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Lecture 1
Course Introduction and Overview
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0 AlphaZero - Off-Line Training and On-Line Play

@ History, General Concepts

e About the Course and its Connections to Various Fields

0 Newton’s Method: The Connecting Link

e Dynamic Programming - Deterministic Problems

@ Examples: Finite-State/Discrete/Combinatorial DP Problems

e Organizational Issues
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Chess and Backgammon - Off-Line Training and On-Line Play
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Both AlphaZero (2017) and TD-Gammon (1996) involve two algorithms:
@ Off-line training of value and/or policy neural network approximations
@ On-line play by multistep lookahead, rollout, and cost function approximation

Strong connections to DP, policy iteration, and RL-type methodology
@ We aim to understand this methodology, so it applies far more generally

@ For example, in control system design (MPC and adaptive control), and discrete
optimization by rollout
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On-Line Play in AlphaZero/AlphaGo/TD-Gammon: Approximation in

Value Space (Also Called “On-Line Tree Search")
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@ On-line play uses the results of off-line training, which are: A position evaluator
and a base player
@ |t aims to improve the base player by:
Searching forward for several moves through the lookahead tree
Simulating the base player for some more moves at the tree leaves
Approximating the effect of future moves by using the terminal position evaluation
Calculating the “values" of the available moves at the root and playing the best move
@ Similarities with Model Predictive Control (MPC) (which involves continuous
spaces) and discrete optimization by rollout (which uses a heuristic as base player)
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Off-Line Training in AlphaZero: Approximate Policy lteration (Pl) Using

Self-Generated Data
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@ The current player is used to train an improved player, and the process is repeated

@ The current player is “evaluated” by playing many games

@ lts evaluation function is represented by a value neural net through training

@ The current player is “improved" by using a form of approximate multistep
lookahead minimization, called Monte-Carlo Tree Search (MCTS)

@ The “improved player" is represented by a policy neural net through training

@ TD-Gammon uses similar Pl algorithm for off-line training of a value network (does
not use MCTS and does not use a policy network)

@ MPC and discrete optimization by rollout often use rudimentary forms of off-line
training
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A Major Empirical Observation
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The AlphaZero on-line player plays much better
than the off-line-trained player
TD-Gammon plays much better with truncated rollout
than without rollout (Tesauro, 1996)

We will aim to explain these observations and
use them within far more general contexts
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Aims of the Course

Provide a unifying framework for several areas of large scale computation:

@ Reinforcement learning (RL) as practiced by the Al community

@ Approximate dynamic programming (DP) as practiced by parts of the
optimization/OR community

@ Model predictive and adaptive control as practiced by the control systems
community

@ Parts of discrete optimization as practiced by the algorithms/CS community

We rely on:
@ The theory of exact, approximate, and abstract DP
@ Intuitive visualization based on a Bellman operator formalism
@ The paradigm of AlphaZero/TD-Gammon and similar design architectures
@ Newton’s method applied to Bellman’s equation, which connects all of the above

v

We aim, through unification and abstraction, to:
@ Bridge the gap between cultures of different communities
@ Bring to bear the power of RL to a very broad range of applications
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Evolution of Approximate DP/RL: A Fruitful Synergy
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Historical highlights
@ Exact DP, optimal control (Bellman, Shannon, and others 1950s ...)
@ Al/RL and Decision/Control/DP ideas meet (late 80s-early 90s)
@ First major successes: Backgammon programs (Tesauro, 1992, 1996)
@ Algorithmic progress, analysis, applications, first books (mid 90s ...)
@ Machine Learning, BIG Data, Robotics, Deep Neural Networks (mid 2000s ...)
@ AlphaGo and AlphaZero (DeepMind, 2016, 2017)

Bertsekas Reinforcement Learning

10/40



Approximate DP/RL Methodology is now Ambitious and Universal

Exact DP applies (in principle) to a very broad range of optimization problems
@ Deterministic <—-> Stochastic
@ Combinatorial optimization <—-> Optimal control w/ infinite state/control spaces
@ One decision maker <—-> Two player games
@ ... BUT is plagued by the curse of dimensionality and need for a math model

Approximate DP/RL overcomes the difficulties of exact DP by:
@ Approximation (use neural nets and other architectures to reduce dimension)
@ Simulation (use a computer model in place of a math model)

State of the art:

@ Broadly applicable methodology: Can address a very broad range of challenging
problems. Deterministic-stochastic-dynamic, discrete-continuous, games, etc

@ There are no methods that are guaranteed to work for all or even most problems

@ There are enough methods to try with a reasonable chance of success for most
types of optimization problems

@ Role of the theory: Structure mathematically the methodology, guide the art,
delineate the sound ideas
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A Relevant Quotation from 25 Years Ago

From preface of Neuro-Dynamic Programming, Bertsekas and Tsitsiklis, 1996 J

A few years ago our curiosity was aroused by reports on new methods in reinforcement
learning, a field that was developed primarily within the artificial intelligence community,
starting a few decades ago. These methods were aiming to provide effective
suboptimal solutions to complex problems of planning and sequential decision making
under uncertainty, that for a long time were thought to be intractable.

