Topics in Reinforcement Learning:
Lessons from AlphaZero for
(Sub)Optimal Control and Discrete Optimization

Arizona State University
Course CSE 691, Spring 2022

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 13
Overview of the Entire Course

Bertsekas Reinforcement Learning 1/54

A Major Conceptual Idea: On-Line Play on Top of Off-line Training

2-Step Lookahead i S F-->®

Minimization

Truncated . o |
Rollout Cost Approximfation
ON-LINE
PLAY i it --->®
- Approximate
Cost Function
o S --->@

States @x i1 OFF-LINE
TRAINING
ittt b --->@
States x4
NEWTON Value Iterations
STEP Enhancements to the Starting Point
for Bellman Eq. of Newton Step

Bertsekas Reinforcement Learning 2/54

A Major Issue: We Need Approximations. Where do they Come In?

Approximate Min

Discretization

Simplification First Step “Future”
Multiagent -

\?Iiin/‘E{gk(l’k, Uk, wk)+jk+li:1)k+1)}

Approximate Cost-to-Go jk+1

Approximate E{-} Problem approximation
Certainty equivalence Rollout, Model Predictive Control
Adaptive simulation Parametric approximation
Monte Carlo tree search Neural nets
Aggregation

The three approximations; they can be addressed separately
@ How to construct the cost function approximations Jy..1?
@ How to simplify E{-} operation?
@ How to simplify min operation?

Base policies for rollout are obtained by heuristics or approximation in policy space J

{-step lookahead involves similar approximations J

Bertsekas Reinforcement Learning 3/54

0 AlphaZero - Off-Line Training and On-Line Play

e DP Algorithm for Finite Horizon Problems

e Theory of Infinite Horizon Problems

° Approximation in Value and Policy Space - Off-Line Training and On-Line Play
Q Rollout and Variations

@ !nfinite Control Space Problems - Model Predictive Control
e Multiagent Problems

e Parametric Approximation Architectures and Neural Nets
e Introduction to Infinite Horizon Problems

@ Approximate Policy Iteration

0 Approximation in Policy Space

@ Aggregation

Bertsekas Reinforcement Learning 4/54

Chess and Backgammon - Off-Line Training and On-Line Play

Current Position and Dice Roll

Possible
Moves

1113 11148

v e
i 11
Average Score Average Score Average Score Average Score

Monte-Carlo Monte-Carlo Monte-Carlo Monte-Carlo
imulation imulati mulati SR

*Best Score®

These programs use two distinct types of algorithms:

@ Off-line training (learning process): Precomputes value and policy approximations
(or other useful quantities)

@ On-line play (actual play): Multistep lookahead, rollout (and the precomputed
value and/or policy approximations)

Bertsekas Reinforcement Learning 6/54

Strong Connections to Dynamic Programming

Principal ideas:
@ Rollout: Given a policy, compute a new policy by lookahead minimization
@ Policy iteration: Repeated rollout

@ Policy improvement principle: Each new policy performs better than the preceding
one (fundamental property in policy iteration)

@ Use approximations to deal with the curse of dimensionality

@ Approximation in value and policy space: For example with neural networks or
problem approximation

OUR FOCUS AND POINT OF VIEW IN THIS COURSE

We develop, extend, and unify this methodology, so it applies far more generally to:
@ Dynamic Programming and Operations Research applications
@ Optimal Control, including model predictive control, robotics, and planning
@ Multiagent problems

@ Challenging/intractable Combinatorial Optimization (integer programming)
problems

@ Decision and control in a Changing Environment (adaptive control)

Bertsekas Reinforcement Learning 7154

AlphaZero/AlphaGo/TD-Gammon Off-Line Training by Policy Iteration

Using Self-Generated Data

Off-Line Training Off-Line Training
Current - “Improved”
Player Policy Policy Player
— Evaluation » Improvement -
Value Policy
Network Network

