) A Cost
pproximation
State = y(x) Ay(z) + b 7|4 ¢a(z,v) r'¢(x,v)
7'4 ¢m(1’7 U)
State .] -
Encoding [ﬂncar Nonlinear Linear
Layer Weightin
(May Include p %% y ghting
“Problem—Speciﬁc” va‘ia’r(nAe g)r Parameter
Features) ’ FEATURES 7
Given a set of state-cost training pairs (x°, 3°), s = 1,..., g, the parameters of the

neural network (A, b, r) are obtained by solving the training problem

i(Zrm (Ay(x®) + b),) — 55)2

@ Incremental gradient is typically used for training.

@ Universal approximation property.

Bertsekas Reinforcement Learning 27/37

Rectifier and Sigmoidal Nonlinearities

max{0, €} (&) =In(1 +€f)

The rectified linear unit o(€) = In(1 + €°). It is the rectifier function max{0, £} with its
corner “smoothed out."

Sigmoidal units: The hyperbolic tangent function o(¢) = tanh(¢) = ‘:Z;j:f is on the
left. The logistic function o(¢) = ;1= is on the right.

Bertsekas Reinforcement Learning 28/37

A Working Break: Challenge Question

Pp,~(2)
/ Slope v

T Linear Rectifier
y(x —5) max{0, £}

0 Jé; T

How can we use linear and rectifier units to construct the “pulse” feature below?

¢181 :/82753754,’}’(33)

Slope T i i
| |

»

0 Bif2 B3P

@ What are the features that can be produced by neural nets?
@ Why do neural nets have a “universal approximation” property? J

Bertsekas Reinforcement Learning 29/37

Answer

Linear Rectifier $51,62.7(%)
—
y(z — B1) max{0, £} 4 Slope 7 /!
* |
ol 0 B B2 x
Linear Rectifier
v(z — f2) max{0, £} (a)
Linear Rectifier
(= B1) max{0, £}
BB1,B2,Ba,61.4(T)
Linear Rectifier
y(z — f2) max{0, £}
- - e - l
Linear Rectifier 0 Aip Psbs @
Y(z — B3) » max{0,&} +
(b)
Linear Rectifier
(@ — fBa) max{0,&}
Using the pulse feature as a building block, any feature can be approximated J

Bertsekas Reinforcement Learning 30/37

Sequential DP Approximation - A Parametric Approximation at Every

Stage (Also Called

Start with Jy = gn and sequentially train going backwards, until k = 0

@ Given a cost-to-go approximation Jx,1, we use one-step lookahead to construct a
large number of state-cost pairs (xi, 35), s =1, ..., q, where

B: = min E{g(x,f,u,wk)+Jk+1(fk(x,f,u,wk),rk+1)}7 s=1,....q

u€ Uk (x§)

@ We “train" an architecture Jx on the training set (x§, 55), s =1,...,q.

Typical approach: Train by least squares/regression and possibly using a
neural net

We minimize over r

g
Z (J(xXE, 1) 3)2
p

Bertsekas Reinforcement Learning 32/37

Sequential Q-Factor Approximation

@ Consider sequential DP approximation of Q-factor parametric approximations

Qk (X, Uk, k) = E{gk(xk~, U we) + min Qupt (Xeit, U, fk+1)}
UE Upey1 (X 1)

(Note a mathematical magic: The order of E{-} and min have been reversed.)

@ We obtain Qk(xk, Uk, r) by training with many pairs ((x2, Ug), Bi), where 37 is a
sample of the approximate Q-factor of (x¢, ug). [No need to compute E{-}.]

@ Note: No need for a model to obtain ;. Sufficient to have a simulator that
generates state-control-cost-next state random samples

(XK, Uk), (Gk (Xk, Uk, Wi), Xkr1))

@ Having computed ri, the one-step lookahead control is obtained on-line as

T (x) €arg min Qx(xk, U, 1)
u€e Uk (xk)

without the need of a model or expected value calculations.
@ Important advantage: The on-line calculation of the control is simplified.

Bertsekas Reinforcement Learning 33/37

On The Mystery of Deep Neural Networks
“l=

State Linear Nonlinear Linear Nonlinear Linear
Encoding Layer Layer Layer Layer ‘Weighting

@ Extensive research has gone into explaining why they are more effective than
shallow neural nets for some problems.
@ Recent research strongly suggests that overparametrization (many more
parameters than data) is the main reason.
@ Generally the ratio
_ Number of weights
" Number of data points

affects the quality of the trained architecture.

@ If R ~ 1, the architecture tends to fit very well the training data (overfitting), but do
poorly at states outside the data set. This is well-known in machine learning.

@ For R considerably larger than 1 this problem can be overcome.

@ See the research literature and the recent text by Hardt and Recht, 2021,
“Patterns, Predictions, and Actions", arXiv preprint arXiv:2102.05242

Bertsekas Reinforcement Learning 34/37

Should we Approximate Q-Factors or Q-Factor Differences?

To compare controls at x, we only need Q-factor differences Q(x, u) — Q(x, ') J

An example of what can happen if we do not use Q-factor differences:
@ Scalar system and cost per stage:

Xi41 = Xk + Uk, 9(x, u) = 6(x* + 1), 0 > 0is very small;
think of discretization of continuous-time problem involving dx(t)/dt = u(t)
@ Consider policy u(x) = —2x. Its cost function can be calculated to be
5X2 2 .
Ju(x) = T(1 +9) + O(5°), HUGE relative to g(x, u)
Its Q-factor can be calculated to be
5x2 <9x2 5

OIA(X’U):T—'_& T+U2+EXU>+O(52)

@ The important part for policy improvement is §(u® + 3xu). When Q. (x, u) is
approximated by Q,.(x, u; r), it will be dominated by 5x2 /4 and will be “lost"

Bertsekas Reinforcement Learning 35/37

A More General Issue: Disproportionate Terms in Q-Factor Calculations

Remedy: Subtract state-dependent constants from Q-factors (“baselines")

The constants subtracted should affect the offending terms (such as J)

Example: Consider rollout with cost function approximation J ~ Ju
@ At x, we minimize over u

E{g(x,u, w) + J(f(x,u, w))}

@ Question: How to deal with g(x, u, w) being tiny relative to J(f(x, u, w))? An
important case where this happens: Time discretization of continuous-time
systems.

@ Aremedy: Subtract J(x) from J((x, u, w)) (see Section 2.3 of the class notes).

Other possibilities:
@ Learn directly the cost function differences D, (x, X") = J.(x) — J.(x") with an
approximation architecture. This is known as differential training.

@ Methods known as advantage updating. [Work with relative Q-factors, i.e., subtract
the state-dependent baseline min, Q(x, u’) from Q(x, u).]

v

Bertsekas Reinforcement Learning 36/37

About the Next Lecture

We will cover:
@ Infinite horizon theory and algorithms
@ Discounted and stochastic shortest path problems

PLEASE REVIEW THE INFINITE HORIZON MATERIAL OF THE CLASS NOTES
WATCH VIDEO LECTURE 9 OF 2021 COURSE OFFERING AT MY WEB SITE

Bertsekas Reinforcement Learning 37/37

	Review
	Parametric Approximation Architectures
	Training of Architectures
	Incremental Optimization of Sums of Differentiable Functions
	Neural Networks
	Neural Nets and Finite Horizon DP

