Topics in Reinforcement Learning:
Lessons from AlphaZero for
(Sub)Optimal Control and Discrete Optimization

Arizona State University
Course CSE 691, Spring 2022

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 4

Adaptive Control
A Closer Look at Value and Policy Approximations in DP/RL

Bertsekas Reinforcement Learning 1/31

° Review

e Problems with Changing Parameters: Adaptive Control
e Structure of Approximations in Value and Policy Space

0 General Issues of Approximation in Value Space

Bertsekas Reinforcement Learning 2/31

Overview of What we Have Done

@ The first four lectures (including this one) are “big picture" lectures aiming to draw
the broad conceptual framework of our subject and course

@ Our focal point is approximation in value space and the AlphaZero paradigm
(appropriately generalized): Using on-line play to improve on the results of off-line
training

@ Future lectures will go in greater depth into selected parts of the picture

What we have done so far in summary

@ Lecture 1: AlphaZero as a motivating example, off-line training and on-line play,
generalities about RL/DP, exact finite horizon deterministic DP, examples

@ Lecture 2: Exact finite horizon stochastic DP, overview of infinite horizon DP,
examples, linear quadratic problems

@ Lecture 3: Approximation in value space and the Newton method viewpoint in the
context of linear quadratic problems. Examples of problem formulations and
reformulations, including multiagent problems, POMDP, etc

@ Lecture 4 (today): Broad issues of adaptive and model predictive control.
Overview of conceptual and implementation aspects of approximation in value
space and its connections to approximation in policy space

Bertsekas Reinforcement Learning 4/31

Overview of Where we are Going

Our plan for future lectures: We will cover in some depth and detalil

@ Rollout for finite horizon discrete-deterministic and stochastic problems
More on model predictive control
More on multiagent problems
Off-line training using neural networks and approximation architectures
Infinite horizon problems in greater theoretical detail
Infinite horizon approximate DP/RL. Focus on variants of Pl
Off-line training of policies by policy gradient and random search methods
Aggregation

Bertsekas Reinforcement Learning 5/31

Changing Problem Parameters: Adaptive Control (1960s —)

Example: A cruise control-type problem (keep velocity close to a target level)

@ Control car velocity: xx.1 = axx + buk (a < 1 models friction, wind drag, etc, b > 0
depends on road, number of passengers, etc)

@ Cost over N stages: (xy — X)° + >3 ((xk — X)? + ruf), where r > 0 is given

@ ... but a, b, and x are changing all the time; they may be measured with error (?)

v

Adaptive control deals with such situations. Some possibilities:

@ Ignore the changes in parameters; design a controller that is robust (“works" for a
broad range of parameters). PID control is a time-honored relevant methodology

@ Try to estimate the parameters, and use the estimates to modify the controller
On-line replanning by optimization; modify the controller to make it optimal for the
current set of estimates. This is sophisticated/time consuming: needs on-line system
identification, and optimal control computation. Has other pitfalls (identifiability; see
notes)...
On-line replanning by rollout with a base policy whose cost function is computed using
the current parameter estimates. This is a simpler (approximate) reoptimization ...

Bertsekas Reinforcement Learning 7/31

On-Line Replanning by Optimization (Indirect Adaptive Control)

Data
System i
State
- Controller |«
Control
Parameter
Estimation [~
Introduce on-line estimation of changing parameters)

@ Recompute the controller so it is optimal for the new set of parameters

@ This can be time-consuming, so a suboptimal controller may be used instead (e.g.,
based on approximation in value space)

Bertsekas Reinforcement Learning 8/31

On-Line Replanning by Rollout/Approximation in Value Space

Cost, and Constraint
Parameters

Lookahead
Minimization Rollout with (ift
Base Policy IApproximation
e e i e e »@®--|-4---»@
R e »@-1-1---»@
Possible States B »®-1-1---»@
Th+1

Use on-line replanning with rollout instead of controller reoptimization; this is faster)

