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Classical Control Problems - Infinite Control Spaces
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Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

States at the End of the Lookahead Final States

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Keep the state near some given point

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Current Partial Solution x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α
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Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ θ = 0, θ̇ = 0

Objective is to Catch the flies in minimum time

Min Q-factor choice

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

TµJ Approximate Policy Evaluation for µ Approximate Policy Improvement

Optimal Trajectory Chosen by Base Heuristic at x0 Initial Tentative Best Trajectory

0 1 2 3 4 5 6 15

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

High Cost Transition Chosen by Heuristic at x∗
1 Violates Sequential Improvement 2.4.3, 2.4.4 2.4.2 3.3,

3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

Optimal Cost Terminal States Cost Approximation Cost g(i, u, j) Policy µ State Space First Stage

“Future”
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Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

Current Position and Dice Roll Best Score A B

φβ1,β2,γ(x) = φβ1,γ(x) − φβ2,γ(x) β3 β4 (a) (b) φβ1,β2,β3,β4,γ(x)

x γ(x − β3) γ(x − β4) + − max{0, ξ} Linear Unit Rectifier φβ,γ(x)
Slope γ β

High Cost Suboptimal u′ “Deceptive” Low Cost u Optimal trajectory
ℓ + 1 Stages Optimal trajectory

(ciy − bi)2 R mini y∗
i maxi y∗

i

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)
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Termination State Constraint Set X X = X X̃ Multiagent

Current Partial Folding

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Current Partial Solution x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)
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x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-
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The Original Form of MPC for Regulation to the Origin Problems
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min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

1

Sample Q-Factors Simulation Control 1 State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

1

Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

1

Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

1

System: xk+1 = f (xk , uk ); 0 is an absorbing (goal) state, f (0, u) ≡ 0.

Cost per stage: g(xk , uk ) > 0, except that 0 is cost-free, g(0, u) ≡ 0.

Control constraints: uk ∈ U(xk ) for all k . Perfect state information.

MPC: At xk solve an `-step lookahead version of the problem, requiring xk+` = 0
(`: fixed and sufficiently large to allow the transfer to 0).

If {ũk , . . . , ũk+`−1} is the control sequence so obtained, apply ũk , discard ũk+1, . . .
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Relation to Rollout - Stability

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial City Current Partial Tour Next Cities Next States

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Sample Q-Factors Simulation Control 1 Control 2 Control 3

Complete Tours Current Partial Tour Next Cities Next States

Q1,n + R1,n Q2,n + R2,n Q3,n + R3,n

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation Control 1 States xk+`

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

1

Sample Q-Factors Simulation Control 1 States xk+`

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

1

Sample Q-Factors Simulation Control 1 States xk+`

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

1

Sample Q-Factors Simulation Control 1 State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃
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1

MPC is rollout w/ base heuristic the (`− 1)-step min to 0 (and stay at 0).

Let H(x) denote the optimal cost of the (`− 1)-step min, starting from x .

This heuristic is sequentially improving (not sequentially consistent), i.e.,
min

u∈U(x)

[
g(x , u) + H

(
f (x , u)

)]
︸ ︷︷ ︸

opt cost from x to 0 in ` steps
then stay at 0 for additional steps

≤ H(x)︸ ︷︷ ︸
opt cost from x to 0 in (` − 1) steps

then stay at 0 for additional steps

because (opt. cost to reach 0 in ` steps) ≤ (opt. cost to reach 0 in `− 1 steps)

Sequential improvement→ “stability", i.e., that the MPC controller has a finite cost
from every initial state x0.

Reason: By the cost improvement property, the cost of the MPC controller starting
from x0 is no greater than H(x0) <∞.
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A Major Variant: MPC with Terminal Cost

At state x0, instead of requiring that x` = 0, we solve

min
ui , i=0,...,`−1

[
G(x`) +

`−1∑
i=0

g(xi , ui )

]
,

subject to ui ∈ U(xi ) and xi+1 = f (xi , ui ), where G(x) > 0 for x 6= 0, and G(0) = 0.

