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Recall the Stochastic DP Algorithm

Produces the optimal costs J∗
k (xk ) of the tail subproblems that start at xk

Start with J∗N(xN) = gN(xN), and for k = 0, . . . ,N − 1, let

J∗k (xk ) = min
uk∈Uk (xk )

E
{

gk (xk , uk ,wk ) + J∗k+1
(
fk (xk , uk ,wk )

)}
, for all xk .

The optimal cost J∗(x0) is obtained at the last step: J∗0 (x0) = J∗(x0).

Online implementation of the optimal policy, given J∗
1 , . . . , J

∗
N−1

Sequentially, going forward, for k = 0, 1, . . . ,N − 1, observe xk and apply

u∗k ∈ arg min
uk∈Uk (xk )

E
{

gk (xk , uk ,wk ) + J∗k+1
(
fk (xk , uk ,wk )

)}
.

The main difficulties: Too much computation, too much memory storage.

Approximation in value space:

Use J̃k+1 in place of J∗k+1; possibly approximate E{·} and minuk
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Approximation in Value Space: One-Step Lookahead
min

uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

Approximations: Computation of J̃k+ℓ:

DP minimization Replace E{·} with nominal values

(certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

1

Approximations: Computation of J̃k+ℓ: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk

E
{
gk(xk, uk, wk) + J̃k+1(xk+ℓ)

}

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future” First Step
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Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

1

Approximations: Computation of J̃k+ℓ: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control) Computation of J̃k+1:

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk

E
{

gk(xk, uk, wk) + J̃k+1(xk+1)
}

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future” First Step
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

1

s t j̄1 j̄2 j̄` j̄`�1 j̄1

Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Aggregation

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

s t j̄1 j̄2 j̄` j̄`�1 j̄1

Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Aggregation Adaptive simulation Monte-Carlo Tree Search

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

Approximate Min Approximate E{·} Computation of J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

1

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

Approximate Min Approximate E{·} Computation of J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

1

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Computation of J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)
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Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network
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Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation
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F (i)
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3 Cost Ĵµ

(
F (i)
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I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

1

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
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Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N
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N
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µ (Φr)
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(
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Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)
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Feature Extraction
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Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
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Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1
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0, . . . , u∗
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)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)
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Feature Extraction
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Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)
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F (i)
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1

Certainty equivalence Monte Carlo tree search

b+
k b−

k Permanent trajectory P k Tentative trajectory T k
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uk

E
{
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Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1
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0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)
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Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

Parametric approximation Neural nets

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

Parametric approximation Neural nets Discretization

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

Simplification Multiagent

6 13 14 24 27 Rollout

Base Heuristic Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i)

Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

Simplification Multiagent

6 13 14 24 27 Rollout

Base Heuristic Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i)

Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

Approximation in value space and one-step lookahead minimization defines:
The control to use at state xk for on-line play

A suboptimal control law µ̃k that can be approximated by off-line training

The three approximations; they can be addressed separately

How to construct the cost function approximations J̃k+1.

How to simplify E{·} operation.

How to simplify min operation.
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Approximation in Value Space: Multistep Lookahead

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

Approximations: Computation of J̃k+ℓ: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

1

u1
k u2

k u3
k u4

k u5
k Constraint Relaxation U U1 U2

At State xk

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Constraint Relaxation U U1 U2

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Constraint Relaxation U U1 U2

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Constraint Relaxation U U1 U2

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

Compressed N stages xk+1 = f(xk, uk, wk) αkg(xk, uk, wk) Terminal State 2 0 J∗ = (0, 0) . . .

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

J̃k = (rk, 2rk) Exact VI iterate Approximate J̃k+1 =
(
αJ̃k(2), αJ̃k(2)

)
= (2αrk, 2αrk).

Orthogonal Projection

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation Representative State-Time Pairs Space-Time Barriers

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gm

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Start End Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo

tree search

1

At state xk , we solve an `-stage version of the DP problem with xk as the initial
state and J̃k+` as the terminal cost function

Use the first control of the `-stage policy thus obtained, discard the others

We can view `-step lookahead as a special case of one-step lookahead:
The “effective" one-step lookahead approximate cost function is the optimal cost
function of an (`− 1)-stage DP problem with terminal cost J̃k+`
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Approximation in Value Space For Infinite Horizon

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

Approximations: Computation of J̃k+ℓ: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk

E
{
gk(xk, uk, wk) + J̃k+1(xk+ℓ)

}

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future” First Step
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

1

Approximate Q-Factor Q̃k(xk, uk)