@ Introduce new parameter estimates in the lookahead minimization and the rollout
@ Continue to use the same base policy
@ Possibly recalculate the base policy in the background

Bertsekas Reinforcement Learning 9/31

A Linear-Quadratic Example of On-Line Replanning

247
2210 Robust
© Base Policy
Cost 0

18)

= X i \17])1‘(\\:1\1{;\1&\'
161 \\ Yo Reoptimized

Y . Rollout Policy
14} e
12l Exactly
“[Reoptimized ¥ >
1L Peliey

0.6 08 1 12 1.4 1.6 18 2 22 24

Performance comparison of on-line replanning by rollout and by optimization
Note the effect of Newton’s method

One-dimensional linear-quadratic example:

N—1
Xir1 = X+ bug, Cost=lim > (K + rug)
k=0

Quadratic cost coefficient as b changes. Base policy is optimal for b = 2

Bertsekas Reinforcement Learning 10/31

Model Predictive Control - A Form of Approximation in Value Space

Next States
Th41

Current State State

(¢ — 1)-Stages Tpte =0 System: wx1 = f (g, ur)

Minimization Cost: g(xg,ur) >0, forall (xy,u)

The system can be kept at the origin
at zero cost by some control

Stage k i Stages
E+1,... k+£-1

Consider undiscounted infinite horizon; we want to keep the system near 0 J

@ Original form of MPC: We minimize the cost function over the next ¢ stages while
requiring Xx+» = 0

@ We apply the first control of the minimizing sequence, discard the other controls

@ This is rollout w/ base heuristic the min that drives xx., to 0 in (¢ — 1) steps

@ Well-suited for on-line replanning

@ A variant that uses a terminal cost approximation instead of xx;, = 0; can be
viewed as rollout/approximation in value space with single or multistep lookahead

Bertsekas Reinforcement Learning 11/31

Recall the Stochastic DP Algorithm

Produces the optimal costs J;(xx) of the tail subproblems that start at xx
Start with Jy(xn) = gn(xn), and fork =0,...,N —1, let

Ji(X) = min E{gk(xk,uk,wk)+JZ+1(fk(xk,uk,Wk))}, for all x.
Uk € Uk (xk)

@ The optimal cost J*(xp) is obtained at the last step: J; (x0) = J* (o).

Online implementation of the optimal policy, given J;, ..., J§_,

Sequentially, going forward, for k = 0,1,..., N — 1, observe xx and apply

Ug €arg min E{Qk(X;n Ui, Wie) + Ji g1 (fie(Xc, Uiy Wk)>}~
Uk € U (xic)

The main difficulties: Too much computation, too much memory storage for J .

Approximation in value space:

Use Ji.1 in place of J;

Bertsekas Reinforcement Learning 13/31

Approximation in Value Space: One-Step Lookahead

Approximate Min

Discretization

Simplification First Step “Future”
Multiagent -— »

\?nin/‘E{gk(xk, (O wk)+~fk+<$k+l)}

UL

Approximate Cost-to-Go jk+l

Approximate E{-} Problem approximation
Certainty equivalence Rollout, Model Predictive Control
Adaptive simulation Parametric approximation
Monte Carlo tree search Neural nets
Aggregation

Approximation in value space and one-step lookahead minimization defines:
@ The control to use at state xx for on-line play
@ A suboptimal control law fix

The three approximations; they can be addressed separately
@ How to construct the cost function approximations Jx.,1?
@ How to simplify E{-} operation?
@ How to simplify min operation?