A

Self-Learning/Policy Iteration

@ The “current" player plays games that are used to “train" an “improved" player

@ At a given position, the “value" of a position and the “move probabilities" (the
player) are approximated by neural nets

@ Successive neural nets are trained using self-generated data and a form of
regression

@ TD-Gammon (for the game of backgammon - Tesauro 1992) has similar structure,
but uses only a value network (which also serves as substitute to a policy network
via lookahead minimization)

Bertsekas Reinforcement Learning 8/54

AlphaZero/AlphaGo/TD-Gammon On-Line Play: Multistep Lookahead,

Rollout, and Terminal Cost Approximation

Lookahead Tree

Y S ——re
.\ Truncated Terminal

Current B et E T -—-r@
Rollout Position

Position

. Evaluation
TR il i
Off-Line Obtained
layer
O o)
O, RS
States xpio {
T -Line Play 3
On-Line Play Off-Line Training o 1516 Training

@ Off-line training yields a “value network" and a “policy network" that provide a
position evaluation function and a default/base policy to play
@ On-line play improves the default/base policy by:
Searching forward for several moves
Simulating the base policy for some more moves - approximating the effect of future
moves by using the terminal position evaluation
@ Backgammon programs by Tesauro (1992, 1996) use only an off-line trained value
network

v

Bertsekas Reinforcement Learning 9/54

Stochastic Finite Horizon DP Problems

Random Transition

Th1 = fe(@r, up, wi)

O O DO D
Random Cost

gk(lk’ Uk, wk)

@ System xxi1 = fi(Xk, Uk, Wk) with state xk, control ux, and random “disturbance" w
@ Cost function:

E {QN(XN) + i Gk (Xk, Uk, Wk)}

k=0
@ Policies m = {uo, ..., un—1}, Where py is a “closed-loop control law" or “feedback
policy"/a function of xx. Specifies control ux = uk(xx) to apply when at x.
@ For given initial state xo, minimize over all * = {uo, .. ., un—1} the cost

N1
Jr(X) = E {QN(XN) 4 Z 9k (X, b (X), Wk)}

k=0

@ Optimal cost function J*(xo) = min, Jx(xo)

Bertsekas Reinforcement Learning 11/54

The Stochastic DP Algorithm

Produces the optimal costs J(xx) of the tail subproblems that start at xx
Start with Jy(xv) = gnv(xn), and fork =0,...,N —1, let

J; (Xk) = min E{gk(Xk, U, Wk) + J;+1 (fk(Xk7 Uk, Wk)) }, for all x.
Uk € Uy (xk)

@ The optimal cost J*(xo) is obtained at the last step: Jy(x0) = J*(x0).

On-line implementation of the optimal policy, given J, ..., Jy

Sequentially, going forward, for k = 0,1,..., N — 1, observe xx and apply

Ug €arg min)E{gk(xk,uk,Wk)+J;‘+1(fk(xk,uk7Wk))}.

Uk € Uy (xk

Issues: Need to know J;_;, compute E{-} for each uk, minimize over all ux

Approximation in value space: Use Ji in place of Ji; approximate E{-} and
miny, (the three approximations)

Note the division between precomputation/learning (off-line training to obtain J;) and
real-time implementation (on-line play to obtain u)

Bertsekas Reinforcement Learning 12/54

Infinite Horizon Problems - The Three Theorems

Finite horizon opt. costs — Infinite horizon opt. cost: Consider the k-stages
problem

Let Jk(x) = k-stages optimal cost starting from x. Then

J(x) = kli_}moo Jk(x), for all states x (??)

J* satisfies Bellman’s equation:

J*(x) = min E{g(x u,w) + aJ”(f(x, u, w))} for all states x (?7?)

ueU(x

Optimality condition: Let x*(x) attain the min in the Bellman equation for all x
The policy {u*, u*, ...} is optimal (??)