This is `-step lookahead minimization with terminal cost function G.

Let us assume that TG ≤ G, where T is the min-Bellman operator, i.e., for all x ,

(TG)(x) = min
u∈U(x)

[
g(x , u) + G

(
f (x , u)

)]
≤ G(x).

We can show that this condition implies stability of the MPC controller. An
analytical proof is possible (see the “Lessons ..." book, Section 3.2), but we give a
graphical argument in this lecture.

The argument is based on the concept of the region of stability: this is the set of all
J̃ such that the policy µ̃ obtained by one-step lookahead minimization,

Tµ̃J̃ = T J̃,

is stable.
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Newton step from T ℓ−1J̃ for solving J = TJ (TJ)(1)

First Step First ℓ Steps “Future”

2

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J

T 2J̃ T J̃ J̃ Region where TG  G

TJ Instability Region Stability Region 0 Tm
µ J̃ ` = 3

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + b2K1

F (K) =
a2rK

r + b2K

Terminal Cost Approximation G m-Step Truncated Rollout with Sta-
ble Policy µ

m-Step Truncated Rollout with Stable Policy µ x

`-Step Lookahead Minimization

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 � 1 T `�1G

Tµ̃(Tm
µ J̃) = T (Tm

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Tµ̃T `�1(Tm
µ G) = T `(Tm

µ G) Tµ̃T `�1G = T `G

T `�1(Tm
µ G)

Yields Truncated Rollout Policy µ̃ Defined by MPC Policy µ̃

Newton step from J̃ for solving J = TJ G T `(Tm
µ G) Tm

µ G

Newton step from T `�1J̃ for solving J = TJ (TJ)(1) T `�1G

First Step First ` Steps “Future”

2

On-Line Player Performance ` Steps m Steps Slope =1

Cost Function Approximation Position Evaluator

e.g., `� 1 Lookahead Minimization Steps m Steps of Rollout

Robust Base Policy

Approximately Reoptimized Rollout Policy

Exactly Reoptimized Policy

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1

J 0 Jµ = � 1
µ TµJ = �µ + (1 � µ2)J TJ = minµ2(0,1] TµJ

L̃ = � abK̃

r + b2K̃

Region of Instability Region of Stability TµJ = �µ + (1 � µ2)J K̂

y⇤ U⇤ = {1, 2} H(y) = min
�
H1(y), H2(y), H3(y)

 
U(k) = {1, 3}

0 y H1(y) H2(y) H3(y) U(k) = {1} U(k) = {2} ` = 2, m = 4

State 1 State 2 K⇤ K⇤ = 0 K̄ K̂ 2-State/2-Control Example y⇤

E↵ective Cost Approximation Value Space Approximation State 1
State 2 (TJ)(1)

Base Policy J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ � r
b2

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost `-Step Lookahead

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

1

TG ≤ G implies that G lies in the region of stability, and so does T `G for any ` ≥ 1
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MPC with `-Step Lookahead Minimization, m-Step Truncated Rollout,
and Terminal Cost Function G: The AlphaZero Architecture!

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

 

M =
�
(u, w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

 

M =
�
(u,w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

 

M =
�
(u,w) | there exists x ⇧ X

1

Cost-to-go approximation Expected value approximation TµJ
Jµ = TµJµ Jµ̃ = Tµ̃Jµ̃

Simplified minimization

min
u2U(x)

nX

y=1

pxy(u)
�
g(x, u, y) + ↵J̃(y)

�

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 � r

↵b2 K̃ K K⇤ Kk Kk+1 F (K) = ↵rK
r+↵b2K + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step Value Network Policy Network

Approximation of E{·}: Approximate minimization:

min
u2U(x)

nX

y=1

pxy(u)
�
g(x, u, y) + ↵J̃(y)

�

x1
k, u1

k u2
k x2

k dk ⌧

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
�
ỹk, uk, R(yk+1)

�
2 C

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ1 x̃2 ũ2 x̃3

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x⇤
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n � 1
n � 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

1

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y)