Our first impression was that the new methods were ambitious, overly optimistic, and
lacked firm foundation. Yet there were claims of impressive successes and indications
of a solid core to the modern developments in reinforcement learning, suggesting that
the correct approach to their understanding was through dynamic programming.

V.

Three years later, after a lot of study, analysis, and experimentation, we believe that our
initial impressions were largely correct. This is indeed an ambitious, often ad hoc,
methodology, but for reasons that we now understand much better, it does have the
potential of success with important and challenging problems.

4

This assessment still holds true!




References of this Course

This course is research-oriented. It aims:
@ To explore the state of the art of approximate DP/RL at a graduate level
@ To explore in depth some special research topics (rollout, policy iteration)
@ To provide the opportunity for you to explore research in the area

Main references:
@ Bertsekas, Reinforcement Learning and Optimal Control, 2019
@ Bertsekas, Rollout, Policy Iteration, and Distributed Reinforcement Learning, 2020

@ Bertsekas, Lessons from AlphaZero for Optimal, Model Predictive, and Adaptive
Control, 2022

@ Bertsekas: Class notes based on the above, and focused on our special RL topics.
@ Slides, papers, and videos from the 2019-2021 ASU courses; check my web site

v

Supplementary references

@ Exact DP: Bertsekas, Dynamic Programming and Optimal Control, Vol. | (2017),
Vol. Il (2012) (also contains approximate DP material), Abstract DP (2022)

@ Bertsekas and Tsitsiklis, Neuro-Dynamic Programming, 1996
@ Sutton and Barto, 1998, Reinforcement Learning (new edition 2018, on-line)
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Terminology in RL/Al and DP/Control

RL uses Max/Value, DP uses Min/Cost
@ Reward of a stage = (Opposite of) Cost of a stage.
@ State value = (Opposite of) State cost.
@ Value (or state-value) function = (Opposite of) Cost function.

Controlled system terminology
@ Agent = Decision maker or controller.
@ Action = Decision or control.
@ Environment = Dynamic system.

Methods terminology
@ Learning = Solving a DP-related problem using simulation.
@ Self-learning (or self-play in the context of games) = Solving a DP problem using
simulation-based policy iteration.
@ Planning vs Learning distinction = Solving a DP problem with model-based vs
model-free simulation.
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Notation in RL/Al and DP/Control

@ Reinforcement learning uses transition probability notation

p(s,a,s)

(s, s’ are states, a is action), which is standard in finite-state problems (MDP)
@ Control theory uses discrete-time system equation

Xk+1 = F(Xk, Uk, Wk)

which is standard in continuous spaces problems
@ Operations research uses both notations [typically pj;(u) for transition probabilities]

These two notational systems are mathematically equivalent but:

@ Transition probabilities are cumbersome for deterministic problems and continuous
spaces problems

@ System equations are cumbersome for finite-state problems

We use both notational systems:

@ For the first 3/4 of the course we use system equations
@ For the last 1/4 of the course we use transition probabilities
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A Mathematical View: Newton Step to Solve Bellman’s Equation
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Explains why the AlphaZero on-line player is better than the off-line trained player

Bertsekas

S~

ON-LINE PLAY

On-Line Player

Performance

J

18/40



Our Principal Viewpoints

@ On-line play is a step of Newton’s method for solving the Bellman equation (the
central DP equation that yields the optimal cost function)

@ Off-line training provides the start point for the Newton step (a hot start)

@ On-line play is the real workhorse ... off-line training plays a secondary role.
A major reason: On-line play is an exact Newton step. It is not degraded by NN
approximations

@ Imperfections/differences in off-line training affect the start point, but are washed
out by the (powerful) Newton step. (A hot algorithm within its “sweet spot" does
not need a hot start.)