The three theorems hold for the finite-state problems that we have considered
(discounted and SSP)

Bertsekas Reinforcement Learning 14/54

Infinite Horizon Problems - Algorithms

Value iteration (VI): Generates finite horizon opt. cost function sequence { Vi }

Ve(x) = min E{g(x u, w) + a Vi1 (f(x, u, w))} V is “arbitrary” (??)

Policy Iteration (P1): Generates sequences of policies {14} and their cost

functions {J,«}; u° is “arbitrary”

The typical iteration starts with a policy . and generates a new policy /i in two steps:
@ Policy evaluation step, which computes the cost function J,

@ Policy improvement step, which computes the improved policy fi using the
one-step lookahead minimization

fi(x) € arg min E{g(x, u,w) + ad, (f(x, u, W))}

ueU(x)

@ Pl can be viewed as Newton’s method for solving Bellman'’s Eq.

@ Several Pl variants: Optimistic, simplified, multiagent, Q-learning versions

@ Rollout is just the first iteration of Pl (a single Newton iteration - from J o it
produces ' and J,,1)

Bertsekas Reinforcement Learning 15/54

Approximate Policy lteration and Rollout

Base Approximation Approximation
»| Policy »| in Value Space »{in Policy Space >
L Value Network Policy Network
Value Data Policy Data
Rollout Policy i

Important facts:

@ Pl can be implemented approximately, with a value and (perhaps) a policy
network. This is off-line training

@ Rollout is just the first iteration of PI

@ Rollout typically improves substantially the base policy; finds the optimal policy if
started sufficiently close (cf., the power of Newton’s method)

Bertsekas Reinforcement Learning 16/54

Approximation in Value Space (On-Line Play After Off-Line Trainin

Approximate Min

Discretization
Simplification First Step “Future”
Multiagent
. =
min 3 gg (Tr, Uk, wi)+Jrg 1 (Tr41)
U \
/ Approximate Cost-to-Go ij
Approximate E{-} Problem approximation
Certainty equivalence Rollout, Model Predictive Control
Adaptive simulation Parametric approximation
Monte Carlo tree search Neural nets
Aggregation
ONE-STEP LOOKAHEAD
At State x;

DP minimization) .
First ¢ Steps “Future”

l k+£-1

min E{gk(ﬂik, U, W) + Z G (T pon (Tm), W) + jk+z(1k+£)}
R L e | ——_

Cost-to-go

Lookahead Minimization Approximation

MULTISTEP LOOKAHEAD

Bertsekas Reinforcement Learning

18/54

Approximation in Policy Space (Strictly Off-Line Training)

Control
U = llk (xkv Tk) System State T
™ Environment

»

P

C~ontroller B
fr(re) [

A

Training Data

Idea: Select the policy by optimization over a suitably restricted class of policies

The restricted class is usually a parametric family of policies jix (X« rx),
k=0,...,N—1, of some form, where rx is a parameter (e.g., a neural net)

Leverages classification, gradient, and random search methodologies for training

Important advantage once the parameters r, are computed: The on-line
computation of controls is often much faster ... at state xx apply ux = fix(X«, rx)

Important disadvantage: It does not allow for on-line replanning

By contrast, value space approximation is well-suited for on-line replanning (even
with off-line computation of Jx.1).

Bertsekas Reinforcement Learning 19/54

On-Line and Off-Line Implementations of Value Space Approximati

Approximate Min
Discretization

Simplification First Step “Future”
Multiagent

\?mn E{gk(xk, U, wk)+jk-+££7:k+l)}
U

Approximate Cost-to-Go zjk+1

Approximate E{-} Problem approximation
Certainty equivalence Rollout, Model Predictive Control
Adaptive simulation Parametric approximation
Monte Carlo tree search Neural nets
Aggregation

@ Off-line methods (partly): All the functions Jx.1 are computed for every k, before
the control process begins.

@ Example of off-line methods: Neural network and other parametric
approximations; also aggregation.