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

Optimal Cost Terminal States Cost Approximation Cost g(i, u, j) Policy µ State Space First Stage

“Future”

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

Tµ̃T m
µ J̃ = TT m

µ J̃ Yields Truncated Rollout Policy µ̃ Defined by

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

 

M =
�
(u,w) | there exists x ⇧ X

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K Tangent Line of Unstable Policy

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Stability Region Slope=1

also Newton Step

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method

1

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + b2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Tµ̃T ℓ−1(T m
µ G) = T ℓ(T m

µ G) Yields Truncated Rollout Policy µ̃ De-
fined by

Newton step from J̃ for solving J = TJ G

Newton step from T ℓ−1J̃ for solving J = TJ (TJ)(1)

First Step First ℓ Steps “Future”

2

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + b2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Tµ̃T ℓ−1(T m
µ G) = T ℓ(T m

µ G) Yields Truncated Rollout Policy µ̃ De-
fined by

Newton step from J̃ for solving J = TJ G

Newton step from T ℓ−1J̃ for solving J = TJ (TJ)(1)

First Step First ℓ Steps “Future”

2

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + b2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Tµ̃T ℓ−1(T m
µ G) = T ℓ(T m

µ G)

Yields Truncated Rollout Policy µ̃ Defined by MPC Policy µ̃

Newton step from J̃ for solving J = TJ G T ℓ(T m
µ G)

Newton step from T ℓ−1J̃ for solving J = TJ (TJ)(1)

First Step First ℓ Steps “Future”

2

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

1

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + b2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Tµ̃T ℓ−1(T m
µ G) = T ℓ(T m

µ G)

Yields Truncated Rollout Policy µ̃ Defined by MPC Policy µ̃

Newton step from J̃ for solving J = TJ G T ℓ(T m
µ G)

Newton step from T ℓ−1J̃ for solving J = TJ (TJ)(1)

First Step First ℓ Steps “Future”

2

On-Line Player Performance ℓ Steps m Steps

Cost Function Approximation Position Evaluator

e.g., ℓ − 1 Lookahead Minimization Steps m Steps of Rollout

Robust Base Policy

Approximately Reoptimized Rollout Policy

Exactly Reoptimized Policy

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

y∗ U∗ = {1, 2} H(y) = min
{
H1(y), H2(y), H3(y)

}
U(k) = {1, 3}

0 y H1(y) H2(y) H3(y) U(k) = {1} U(k) = {2}

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example y∗

Effective Cost Approximation Value Space Approximation State 1
State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost ℓ-Step Lookahead

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

1

On-Line Player Performance ℓ Steps m Steps

Cost Function Approximation Position Evaluator

e.g., ℓ − 1 Lookahead Minimization Steps m Steps of Rollout

Robust Base Policy

Approximately Reoptimized Rollout Policy

Exactly Reoptimized Policy

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

y∗ U∗ = {1, 2} H(y) = min
{
H1(y), H2(y), H3(y)

}
U(k) = {1, 3}

0 y H1(y) H2(y) H3(y) U(k) = {1} U(k) = {2} ℓ = 2, m = 4

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example y∗

Effective Cost Approximation Value Space Approximation State 1
State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost ℓ-Step Lookahead

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

1

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + b2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃
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Cost of rollout policy µ̃ Cost of base policy µ

1

Larger values of m and ` help make the MPC policy stable
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Other Variants of MPC
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Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,
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Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
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gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :
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Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk
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∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :
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Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)
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(
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)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N
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Φr = Π
(
T

(λ)
µ (Φr)

)
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T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

T 2J̃ T J̃ J̃ Region where TJ ≤ J

TJ Instability Region Stability Region 0 T m
µ J̃ ℓ = 3

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + b2K1

F (K) =
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r + b2K
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µ G) Tµ̃T ℓ−1G = T ℓG
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Cost of rollout policy µ̃ Cost of base policy µ
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22 Unstable System xk+1 = 2xk + uk

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13
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One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J
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Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method Riccati Equation