Min Approximation E{·} Approximation Cost-to-Go Approximation

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

1

Approximate Q-Factor Q̃k(xk, uk)

Min Approximation E{·} Approximation Cost-to-Go Approximation

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

1

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

1

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

1

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

1

Optimal Cost Approximation

Truncated Rollout Approximate Truncated Rollout Approximate Base Policy Cost

Partial Folding Software Critic Software Complete Folding Current Partial Folding

Clients Facilities Corresponding to Open xij i j zj = 0 or 1 Open Close Null

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

bk Belief States bk+1 bk+2 Policy µ m Steps 1 2 3

Optimal Cost Approximation Truncated Rollout Policy µ m Steps Φr∗
λ

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN ) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN(xN )

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄)

p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 ik b∗ b∗ = Optimized b Transition

Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyr∗
y bk Control uk = µk(bk)

p(z; r) 0 z r r + ϵ1 r + ϵ2 r + ϵm r − ϵ1 r − ϵ2 r − ϵm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

Optimal Cost Approximation

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 Sℓ Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy Selective Depth Rollout Policy µ

1

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

Neural Network Features Approximate Cost J̃µ Policy Improvement

F̂ = {f1, f2, f3, f4, f5, f6, f7}
Representative Features States dfi f f̄ with Aggregation Problem

Optimization

Current Policy µ Approximately Improved Policy µ̂ µ̃

Tµ�r �r = ⇧Tµ�r

Generate “Improved” Policy µ̂

State Space Feature Space Subspace J = {�r | s 2 <s} Ps
`=1 F`(i, v)r`

r = (r1, . . . , rs) Direct Method: Projecting the

State i y(i) Ay(i) + b Fs(i, v) F1(i, v) F2(i, v) Linear Weighting of
Features

min
uk,µk+1,...,µk+`�1

E

(
g(xk, uk, wk) +

k+`�1X

i=k+1

↵i�kg
�
xi, µi(xi), wi

�
+ ↵`J̃(xk+`)

)

5

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

�
F (i)

�

R1 R2 R3 R` Rq�1 Rq r⇤q�1 r⇤3 Cost Ĵµ

�
F (i)

�

I1 I2 I3 I` Iq�1 Iq r⇤2 r⇤3 Cost Ĵµ

�
F (i)

�

Aggregate States Scoring Function V (i) J⇤(i) 0 n n� 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

�jf̄ =

⇢
1 if j 2 If̄

0 if j /2 If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

One-Step Lookahead Multistep Lookahead

d`i = 0 if i /2 I`

�j ¯̀ = 1 if j 2 I¯̀

p̂ff̄ (u) =

nX

i=1

dfi

nX

j=1

pij(u)�jf̄

ĝ(f, u) =
nX

i=1

dfi

nX

j=1

pij(u)g(i, u, j)

Representative Feature States Feature Space F F (j) �jf1 �jf2 �jf3

�jf4

i1 i2 i` r⇤1 r⇤q r⇤` . . . iq

Disaggregation Sets If Aggregate Optimization Feature States

Neural Network Features Approximate Cost J̃µ Policy Improvement
Sampling

4

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

�
F (i)

�

R1 R2 R3 R` Rq�1 Rq r⇤q�1 r⇤3 Cost Ĵµ

�
F (i)

�

I1 I2 I3 I` Iq�1 Iq r⇤2 r⇤3 Cost Ĵµ

�
F (i)

�

Aggregate States Scoring Function V (i) J⇤(i) 0 n n� 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

�jf̄ =

⇢
1 if j 2 If̄

0 if j /2 If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

One-Step Lookahead Multistep Lookahead

d`i = 0 if i /2 I`

�j ¯̀ = 1 if j 2 I¯̀

p̂ff̄ (u) =

nX

i=1

dfi

nX

j=1

pij(u)�jf̄

ĝ(f, u) =
nX

i=1

dfi

nX

j=1

pij(u)g(i, u, j)

Representative Feature States Feature Space F F (j) �jf1 �jf2 �jf3

�jf4

i1 i2 i` r⇤1 r⇤q r⇤` . . . iq

Disaggregation Sets If Aggregate Optimization Feature States

Neural Network Features Approximate Cost J̃µ Policy Improvement
Sampling

4
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Approximation in Policy Space: The Major Alternative to Approximation
in Value Space

Uncertainty System Environment Cost Control Current State i

Controller

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

1

Uncertainty System Environment Cost Control Current State i

Controller

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

1

Uncertainty System Environment Cost Control Current State i

Controller

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

1

Uncertainty System Environment Cost Control Current State i

Controller

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

1

uk = µ̃k(xk, rk) Current State xk µ̃k(·, rk) Approximate Q-Factor
Q̃k(xk, uk)