@ On-line methods (mostly): The values Jk.1(Xk:1) are computed only at the

relevant next states xx..1, and are used to compute the control to be applied at the
N time steps.

@ Examples of mostly on-line methods: Rollout and model predictive control.

Bertsekas Reinforcement Learning

20/54

General Structure of Deterministic Rollout

Next States

Current State

Heuristic

Q-Factors

@ At state x, for every pair (X, ux), ux € Uk(Xk), we generate a Q-factor
Qu(Xk, Uk) = Gk (Xk, Ux) + Hii1 (F(Xk, Ux))

using the base heuristic [Hk+1(Xk+1) is the heuristic cost starting from x1].
@ We select the control ux with minimal Q-factor.
@ We move to the next state xx.1, and continue.

@ Multistep lookahead versions (length of lookahead is limited by the branching
factor of the lookahead tree).

Bertsekas Reinforcement Learning 22/54

Multistep Lookahead-Truncated Rollout-Terminal Cost Approximation

L -—=-r@
Terminal Cost _
Approximation .J

Lookahead Tree

| ——_e

States zpq2

Motivation and properties:

@ Long rollout is costly. Also, it is not necessarily true that increasing the length of
the rollout leads to improved performance.

@ Terminal cost approximation allows combinations with off-line training.
@ We can prove cost improvement, assuming various sequential consistency and/or
sequential improvement conditions, as well as modifications (fortified rollout).

@ Rollout is the most reliable and most easily implementable RL algorithm. Still
some trial and error experimentation is recommended for its implementation.

Bertsekas Reinforcement Learning 23/54

Rollout Variations

e R -——-r@
Terminal Cost _
Approximation .J

Lookahead Tree

) — .

@ -mmmmmemd ---->e

States zpq2

Fortified for deterministic problems; guarantees cost improvement.
Simplified (i.e., one-step or multistep simplified minimization).

Constrained for deterministic problems.

Rollout with an expert; no need to know the cost function.

With continuous control space; MPC is an important example.

Multiagent rollout; for problems with multicomponent controls.
Combinations with MCTS; for stochastic problems, to save simulation time.
@ Combinations with approximations in value and policy space.

Bertsekas Reinforcement Learning 24/54

On-Line Rollout for Deterministic Infinite-Spaces Problems

Next States States
Th+1 Tk+e

Current State

Base Heuristic
Minimization

h Stage k o Stages
k+1,...,k+€—1

When the control space is infinite, rollout needs a different implementation
@ One possibility is discretization of Ux(xk); but then excessive number of Q-factors.

@ The major alternative is to use optimization heuristics.

@ Seemlessly combine the kth stage minimization and the optimization heuristic into
a single ¢-stage deterministic optimization.

@ Can solve it by nonlinear programming/optimal control methods (e.g., quadratic
programming, gradient-based).

@ This is the idea underlying model predictive control (MPC).

Bertsekas Reinforcement Learning 26/54

Model Predictive Control for Deterministic Control-to-the-Origin

Problems

Next States
Tk+1

Current State

(¢ — 1)-Stages
Minimization

Stage k i Stages
E+1,... k+0—1

o System: Xk+1 = fk(Xk, Uk).
@ Cost per stage: gk(x«, ux) > 0, the origin 0 is cost-free and absorbing.
@ State and control constraints: xx € Xk, ux € Ux(xx) for all k.

@ At xi solve an /-step lookahead version of the problem, requiring xix;. = 0 while
satisfying the state and control constraints.

@ If {Tx,. .., Ukre—1} is the control sequence so obtained, apply .
@ Variants: Terminal cost approximation, treatment of constraints, simplified
versions.