Cost of rollout policy µ̃ Cost of base policy µ
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Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 ∈ X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J
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also Newton Step Value Iteration: Kk+1 = F (Kk)
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Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 ∈ X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = − abK̃
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a −a
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r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J K̃ µK
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also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from
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Line Stable Policies Unstable Policy Optimal Policy

Region of stability

Also Region of Convergence of Newton’s Method Riccati Equation

Cost of rollout policy µ̃ Cost of base policy µ

1

MPC with state/safety/tube constraints: xk ∈ X for all k
Special difficulty: The tube constraint may be impossible to satisfy for some x0 ∈ X

Need to construct (off-line) an inner tube from within which the state constraints
can be met

Leads to the methods of reachability of target tubes (my 1971 PhD thesis, on-line)

Combinations with off-line training methods
Training of terminal cost function approximation, a base policy for truncated rollout, etc

MPC for stochastic problems: Must solve an `-step stochastic DP problem
on-line. Can be dealt with certainty equivalence, except for the first stage
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Multiagent Problems - A Very Old (1960s) and Well-Researched Field
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1

Multiple agents collecting and sharing information selectively with each other and
with an environment/computing cloud

Agent i applies decision ui sequentially in discrete time based on info received

The major mathematical distinction between structures
The classical information pattern: Agents are fully cooperative, fully sharing and
never forgetting information. Can be treated by Dynamic Programming (DP)

The nonclassical information pattern: Agents are partially sharing information, and
may be antagonistic. HARD because it cannot be treated by DP
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Our Starting Point: A Classical Information Pattern ... but we will
Generalize
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Ĵµ Approximation to Jµ

Approximate Jµ Multiagent Sensor Info State Info

1

xk, u1
k xk, u1

k, u2
k xk, u1

k, . . . , um�1
k Control um

k u3
k um�1

k

u1 u2 um x, u1 x, u1, u2 Agent 1 Agent m

Approximation µ̂ to Multiagent Rollout Policy µ̃
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Ĵµ Approximation to Jµ

Approximate Jµ Multiagent Sensor Info State Info

1

xk, u1
k xk, u1

k, u2
k xk, u1

k, . . . , um−1
k Control um

k u3
k um−1

k

u1 u2 um x, u1 x, u1, u2 Agent 1 Agent m

Approximation µ̂ to Multiagent Rollout Policy µ̃
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The agents have exact state info, and choose their controls as functions of the state

Model: Stochastic DP (finite or infinite horizon) with state x and control u
Decision/control has m components u = (u1, . . . , um) corresponding to m “agents"

“Agents" is just a metaphor - the important math structure is u = (u1, . . . , um)

We apply approximate DP/rollout ideas, aiming at faster computation in order to:
I Deal with the exponential size of the search/control space
I Be able to compute the agent controls in parallel (in the process we will deal in part with

nonclassical info pattern issues)
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Multiagent Rollout/Policy Improvement When u = (u1, . . . ,um)

To simplify notation, consider infinite horizon setting. The standard rollout operation is(
µ̃1(x), . . . , µ̃m(x)

)
∈ arg min

(u1,...,um)
Ew

{
g(x , u1, . . . , um,w) + αJµ

(
f (x , u1, . . . , um,w)

)}
;

the search space is exponential in m (µ is the base policy, seq. consistency holds)

Multiagent rollout (a form of simplified rollout; implies cost improvement)
Perform a sequence of m successive minimizations, one-agent-at-a-time

µ̃1(x) ∈ arg min
u1

Ew

{
g(x , u1, µ2(x), . . . , µm(x),w) + αJµ

(
f (x , u1, µ2(x), . . . , µm(x),w)

)}
µ̃2(x) ∈ arg min

u2
Ew

{
g(x , µ̃1(x), u2, µ3(x) . . . , µm(x),w)+αJµ

(
f (x , µ̃1(x), u2, µ3(x), . . . , µm(x),w)

)}
. . . . . . . . . . . .

µ̃m(x) ∈ arg min
um

Ew

{
g(x , µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um,w)+αJµ

(
f (x , µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um,w)

)}
Has a search space with size that is linear in m; ENORMOUS SPEEDUP!