Min Approximation E{·} Approximation Cost-to-Go Approximation

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

1

uk = µ̃k(xk, rk) Current State xk µ̃k(·, rk) Approximate Q-Factor
Q̃k(xk, uk)

Min Approximation E{·} Approximation Cost-to-Go Approximation

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

1

uk = µ̃k(xk, rk) Current State xk µ̃k(·, rk) Approximate Q-Factor
Q̃k(xk, uk)

Min Approximation E{·} Approximation Cost-to-Go Approximation

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

1

uk = µ̃k(xk, rk) Current State xk µ̃k(·, rk) Approximate Q-Factor
Q̃k(xk, uk)

Min Approximation E{·} Approximation Cost-to-Go Approximation

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1 Training Data

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

1

Idea: Select the policy by optimization over a suitably restricted class of policies

The restricted class is usually a parametric family of policies µ̃k (xk , rk ),
k = 0, . . . ,N − 1, of some form, where rk is a parameter (e.g., a neural net)

Important advantage once the parameters rk are computed: The on-line
computation of controls is often much faster ... at state xk apply uk = µ̃k (xk , rk )

Important disadvantage: It does not allow for on-line replanning
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From Values to Policies: Approximation in Policy Space on Top of
Approximation in Value Space

The approximate cost-to-go functions J̃k+1 define a suboptimal policy µ̃k
through one-step or multistep lookahead minimization

Given functions J̃k+1, how do we simplify the computation of µ̃k ?

Idea: Approximate µ̃k using some form of least squares and a training set of a
large number q of sample pairs

(
xs

k , u
s
k

)
, s = 1, . . . , q, where us

k = µ̃k (xs
k ):

us
k ∈ arg min

u∈Uk (xk )
E
{

gk (xs
k , u,wk ) + J̃k+1

(
fk (xs

k , u,wk )
)}

Similarly for multistep lookahead.

Example (for finite number of controls): Introduce a parametric family of
randomized policies µk (xk , rk ), k = 0, . . . ,N − 1, of some form (e.g., a neural net),
where rk is a parameter. Then estimate the parameters rk by least squares fit:

rk ∈ arg min
r

q∑
s=1

∥∥us
k − µk (xs

k , r)
∥∥2

For this, the parametrization µk (xs
k , r) must take continuous values.

To deal with this, us
k is coded to take values 0 or 1 and µk (xk , r) is a randomized

policy (relation to classification ... policy <–> classifier; more on this later).
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From Policies to Values to New Policies by Rollout

Selective Depth Lookahead Tree

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator

States xk+1 States xk+2

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

uk = µ̃k(xk, rk) Current State xk µ̃k(·, rk) Approximate Q-Factor
Q̃k(xk, uk)

Min Approximation E{·} Approximation Cost-to-Go Approximation

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1 Training Data

with π Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

1

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk

xk States xk+1 States xk+2 Truncated Rollout Terminal Cost Ap-
proximation

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Base Policy Rollout Policy Approximation in Value Space

One-Step or Multistep Lookahead

Approximation in Policy Space Heuristic Cost Approximation

Approximate Q-Factor Q̃(x, u) At x

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

1

Base Policy Rollout Policy Approximation in Value Space

One-Step or Multistep Lookahead

Approximation in Policy Space Heuristic Cost Approximation for

Stages Beyond Truncation

Approximate Q-Factor Q̃(x, u) At x

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

1

Base Policy Rollout Policy Approximation in Value Space

One-Step or Multistep Lookahead

Approximation in Policy Space Heuristic Cost Approximation for

Stages Beyond Truncation

Approximate Q-Factor Q̃(x, u) At x

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

1

Base Policy Rollout Policy Approximation in Value Space

One-Step or Multistep Lookahead for stages

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation

Approximate Q-Factor Q̃(x, u) At x

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

1

Base Policy Rollout Policy Approximation in Value Space

One-Step or Multistep Lookahead for stages

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation

Approximate Q-Factor Q̃(x, u) At x

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

1

Base Policy Rollout Policy Approximation in Value Space

One-Step or Multistep Lookahead for stages

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation

Approximate Q-Factor Q̃(x, u) At x

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

1

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation

Approximate Q-Factor Q̃(x, u) At x

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

1

Base Policy Rollout Policy Approximation in Value Space n n � 1
n � 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation

Approximate Q-Factor Q̃(x, u) At x

min
u2U(x)

E
w

n
g(x, u, w) + ↵J̃

�
f(x, u, w)

�o

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk|  1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (`� 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (`� 1)-Stages State xk+` = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+`�1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

1

Start with some policy π = {µ0, . . . , µN−1}, a base policy, possibly obtained
through approximation in policy space

Use one-step or multistep lookahead rollout where J̃k+1(xk+1) ≈ Jk+1,π(xk+1)

The policy π̃ = {µ̃0, . . . , µN−1} thus obtained is the truncated rollout policy
Important issue: How to compute Jk+1,π(xk+1)?