-_—
Bertsekas Reinforcement Learning 27/54

Multiagent Problems - A Very Old (1960s) and Well-Researched Field

@ Multiple agents collecting and sharing information selectively with each other and
with an environment/computing cloud

@ Agent / applies decision u; sequentially in discrete time based on info received

The major mathematical distinction between structures

@ The classical information pattern: Agents are fully cooperative, fully sharing and
never forgetting information. Can be treated by Dynamic Programming (DP)

@ The nonclassical information pattern: Agents are partially sharing information, and
may be antagonistic. HARD because it cannot be treated by DP

v

Bertsekas Reinforcement Learning 29/54

Our Starting Point: A Classical Information Pattern

State
Info

The agents have exact state info, and choose their controls as functions of the state)

Model: Stochastic DP (finite or infinite horizon) with state x and control u
@ Decision/control has m components u = (us, . .., Un) corresponding to m “agents”

@ “Agents" is just a metaphor - the important math structure is u = (us, . .., Um)

@ We apply approximate DP/rollout ideas, aiming at faster computation in order to:
Deal with the exponential size of the search/control space by one-agent-at-a-time
computations
Use signaling to estimate info that we don’t know
Signaling is precomputed (using neural nets or other estimators)

Bertsekas Reinforcement Learning 30/54

Multiagent Rollout/Policy Improvement When u = (uy, ..., Un)

To simplify notation, consider infinite horizon setting. The standard rollout operation is

(ﬂ1(x),...,pm(x))earg mln Egxu1,...,um,W)+onu(f(x,u1,...,um,W))};

.....

the search space is exponential in m (u is the base policy, seq. consistency holds)

Multiagent rollout (a form of simplified rollout; implies cost improvement)
Perform a sequence of m successive minimizations, one-agent-at-a-time

fir(x) € argmin E{g(x, s, p2(x). ... am(x), W) + e (F(, Uy 2 (), . im(). W) }
ﬂZ(X) € arg nl]llzn E{g(x7ﬁ1 (X)7 U27/'L3(X) te 7Nm(x)7 W)+O‘JM(f(Xvﬁ1 (X)7 U2,/,L3(X), D 7Mm(x)7 W))
ﬂm(x) € arg nJILn E{g(X7 fit (X)7 ﬁZ(X)’ oo im—1 (X)7 Um, W)+aJ#(f(X7 fit (X)7 ﬁz(x)’ s Bm—1 (X)7

@ Has a search space with size that is linear in m; ENORMOUS SPEEDUP!

Survey reference: Bertsekas, D., "Multiagent Reinforcement Learning: Rollout and

Policy lteration,” IEEE/CAA J. of Aut. Sinica, 2021 (and earlier papers quoted there).

Bertsekas Reinforcement Learning 31/54

Spiders-and-Flies Example

(e.g., Delivery, Maintenance, Search-and-Rescue, Firefighting)

7 7
7 i 7
78 7
- - 15 spiders move in 4 directions with perfect vision
S = 78 3 blind flies move randomly
78
o ~ R
7

@ Objective is to catch the flies in minimum time
@ At each stage we must select one out of ~ 5'° joint move choices

@ Multiagent rollout reduces this to 5 - 15 = 75 choices (while maintaining cost
improvement); applies a sequence of one-spider-at-a-time moves

@ With “precomputed signaling/coordination”, the 15 spiders will choose moves in
parallel (extra speedup factor of up to 15)

Bertsekas Reinforcement Learning

32/54

Justification of Cost Improvement through Reformulation: Trading off

Control and State Complexity (NDP Book, 1996)

Control up*
Random Transition

m—1 Ty1 = fon, ug, wy)

Random Cost
akg(wg, ug, wy)

Stage k

An equivalent reformulation - “Unfolding" the control action

@ The control space is simplified at the expense of m — 1 additional layers of states,
and corresponding m — 1 cost functions

JOx), Px,un,), T (X un L Uneq)

@ Multiagent rollout is just standard rollout for the reformulated problem

@ The increase in size of the state space does not adversely affect rollout (only one
state per stage is looked at during on-line play)

@ Complexity reduction: The one-step lookahead branching factor is reduced from
n™ to n- m, where n is the number of possible choices for each component u;

Bertsekas Reinforcement Learning 33/54

Parametric Approximation in Value Space

Approximation Architectures
@ A class of functions J(x, r) that depend on x and a vector r = (ri, ...,) of m
“tunable" scalar parameters (or weights).
@ We adjust r to change J and “match" the cost function approximated.
@ Training the architecture: The algorithm to choose r (typically use data/regression).