Survey reference: Bertsekas, D., "Multiagent Reinforcement Learning: Rollout and
Policy Iteration," IEEE/CAA J. of Aut. Sinica, 2021 (and earlier papers quoted there).
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Spiders-and-Flies Example
(e.g., Delivery, Maintenance, Search-and-Rescue, Firefighting)

xk+1 = f(xk, uk, wk)

Agent 2 Agent 3 Agent 4 Agent 5 Environment Computing Cloud

15 spiders move in 4 directions with perfect vision

3 blind flies move randomly

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy , etc

µ̂k(xk) J̃k(xk) rt rt+1u1 u2 u3 u4 u5

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy Cost of Base Policy
Lookahead Minimization

Control Probabilities Rollout Control State x Feature Vector φ(x)

Approximator r′φ(x)

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1
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1

Objective is to catch the flies in minimum time

At each time we must select one out of ≈ 515 joint move choices

Multiagent rollout reduces this to 5 · 15 = 75 choices (while maintaining cost
improvement); applies a sequence of one-spider-at-a-time moves

Later, we will introduce “precomputed signaling/coordination" between the spiders,
so the 15 spiders will choose moves in parallel (extra speedup factor of up to 15)
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Four Spiders and Two Flies: Illustration of Various Forms of Rollout

Video: Base Policy Video: Standard Rollout Video: Mutiagent Rollout

Base policy: Move along the shortest path to the closest surviving fly (in the Manhattan
distance metric). No coordination.

Time to catch the flies
Base policy (each spider follows the shortest path): Capture time = 85

Standard rollout (all spiders move at once, 54 = 625 move choices):
Capture time = 34

Agent-by-agent rollout (spiders move one at a time, 4 · 5 = 20 move choices):
Capture time = 34
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Let’s Take a Working Break

...
Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :
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Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ
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Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

xk+1 = f(xk, uk, wk) ↵kg(xk, uk, wk)
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�
F (i)

�
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Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

Think about an equivalent problem reformulation for multiagent rollout
“Unfold" the control action

Consider standard (not multiagent) rollout for the reformulated problem

What about cost improvement?
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Justification of Cost Improvement through Reformulation: Trading off
Control and State Complexity (NDP Book, 1996)

...
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(λ)
µ (Φr)
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Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)
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Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)
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Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)
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F (i)

�
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gk(xk, uk, wk) +
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�
+ J̃k+`(xk+`)

o
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c
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min
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E
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k+`�1X
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�
xm, µm(xm), wm

�
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o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search
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c

T (�)(x) = T (x) x = P (c)(x)

1

An equivalent reformulation - “Unfolding" the control action
The control space is simplified at the expense of m − 1 additional layers of states,
and corresponding m − 1 cost functions

J1(x , u1), J2(x , u1, u2), . . . , Jm−1(x , u1, . . . , um−1)

Multiagent rollout is just standard rollout for the reformulated problem

The increase in size of the state space does not adversely affect rollout (only one
state per stage is looked at during on-line play)

Complexity reduction: The one-step lookahead branching factor is reduced from
nm to n ·m, where n is the number of possible choices for each component ui
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Multiagent MPC (A Form of Simplified MPC)

Consider MPC where uk consists of both discrete and continuous components

uk = (y1
k , . . . , y

m
k , vk ),

where y1
k , . . . , y

m
k are discrete, and vk is continuous.

For example y1
k , ..., y

m
k may be system configuration variables, and vk may be a

multidimensional vector with real components (e.g., as in linear quadratic control).

The base policy may consist of a “nominal configuration" ȳ1
k , ..., ȳ

m
k (that depends

on the state xk ), and a continuous control policy that drives the state to 0 in (`− 1)
steps with minimum cost.
In a component-by-component version of MPC, at state xk :

I y1
k , . . . , y

m
k are first chosen one-at-a-time, and with all future components fixed at the

values determined by the nominal configuration/base policy.
I Then the continuous component vk is chosen to drive the state to 0 in ` steps at

minimum cost with the discrete components fixed.
This simplifies lookahead minimization by:

I Separating the “difficult" minimization over y1
k , . . . , y

m
k from the continuous minimization

over vk
I Optimizing over y1

k , . . . , y
m
k one-at-a-time (simpler integer programming problem).