Bertsekas Reinforcement Learning 14/31

Approximation in Value Space: Multistep Lookahead

At State z;

DP minimization

First ¢ Steps “Future”
l k+0—1 B
min E{gk (mkw U, wk) + Z gm (Inu Hm (ﬁpm)-, U7m) + JIH»Z (xlﬁ»l)}
Uk sl 4150 s Bk4£—1 e
Cost-to-go

Lookahead Minimization Approximation

@ At state xk, we solve an ¢-stage version of the DP problem with xi as the initial
state and Jx,» as the terminal cost function

@ Use the first control of the ¢-stage policy thus obtained, discard the others

We can view ¢-step lookahead as a special case of one-step lookahead:

The “effective” one-step lookahead approximate cost function is the optimal cost
function of an (¢ — 1)-stage DP problem with terminal cost Jx.¢

The three (largely independent) approximations apply J

Bertsekas Reinforcement Learning 15/31

Approximation in Value Space For Infinite Horizon

Approximate Q-Factor Q(x, u)

»

Min Approximation First Step “Puture”
«— > — »

At T f—r uglUl?x) 5 {g(l‘, U, ’LU) + Ola?(f(l’, u, w))}

E{-} Approximation Optimal Cost Approximation
————————— One-Step Lookahead ———M—————-

First ¢ Steps “Future”

< »
< » 4+— p

k+4—1
: i—k s . 0T
e i {g(xk,uk,ww + :Xk; ai=hg(as, pa(:), wi) + @ J(xku)}

————————— Multistep Lookahead — — — — .

Bertsekas Reinforcement Learning 16/31

Newton Step View of One-Step Lookahead Minimization

Corresponds to Ta
One-Step Lookahead
Policy /i \

I T

|
|

<

|
|
|
|
Newhton,| Step
|

|
— |
|
~ |
/ I J / | Result of
|

|

| Newton step from J
I for solving J =TJ
|

J

Optimal cost |

Jr=TJ *\\
0 J Ji=TuJn J
Cost Approximation One—SteP Logkallezld
Off-Line Training Policy Cost

On-Line Play
(TY)(x) = urendpx) E{g(x, u, w) + ad(f(x, u, w)) }, for all x

(TuJ)(x) = E{g(x, w(x), w) + o (f(x, p(x), w))}, for all x

Bertsekas Reinforcement Learning 17/31

Local and Global Performance Estimates

@ The Newton step (Jto Ju) interpretation suggests a local superlinear performance
estimate (for J near J*)

max |Jz (x) — J*(x)| = o(mxax |J(x) - J*(x)|)
@ When Jis far from J*, the difference max, |Jz(x) — J*(x)| may be large and even

infinite when ji is unstable
@ There are global estimates (don’t depend on J ~ J*), including

max |Ja(x) = J(x)| < Zfe max| J(x) — J* (%))

for ¢-step lookahead, and «a-discounted problems

@ These global estimates tend to be overly conservative and not representative of
the performance of approximation in value space schemes when J is near J*
@ Example: For finite spaces a-discounted MDP, /i can be shown to be optimal if

max |J(x) — J*(x)|

is sufficiently small (the Bellman operator is piecewise linear). The global
performance bound is way off!

R — S — e —
Bertsekas Reinforcement Learning 18/31

Let’s Take a Break; Consider the Following Challenge Question

Will longer lookahead produce a better policy than shorter lookahead?

Consider the following example J

0~ Optimal
U
Initial

Stat . .
ae Suboptimal

2-step lookahead
3-step lookahead

Two controls, u, u’, and cost function approximation Jk(xk) =0.
There is a choice only at xg.

Bertsekas Reinforcement Learning 19/31

The Answer is that “Usually" Longer is Better, but NOT for this Example

0~0Optimal
u
Initial

State Suboptimal

2-step lookahead
3-step lookahead

Problem with “edge effects": u will be preferred based on 2-step lookahead. v’ will be
preferred based on 3-step lookahead J

Bertsekas Reinforcement Learning 20/31

Multistep Lookahead with Deterministic Optimizations

ot——

e

— T

Jire
— T
Lookahead trce\‘o/
£ Steps [———

Shortest path problem

—
(Cost Function

TN

If the problem is deterministic with finite control space, the lookahead minimization is a
shortest path problem and may be solved on-line

If the problem has continuous-state/control

@ In the deterministic case, the lookahead minimization may be quickly solvable by
nonlinear programming (MPC case)

@ In the stochastic case, the lookahead minimization may be solvable by stochastic
programming (a deterministic opt. method to be discussed later)