@ Architectures are linear or nonlinear, depending on whether J(x, r) is linear or
nonlinear in r.

@ Architectures are feature-based if they depend on x via a feature vector ¢(x),
J(x,r) = J(¢(x), 1),

where J is some function. Idea: Features capture dominant nonlinearities.
@ A linear feature-based architecture:

J(x.r) = mee

where r, and ¢¢(x) are the ¢th components of r and ¢(x).

Bertsekas Reinforcement Learning 35/54

Neural Nets: An Architecture that does not Require Knowledge of

Features

> A Cost
roximation
State x y(ml pE'QS(x v)
— > ——— ’
State Linear Nonlinear Linear
Encoding Layer Layer Weighting
Parameter Parameter
v=(A,b) FEATURES o

@ Can be used when problem-specific handcrafted features and linear feature-based
architectures are inadequate.

@ Tricky training issues by incremental gradient (backpropagation) methods.
@ Deep neural nets have proved useful in important contexts.

@ There are other nonlinear architectures (e.g., radial basis functions) that we have
not covered.

Bertsekas Reinforcement Learning 36/54

Sequential DP Approximation - A Parametric Approximation at Every

Stage (Also Called

Start with Jy = gn and sequentially train going backwards, until k = 0
@ Given a cost-to-go approximation Jx. 1, we use one-step lookahead to construct a
large number of state-cost pairs (x¢, 85), s=1,..., q, where

Bi= min E{Q(Xf,u,wk)+Jk+1(fk(xks,u,Wk),rm)}, s=1,...,q9
ueUk(x,f)

@ We “train” an architecture Ji on the training set (x§, 55), s =1,...,q.

Typical approach: Train by least squares/regression and possibly using a
neural net

We minimize over ry

q
S (k6 n) = 6°)
s=1

(plus a regularization term).

Bertsekas Reinforcement Learning 37/54

Sequential Q-Factor Approximation

@ Consider sequential DP approximation of Q-factor parametric approximations

Qu (X, Uk, k) = E{gk(Xk~, Uo W)+ min Qe (Xeet, U, I’k+1)}
UE Vg1 (Xie41)

@ Note: E{min(...)} can be sampled; min(E{...}) cannot be sampled.

@ We obtain Q«(x«, Uk, r) by training with many pairs ((x{, uf), 55), where 35 is a
sample of the approximate Q-factor of (x¢, ug). [No need to compute E{-}.]

@ No need for a model to obtain 3;. Sufficient to have a simulator that generates
state-control-cost-next state random samples

((Xk7 Uk), (gk(Xk, Uk, Wk)7 Xk+1))
@ Having computed ri, the one-step lookahead control is obtained on-line as
mk(xx) € arg min Qk(xk, U, r¢)
u€ Uy (xk)
without the need of a model or expected value calculations.

Bertsekas Reinforcement Learning 38/54

Infinite Horizon Finite Spaces Discounted Problems

Convergence of VI

Given any initial conditions Jo(1), . .., Jo(n), the sequence {Jk(i)} generated by VI
s (i —u@mZp,, a(iu,)) + adk(j)), i=1,....n,

converges to J* (i) for each i.

Bellman’s equation
The optimal cost function J* = (J*(1),...,J*(n)) satisfies the equation

(i) = min Zp,, (g(i, u,j) + ad())). i=1,....n,

ueU(i)

and is the unique solution of this equation.

Optimality condition
A stationary policy u is optimal if and only if for every state /, u(i) attains the minimum
in the Bellman equation.