@ A cultural difference that we will aim to bridge:

Reinforcement Learning/Al research is focused largely on off-line training issues
(except in the special case of armed bandit problems)

Model Predictive and Adaptive Control research is focused largely on on-line play and
stability issues

@ Discrete optimization by rollout is also an exact Newton step
@ All of this applies in great generality through the power of abstract DP (arbitrary

state and control spaces, stochastic, deterministic, hybrid systems, multiagent
systems, minimayx, finite and infinite horizon, discrete optimization)
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On Viewpoints and Objective Truth

et

)

Just because you are right,
does not mean, I am wrong.
You just haven't seen life

i from my side.
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A Fifteen-Minute Break

All our lectures will have a 15-minute break, somewhere in the middle
Catch our breath and think about issues relating to the first half of the lecture.
A short discussion/questions/answers period will follow each break.
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Finite Horizon Deterministic Problem
Control ug
() @ @ (O~
Cost gi (g, uk)

>

Stage k Future Stages

@ System
Xiet = Fe(Xk, Uk), k=0,1,...,N—1

where xi: State, ux: Control chosen from some set Uk (xx)
@ Cost function:

N—1
gn(xn) + Z G (X, Uk)
k=0

@ For given initial state xp, minimize over control sequences {uo, ..., Uv—_1}
N—1
J(X0i Uo, - - Uun—1) = n(XN) + D Gk(X, Uk)
k=0
@ Optimal cost function J*(xp) = min E UG8 J(Xo; Ug, .-, UN—1)
—1
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Principle of Optimality: A Very Simple Idea

Ty Tail subproblem
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Optimal control sequence

Principle of Optimality
THE TAIL OF AN OPTIMAL SEQUENCE IS OPTIMAL FOR THE TAIL SUBPROBLEM )

Let {ug,...,un_1} be an optimal control sequence with corresponding state sequence
{x{,...,xn}. Consider the tail subproblem that starts at x; at time k and minimizes
over {U, ..., Uy—1} the “cost-to-go” from k to N,
N—1
(X, u) + D> Gm(Xm, Um) + gn(Xn).
m=k+1
Then the tail optimal control sequence {ug, ..., uy_4} is optimal for the tail subproblem.
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DP Algorithm: Solves All Tail Subproblems Using the Principle of

Optimality

Idea of the DP algorithm

Solve all the tail subproblems of a given time length using the solution of all the tail
subproblems of shorter time length

By the principle of optimality: To solve the tail subproblem that starts at xj

@ Consider every possible ux and solve the tail subproblem that starts at next state
Xk+1 = f(Xk, Uk). This gives the “cost of ux"

@ Optimize over all possible ux

DP Algorithm: Produces the optimal costs J; (xx) of the x,-tail subproblems

Start with
Jv(xn) = gn(xn),  forall xu,

andfork=0,...,N—1, let

J: (Xk) = min [gk(xk: Uk) + J;+1 (fk(Xk7 Uk))] s for all x.
Uk € Ui (xk)

The optimal cost J*(xo) is obtained at the last step: Jy(xo) = J*(X0).
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Construction of Optimal Control Sequence {ug, ..., Uy_1}

Start with
* H J* f
up € arg uOé“JoTxO> [go(xo, Up) + Jj (0(X07 Uo))]

This takes you to
xi = fo(Xo, Up ).

Sequentially, going forward, for k =1,2,..., N — 1, set

Ug € arg E”J'? k(X , Uk) + Ikt (fk(xk*,uk))], X1 = fu(Xk, UK ).
'k k(X

Approximation in Value Space - Use Some Jy in Place of J; (off-line training)
Start with
Uo € arg mln |:g()(X()7 Uo) =+ J1 (fo(Xo, Uo))]
This takes you to
)?1 = fo(X(), Uo)

Sequentially, going forward, for k = 1,2,..., N — 1, set (on-line play)

Uc € arg  min [gk()?ka Uk) + Jirr (fe(Xe, Uk))], X1 = Fie(Xi, Uk ).
Uk € Uy (Xk)
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Finite-State Problems: Shortest Path View

Terminal Arcs
with Cost Equal
to Terminal Cost

s/

Artificial Terminal
Node

Initial State

Stage 0 Stage 1 Stage 2 --- Stage N —1 Stage N

@ Nodes correspond to states xi
@ Arcs correspond to state-control pairs (X, Ux)
@ An arc (Xk, ux) has start and end nodes xx and Xk+1 = fix(X«, Uk)

@ An arc (X, ux) has a cost gk (Xx, ux). The cost to optimize is the sum of the arc
costs from the initial node s to the terminal node t.

@ The problem is equivalent to finding a minimum cost/shortest path from s to .
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Discrete-State Deterministic Scheduling Example
(e9e

Empty schedule

Find optimal sequence of operations A, B, C, D (A must precede B and C must precede D)
DP Problem Formulation

@ States: Partial schedules; Controls: Stage 0, 1, and 2 decisions; Cost data shown
along the arcs

@ Recall the DP idea: Break down the problem into smaller pieces (tail subproblems)
@ Start from the last decision and go backwards
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DP Algorithm: Stage 2 Tail Subproblems

Solve the stage 2 subproblems (using the terminal costs - in red)
At each state of stage 2, we record the optimal cost-to-go and the optimal decision J
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DP Algorithm: Stage 1 Tail Subproblems