I For deterministic problems: Run π from xk+1 once and accumulate stage costs
I For stochastic problems: Run π from xk+1 many times and Monte Carlo average
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Combined Approximation in Value and Policy Space

Base Policy Rollout Policy Approximation in Value Space

One-Step or Multistep Lookahead

Approximation in Policy Space

Approximate Q-Factor Q̃(x, u) At x

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

1

Base Policy Rollout Policy Approximation in Value Space

One-Step or Multistep Lookahead

Approximation in Policy Space

Approximate Q-Factor Q̃(x, u) At x

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

1

Base Policy Rollout Policy Approximation in Value Space

One-Step or Multistep Lookahead

Approximation in Policy Space
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r: Vector of weights Original States Aggregate States
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Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp
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=
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(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+
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1

Perpetual rollout and policy improvement
A fundamental property: In its idealized form (no approximations) each new policy
has no worse cost function than the preceding one, i.e., for all xk and k ,

Jk,π̃(xk ) ≤ Jk,π(xk )

Thus the algorithm is capable of self-improvement or self-learning (no external
training data is needed)

Its natural extension to infinite horizon problems is the policy iteration (PI)
algorithm, and its foundation is the policy improvement property

With approximations, self-improvement is approximate (to within an error bound)

There are many variations of this scheme: Optimistic PI, Q-learning, temporal
differences, etc. They involve challenging implementation issues
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Balance Between Off-Line and On-Line Computations
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Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)
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Approximations: Computation of J̃k+ℓ: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk

E
{
gk(xk, uk, wk) + J̃k+1(xk+ℓ)

}

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1
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(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future” First Step
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

1

Approximations: Computation of J̃k+ℓ: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control) Computation of J̃k+1:

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk

E
{

gk(xk, uk, wk) + J̃k+1(xk+1)
}

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future” First Step
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree
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Aggregation

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from
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Improper policy µ
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s t j̄1 j̄2 j̄` j̄`�1 j̄1

Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Aggregation Adaptive simulation Monte-Carlo Tree Search

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ
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b+
k b−

k Permanent trajectory P k Tentative trajectory T k

Approximate Min Approximate E{·} Computation of J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

1

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

Approximate Min Approximate E{·} Computation of J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

1

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Computation of J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

1

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
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T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

Parametric approximation Neural nets

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N
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Off-line methods (primarily): All the functions J̃k+1 are computed for every k ,
before the control process begins.

Examples of off-line methods: Neural network and other parametric
approximations in the context of PI-like methods; also aggregation.

On-line methods (primarily): The values J̃k+1(xk+1) are computed only at the
relevant next states xk+1, and are used to compute the control to be applied at the
N time steps.

Examples of on-line methods: Rollout and MPC.
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Simplifying the Expected Value Calculation: Probabilistic Approximation

Modify the probability distributions P(wk | xk , uk ) to simplify the lookahead minimization
and/or the calculation/training of J̃k+`.

Assume certainty equivalence (inspired by linear-quadratic control problems)
Replace uncertain quantities with deterministic nominal values.

Then the lookahead and tail problems are deterministic, so they could be solvable
by DP or by special deterministic methods on-line.

Use expected values or forecasts to determine nominal values; update policy
when forecasts change (on-line replanning).

A major possibility for POMDP: Use state estimates instead of belief states.

A variant: Partial certainty equivalence. Fix only some uncertain quantities to
nominal values.