Bertsekas Reinforcement Learning 40/54

Policy lteration (P1) Algorithm

Initial Policy

Evaluate Cost Function J,, of Policy Cost
Current policy Evaluation

Generate “Improved” Policy fi Policy Improvement

Given the current policy 1%, a Pl consists of two phases:

@ Policy evaluation computes J «(f), i = 1,..., n, as the solution of the (linear)
Bellman equation system

n
i) = > i (1 () (9 (s 1(0),) + @) i =1,..sm
j=1
@ Policy improvement then computes a new policy **' as

n
W i) € arg min S py(u) (U u.f) + o). =10
=

@ Optimistic and multistep lookahead versions.

Bertsekas Reinforcement Learning 41/54

Parametric Approximation and Actor-Critic Schemes

Initial Policy

]::valuate Approximate Cost Approximate Policy
Ju(i,7) of Current Policy u Evaluation
Critic

A,

Generate “Improved” Policy 77 by Policy Improvement
Lookahead Min Based on J,(i,7) Actor

Introduce a differentiable parametric architecture J, (i, r) for policy evaluation

@ Example architectures: A linear featured-based or a neural net.

@ Example of approximate policy evaluation: Generate state-cost pairs (i°, 3°),
where 3° is a sample cost corresponding to i°. Use least squares/regression:

q
_ . s 512
Fe argmrln;(JM(l 1) —B%)
@ [3° is generated by simulating an N-step trajectory starting at i®, using u, and
adding a terminal cost approximation o™ J(iy).
@ Alternative approximate policy evaluation methods: TD(X), LSTD(A), LSPE())

Bertsekas Reinforcement Learning 43/54

Training, Exploration, and Other Issues

@ The training problem q
_ . s 512
Fe argmran(Ju(l ,r) —B°%)
s=1
is well-suited for incremental gradient:
P = K DT,) (T,) - B%)

where (i%, 3%) is the state-cost sample pair that is used at the kth iteration.

@ Trajectory reuse: Given a long trajectory (o, i1, - - ., in), We can obtain cost
samples for all the states iy, /s, i2, . . ., by using the tail portions of the trajectory.

@ Exploration: When evaluating p with trajectory reuse, we generate many cost
samples that start from states frequently visited by p. Then the cost of
underrepresented states may be estimated inaccurately, causing potentially
serious errors in the calculation of the improved policy 7.

@ Bias-variance tradeoff: As the trajectory length N increases, the cost samples 3°
become more accurate but also more “noisy."

@ Error bounds quantify qualitative behavior; e.g., convergence to within an “error
zone."

Bertsekas Reinforcement Learning 44/54

General Framework for Approximation in Policy Space

@ Parametrize stationary policies with a parameter vector r; denote them by i(r),
with components fi(i,r), i =1,...,n. Each r defines a policy.

@ The parametrization may be problem-specific, or feature-based, or may involve a
neural network.

@ The idea is to optimize some measure of performance with respect to r.

Five contexts where approximation in policy space is either essential or is
helpful
@ Problems with natural policy parametrizations (like supply chain problems)

@ Problems with natural value parametrizations, where a good policy training
method works well (like the tetris problem).

@ Approximation in policy space on top of approximation in value space.
@ Learning from a software or human expert.

@ Unconventional information structures, e.g., multiagent systems with local
information (not shared with other agents) - Conventional DP breaks down.

Bertsekas Reinforcement Learning 46 /54

Approximation in Policy Space by Optimization-Based Training

Control

u = /1(27 T)

Uncertainty

l

A

A 4

System
Environment

Cost

»

Current State ¢

Training by Cost Optimization

@ Each r defines a stationary policy fi(r), with components (i, r),i=1,...

Controller|

ﬂ('vr)

@ Determine r through the minimization

min Jz(r) (fo)

where J;(r)(io) is the cost of the policy fi(r) starting from initial state /o.
@ More generally, determine r through the minimization

min E-{ ()}

where the E{-} is with respect to a suitable probability distribution of .