If the problem is stochastic with finite state and control spaces, the lookahead
minimization can be split into a first stochastic step and a deterministic remainder; i.e.,
use a deterministic shortest path problem approximation for the remaining steps

Bertsekas Reinforcement Learning 21/31

Approximation in Policy Space: The Major Alternative to Approximation

in Value Space

Control
U = llk (xkv Tk) System State Tk

» >
>

”| Environment

Cpntroller B
P (i) [T

Training Data

@ Idea: Select the policy by optimization over a suitably restricted class of policies

@ The restricted class is usually a parametric family of policies fix(Xk, rk),
k=0,...,N—1, of some form, where rx is a parameter (e.g., a neural net)

@ Methods used for optimization: Random search, policy gradient, classification (to
be discussed later)

@ Important advantage once the parameters rx are computed: The on-line
computation of controls is often much faster ... at state xx apply ux = fix(X«, rk)

@ Important disadvantage: It does not allow for on-line replanning ... no Newton step

Bertsekas Reinforcement Learning 22/31

From Values to Policies by Approximation in Value Space

The approximate cost-to-go functions Ji.1 define a suboptimal policy fix
through one-step or multistep lookahead minimization

@ Given functions Ji 1, how do we simplify the computation of ji?
@ |dea: Approximate jix using some form of least squares and a training set of a
large number q of sample pairs (xg, ug), s=1,...,q, where u; = jik(Xg):
Ug € arg min E{gk Xy U, wie) + Jirr (Fe(XE, u, Wk))}

u€e Uy (xx)
Similarly for multistep lookahead. (But the Newton step interpretation is lost.)

@ Example (for finite number of controls): Introduce a parametric family of
randomized policies px(Xx,), k =0,...,
where r is a parameter. Then estimate the parameters r, by least squares fit:

d 2
ry € arg mrmZ llug — (X2,)|
s=1

@ Relation to classification methods ... policy <— classifier; more on this later.

N — 1, of some form (e.g., a neural net),

Bertsekas Reinforcement Learning

23/31

From Policies to Values by Rollout

Stages Beyond
Truncation
7777777777777777777 [~®

Rollout

with
,,,,,,,,,,,,,,,,,, Y
Terminal Cost
Approximation
,,,,,,,,,,,,,,,,,, »glor Stages

Beyond

Truncation

,,,,,,,,,,,,,,,,,, »®

,,,,,,,,,,,,,,,,,, Y

Possible
States @j1

@ Start with some policy = = {uo, - .., un—1}, @ base policy, possibly obtained
through approximation in policy space

@ Use one-step or multistep lookahead rollout where Jy ;1 (Xk:1) ~ Jir1.x(Xk11)
@ The policy 7 = {jio, . - ., in—1 } thus obtained is the truncated rollout policy

@ Important issue: How to compute Jki1,x(Xk+1)?

For deterministic problems: Run 7 from x4 once and accumulate stage costs
For stochastic problems: Run 7 from x4 many times and Monte Carlo average

Bertsekas Reinforcement Learning 24/31

Combined Approximation in Value and Policy Space

Approximation —
.| Base | in Value Space .| Approximation _
| Policy "l Multistep "|in Policy Space o
Lookahead
Cost Data Policy Data

by Simulation by Rollout

A

Approximate Rollout Policy
Perpetual rollout and policy improvement

@ A fundamental property: In its idealized form (no approximations) each new policy
has no worse cost function than the preceding one, i.e., for all xx and k,

Jk,7#(Xk) < Ik, (Xk)

@ Thus the algorithm is capable of self-improvement or self-learning (no external
training data is needed)

@ lts natural extension to infinite horizon problems is the policy iteration (PI)
algorithm, and its foundation is the policy improvement property

@ With approximations, self-improvement is approximate (to within an error bound)

@ There are many variations of this scheme: Optimistic PI, Q-learning, temporal
differences, etc. They involve challenging implementation issues