Maintains the cost improvement/stability property of MPC.
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Parallelization of Agent Actions in Multiagent Rollout:
Allowing for Agent Autonomy

Multiagent rollout/policy improvement is an inherently serial computation. How can we
parallelize it, to get extra speedup, and also deal with agent autonomy?

Precomputed signaling
Obstacle to parallelization: To compute the agent ` rollout control we need the
rollout controls of the preceding agents i < `

Signaling remedy: Use precomputed substitute “guesses" µ̂i (x) in place of the
preceding rollout controls µ̃i (x)

Signaling possibilities
Use the base policy controls for signaling µ̂i (x) = µi (x), i = 1, . . . , `− 1 (this may
work poorly)

Use a neural net representation of the rollout policy controls for signaling
µ̂i (x) ≈ µ̃i (x), i = 1, . . . , `− 1 (this requires training/off-line computation)

Other, problem-specific possibilities
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The Pitfall of Using the Base Policy for Signaling

Base Policy Rollout Policy Approximation in Value Space n n − 1

One-Step or Multistep Lookahead for stages

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation
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min
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E
w
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f(x, u, w)

)}
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k + u2
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Two spiders trying to catch two stationary flies in minimum time
The spiders have perfect vision/perfect information. The flies do not move.

Base policy for eachspider: Move one step towards the closest surviving fly

Performance of various algorithms
Optimal policy: Split the spiders towards their closest flies

Standard rollout is optimal for all initial states (it can be verified)

Agent-by-agent rollout is also optimal for all initial states (it can be verified)

Agent-by-agent rollout with base policy signaling is optimal for “most" initial states,
with A SIGNIFICANT EXCEPTION

When the spiders start at the same location, the spiders oscillate and never catch
the flies
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Multirobot Repair of a Network of Damaged Sites (2020 Paper by
Bhatacharya, Kailas, Badyal, Gil, DPB, from my Website)

Damage level of each site is unknown, except when inspected. It deteriorates
according to a known Markov chain unless the site is repaired (this is a POMDP)

Control choice of each robot: Inspect and repair (which takes one unit time), or
inspect and move to a neighboring site

State of the system: The set of robot locations, plus the belief state of the site
damages

Stage cost at each unrepaired site: Depends on the level of its damage
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Videos: Multirobot Repair in a Network of Damaged Sites
(Agents Start from the Same Location)

Video: Base Policy (Shortest Path/No Coordination) Video: Multiagent Rollout

Video: Multiagent with Base Policy Signaling Video: Multiagent with Policy Network Signaling

Cost comparisons
Base policy cost: 5294 (30 steps)

Multiagent rollout : 1124 (9 steps)

Multiagent Rollout with base policy signaling: 31109 (Never stops)

Multiagent Rollout with neural network policy signaling: 2763 (15 steps)

We will return to this problem in the future (in the context of infinite horizon policy
iteration)
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About the Next Lecture

We will cover:
Rollout algorithms for constrained deterministic problems

Applications in combinatorial and discrete optimization

Note on today’s and next lectures:
The material on rollout and MPC are minimally covered in the class notes. The
book "Lessons from AlphaZero ..." has more material.

Multiagent rollout is covered extensively in the survey paper D. P. Bertsekas,
“Multiagent Reinforcement Learning: Rollout and Policy Iteration," IEEE/CAA
Journal of Automatica Sinica, Vol. 8, 2021, pp. 249-271; see also the
corresponding Video at http://web.mit.edu/dimitrib/www/RLbook.html.

Homework: Exercise 1.3 of latest version of class notes; due Sunday, Feb. 27

About questions on your project
Send me email (dbertsek@asu.edu)

Make appointment to talk by zoom (there are no fixed office hours in this course)
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