Bertsekas

Reinforcement Learning

47 /54

Training by Random Search - Cross-Entropy Method

Eyt1

Ey

@ At the current iterate r*, construct an ellipsoid Ex centered at r*.

@ Generate a number of random samples within Ex. “Accept” a subset of the
samples that have “low" cost.

@ Let r*" be the sample “mean” of the accepted samples.

@ Construct a sample “covariance" matrix of the accepted samples, form the new
ellipsoid Ex1 using this matrix, and continue.

@ Limited convergence rate guarantees. Success depends on domain-specific
insight and the skilled use of implementation heuristics.

@ Simple and well-suited for parallel computation.
@ Resembles a “gradient method". Naturally model-free.

Bertsekas Reinforcement Learning

48/54

Feature-Based Aggregation Framework
Feature
@ Extraction CT o

Representative Features

State Space Feature Space Aggregate States
Representative feature formation)
Original

System States

Disaggregation

Probabilities
d:m'

dyi =0 fori ¢ I,

Aggregation
Probabilities
iy

¢jy =1forjel,

Representative Features
Aggregate States

Transition diagram for the aggregate problem)

Bertsekas Reinforcement Learning 50 /54

Some of the Major Points Relating to Aggregation

It aims to approximate J*, not J,, of some policy .

It can yield an arbitrarily close approximation to J*, with sufficient number of
aggregate states.

Distinction between representative features schemes and their simpler special
case, representative states schemes.

Simulation-based VI and Pl methods for solving the aggregate problem.

Spatio-temporal aggregation: Solve a simpler aggregate problem involving
“compression” in space and time.

Bertsekas Reinforcement Learning 51/54

Concluding Remarks

Some words of caution

@ There are challenging implementation issues in all approaches, and no fool-proof
methods.

@ Problem approximation and hand-crafted feature selection require domain-specific
knowledge.

@ Training algorithms are not as reliable as you might think by reading the literature.
@ Approximate Pl involves oscillations and faces challenging exploration issues.
@ Recognizing success or failure can be a challenge!

@ The RL successes in game contexts are spectacular, but they have benefited from
perfectly known and stable models and small number of controls (per state).

@ Problems with partial state observation remain a big challenge.

On the positive side

@ Massive computational power together with distributed computation are a source
of hope.

@ Silver lining: We can begin to address practical problems of unimaginable difficulty!

@ There is an exciting journey ahead!

Bertsekas Reinforcement Learning 52 /54

Some Words of Relevance

Some old quotes ...

@ The book of the universe is written in the language of mathematics. Gallileo

@ Learning without thought is labor lost; thought without learning is perilous.
Confucius
(In the language of Confucius’ day: learning = obtaining knowledge; thought ~
ideas on how to do things)

@ Many arts have been discovered through practice, empirically; for experience
makes our life proceed deliberately, but inexperience unpredictably. Plato

@ White cat or black cat it is a good cat if it catches mice. Deng Xiaoping

.. and some more recent ones

@ Machine learning is the new electricity. Andrew Ng
(Electricity changed how the world operated. It upended transportation,
manufacturing, agriculture and health care. Al is poised to have a similar impact.)
@ Machine learning is the new alchemy. Ali Rahimi and Ben Recht
(We do not know why some algorithms work and others don’t, nor do we have
rigorous criteria for choosing one architecture over another ...)

Bertsekas Reinforcement Learning 53 /54

Thank you and good luck!

	AlphaZero - Off-Line Training and On-Line Play
	DP Algorithm for Finite Horizon Problems
	Theory of Infinite Horizon Problems
	Approximation in Value and Policy Space - Off-Line Training and On-Line Play
	Rollout and Variations
	Infinite Control Space Problems - Model Predictive Control
	Multiagent Problems
	Parametric Approximation Architectures and Neural Nets
	Introduction to Infinite Horizon Problems
	Approximate Policy Iteration
	Approximation in Policy Space
	Aggregation