Solve the stage 1 subproblems (using the optimal costs of stage 2
subproblems - in purple)
At each state of stage 1, we record the optimal cost-to-go and the optimal decision
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DP Algorithm: Stage 0 Tail Subproblems

@
@

Solve the stage 0 subproblem (using the optimal costs of stage 1 subproblems
- in orange)

@ The stage 0 subproblem is the entire problem

@ The optimal value of the stage 0 subproblem is the optimal cost J* (initial state)

@ Construct the optimal sequence going forward
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Discrete Optimization: Traveling Salesman Example; Cities A,B,C,D

Initial State z¢

1
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General Discrete Optimization

Stage N
—>0
—0
T
—1»0
UN—1
States
u=(ug,...,un—1)
Cost G(u)
Minimize G(u) subjectto u € U
@ Assume that each solution u has N components: u = (u, . .., Un—1)
@ View the components as the controls of N stages
@ Define xx = (Wo, ..., Uxk—1), Kk =1,..., N, and introduce artificial start state xo = s

@ Define just terminal cost as G(u); all other costs are 0

v

This formulation typically makes little sense for exact DP, but often makes a lot of sense
for approximate DP/approximation in value space
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Extensions

Stochastic finite horizon problems

The next state xx.1 is also affected by a random parameter (in addition to xx and ux).
More difficult than deterministic (not equivalent to a shortest path problem).

Infinite horizon problems
The exact DP theory is mathematically more complex, but also more elegant.

Stochastic partial state information problems

We will convert them to problems of perfect state information, and then apply DP. Very
hard to solve even approximately ... but offer great promise for applications.

Minimax/game problems

The exact DP theory is substantially more complex ... but the most spectacular
successes of RL involve games. We will treat lightly.
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Course Aims and Requirements

Our principal aim: To help you to think about how RL applies to your research interests )

Requirements:
@ Homework (30%): A total of 3-4

@ Research-oriented term paper (70%). A choice of:
A mini-research project. You may work in teams of 1-3 persons. You are encouraged to
try. Selected class presentations at the end.
A read-and-report term paper based on 2-3 research publications (chosen by you in
consultation with me)

Notation: People in Al/RL, Control Theory, and Operations Research focus on
different problems and use different notations
@ AI/RL and OR focus on discrete/finite-state problems which are stochastic
[Markovian Decision Problems (MDP)]. Use transition probabilities p;(u) to
describe the uncertainty.

@ Control theorists use system equation notation xx+1 = fk(Xk, Uk, wk). This notation
is well-suited for continuous-state problems and deterministic problems.

@ You are strongly encouraged to use the notation and terminology of the course.
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Syllabus (Approximate)

Lecture 1 (this lecture): Introduction, finite horizon deterministic exact DP
Lecture 2: Stochastic exact DP, overview of infinite horizon methods
Lecture 3: Linear quadratic problems, examples of problem formulation
Lecture 4: Approximation in value space and the role of Newton’s method
Lecture 5: Rollout for deterministic problems

Lecture 6: Rollout for stochastic problems

Lecture 7: Model predictive and adaptive control

Lecture 8: Multiagent systems and rollout

Lecture 9: Combinatorial optimization and rollout

Lecture 10: Parametric approximation architectures, feature-based architectures,
(deep) neural nets, training with incremental/stochastic gradient methods

®© 6 6 6 6 6 6 o o o

Lecture 11: Infinite horizon problems, approximation in value space

@ Lecture 12: Variants of policy iteration: Optimistic, multistep, multiagent,
distributed asynchronous

@ Lecture 13: Value and policy networks; use in approximate DP; perpetual rollout
@ Lecture 14: Project presentations
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About Machine Learning and Math

Math requirements for this course are modest

Calculus, elementary probability, minimal use of vector-matrix algebra. Our objective is
to use math to the extent needed to develop insight into the mechanism of various
methods, and to be able to start research.

However a math framework is critically important

Human insight can only develop within some structure of human thought ... math
reasoning is most suitable for this purpose

On machine learning (from NY Times Article, Dec. 2018)

“What is frustrating about machine learning is that the algorithms can’t articulate what

they’re thinking. We don’t know why they work, so we don’t know if they can be trusted
... As human beings, we want more than answers. We want insight. This is going to be
a source of tension in our interactions with computers from now on."
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About the Next Lecture

We will cover:
@ Stochastic DP algorithm
@ DP algorithm for Q-factors
@ Approximation in value space
@ Examples of discrete and continuous DP problems

PLEASE READ AS MUCH OF THE CLASS NOTES AS YOU CAN )

Watch the video of Lecture 2 of the 2021 offering of the class at my web site
http://web.mit.edu/dimitrib/www/RLbook.html J
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