Bertsekas Reinforcement Learning 25/31

Balance Between Off-Line and On-Line Computations

Approximate Min

Discretization

Simplification First Step “Future”
Multiagent -

\?Ilﬂ‘n/E{gk(xk, Uk, wk)—l—jkuriil’k“)}

Approximate Cost-to-Go j;,qr 1

Approximate E{-} Problem approximation
Certainty equivalence Rollout, Model Predictive Control
Adaptive simulation Parametric approximation

Neural nets

Monte Carlo tree search ;
Aggregation

@ Off-line methods (primarily): All the functions Jx1 are computed off-line for every
k (also base policy, if on-line rollout is involved), before the control process begins.

@ Examples of off-line methods: Use of neural network and other parametric
approximations in the context of Pl-like methods; also aggregation.

@ Approximation in policy space is essentially an off-line method.

@ On-line methods (primarily): The values Ji1(xk:1) are computed only at the
relevant next states xx..1, and are used to compute the control to be applied at the
N time steps.

@ Examples of on-line methods: Rollout and MPC.

Bertsekas Reinforcement Learning 27/31

Probabilistic Approximations: Simplifying the Expected Value

Calculation

Modify the probability distributions P(wi | Xk, ux) to simplify the lookahead minimization
and/or the calculation/training of Jx¢.

v

Assume certainty equivalence
@ Replace uncertain quantities with deterministic nominal values.

@ Then the lookahead and tail problems are deterministic, so they could be solvable
by DP or by special deterministic methods on-line.

@ Use expected values or forecasts to determine nominal values; update policy
when forecasts change (on-line replanning).

@ A major possibility for POMDP: Use state estimates instead of belief states.

@ A variant: Partial certainty equivalence. Fix only some uncertain quantities to
nominal values.

@ A generalization: Approximate E{-} by limited simulation.

Bertsekas Reinforcement Learning 28/31

Model-Based vs Model-Free

What does model-free mean? Is it good or bad? There is no free lunch in RL)

We will not deal with interactions with the environment for combined model
identification and control (this is hard)

For us it’s all model-based (but the model may be a computer/simulation model)

Monte Carlo simulation is useful when:

@ A mathematical model of the probabilities px(wx | Xk, ux) is not available but a
computer model/simulator is. It simulates sample probabilistic transitions to a
successor state Xy 1

@ When for reasons of computational efficiency we prefer to compute expected
values by using sampling and Monte Carlo simulation; e.g., approximate an
integral or a huge sum of numbers by a Monte Carlo estimate

A common example: Model-free calculations of approximate Q-factors

E{Q’k(Xk, Uk, Wk) + Jii1 (Fe(Xk, Uk, Wk))}

See the next slide

Bertsekas Reinforcement Learning 29/31

Off-Line Model-Free Approximation in Value Space

Sample

Sample
State z}; Next State 25 .. | =~ Sample Q-Factor
Simulator O Jea _ >
Sample Sample . By = g5 + Jra (25 q)
Control uj, Transition Cost g,

Use the simulator to collect a large number of “representative" samples of
state-control-successor states-stage cost quadruplets (xg, ug, X¢. 1, gi), and
corresponding sample Q-factors

Bi=gi +Jni(Xer1), s=1,...,q9

Introduce a parametric family of Q-factors Qk(X«, Uk, r)-
Determine the parameter vector 7, by the least-squares fit

q
T« € arg mrinz (Qu(xE, us, re) — 8%)?
k s=1

Use the policy

fi(xk) € arg min Qu(xk, Uk,)
U € U (xic)

Note: The least squares fit introduces errors and the Newton step property is lost

Bertsekas Reinforcement Learning 30/31

About the Next Lecture

We will cover:
@ Deterministic rollout and variations
@ Rollout for stochastic problems

Homework to be announced next week y

Watch videolecture 5 from 2021 ASU course offering)

Bertsekas Reinforcement Learning 31/31

	Review
	Problems with Changing Parameters: Adaptive Control
	Structure of Approximations in Value and Policy Space
	General Issues of Approximation in Value Space