A generalization: Approximate E{·} by limited simulation.
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Model-Based vs Model-Free

What does model-free mean? Is it good or bad? There is no free lunch in RL

We will not deal with interactions with the environment for combined model
identification and control (this is hard)
For us it’s all model-based (but the model may be a computer/simulation model)

Monte Carlo simulation is useful when:
A mathematical model of the probabilities pk (wk | xk , uk ) is not available but a
computer model/simulator is. It simulates sample probabilistic transitions to a
successor state xk+1

When for reasons of computational efficiency we prefer to compute expected
values by using sampling and Monte Carlo simulation; e.g., approximate an
integral or a huge sum of numbers by a Monte Carlo estimate

A common example: Simulation-based calculations of approximate Q-factors

E
{

gk (xk , uk ,wk ) + J̃k+1
(
fk (xk , uk ,wk )

)}
See the next slide
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Monte Carlo-Based Q-Factor Approximation for Stochastic Problems
(for Given J̃k+1)

Sample State xs
k Sample Control us
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k+1 Sample Transition Cost gs

k Simulator

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2
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x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

1

Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)
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1

Use the simulator to collect a large number of “representative" samples of
state-control-successor states-stage cost quadruplets (xs

k , u
s
k , x

s
k+1, g

s
k ), and

corresponding sample Q-factors

βs
k = gs

k + J̃k+1(xs
k+1), s = 1, . . . , q

Introduce a parametric family of Q-factors Q̃k (xk , uk , rk ).

Determine the parameter vector r̄k by the least-squares fit

r̄k ∈ arg min
rk

q∑
s=1

(
Q̃k (xs

k , u
s
k , rk )− βs

k
)2

Use the policy
µ̃k (xk ) ∈ arg min

uk∈Uk (xk )
Q̃k (xk , uk , r̄k )
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Multistep Lookahead Issues

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm
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k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree
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Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r
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1

Approximations: Computation of J̃k+ℓ: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout
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E
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gk(xk, uk, wk) +
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gk
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u1
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k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

1

u1
k u2

k u3
k u4

k u5
k Constraint Relaxation U U1 U2

At State xk

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Constraint Relaxation U U1 U2
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1
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min
uk ,µk+1,...,µk+ℓ−1

E
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gk(xk, uk, wk) +
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gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)
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1

Compressed N stages xk+1 = f(xk, uk, wk) αkg(xk, uk, wk) Terminal State 2 0 J∗ = (0, 0) . . .

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

J̃k = (rk, 2rk) Exact VI iterate Approximate J̃k+1 =
(
αJ̃k(2), αJ̃k(2)

)
= (2αrk, 2αrk).

Orthogonal Projection

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation Representative State-Time Pairs Space-Time Barriers

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gm

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Start End Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo

tree search

1

Main hope:
Lookahead over many steps will work better than over few steps

Intuition: With long lookahead we act optimally over more stages; with long
enough lookahead we are optimal

Bottom line: By using a long-step lookahead, we can afford a simpler/less
accurate cost-to-go approximation.

Main difficulty:
Minimization over many stages is costly; stochastic problems are harder because of a
larger branching factor of the lookahead tree.
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Multistep Lookahead and Deterministic Problems

...

...

Certainty equivalence Monte Carlo tree search Lookahead tree xk

Parametric approximation Neural nets Discretization Cost Function
Approximation Jk+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
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Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)
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Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

1

Certainty equivalence Monte Carlo tree search Lookahead tree xk

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N
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Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)
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If the problem is deterministic and finite-state, the lookahead minimization is a shortest
path problem and may be solved on-line

If the problem has continuous-state/control
If the problem is deterministic, the lookahead minimization may be quickly solvable
by nonlinear programming (MPC case)

If the problem is stochastic, the lookahead minimization may be solvable by
stochastic programming (to be discussed later)

If the problem is stochastic and finite-state, the lookahead minimization can be split into
a first stochastic step and a deterministic remainder; i.e., use a deterministic shortest
path problem approximation for the remaining steps
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Let’s Take a Break; Consider the Following Challenge Question

Will longer lookahead produce a better policy than shorter lookahead?

Consider the following example

⌧ Qij(⌧, u) pji(u) pjj(u) n pij(u) ↵pji(u) ↵pjj(u) 1 � ↵ i j t

pin(u) pjn(u) pni(u) pnj(u) pnn(u) ↵pij(u) ↵pji(u) ↵pjj(u)

Current State Current Stage 1 2 l Stages High Cost Low
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...
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3 5 2 4 6 2

10 5 7 8 3 9 6 1 2
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�
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}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

1

High Cost u′ Low Cost u Optimal trajectory ℓ + 1 Stages Optimal
trajectory

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

1

High Cost Suboptimal u′ “Deceptive” Low Cost u Optimal trajectory
ℓ + 1 Stages Optimal trajectory

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

1

x0 x4 0, 1, 2, 1, 10 2-Step lookahead 3-Step lookahead 2 Stages 3
Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

1

x0 x4 0, 1, 2, 1, 10 2-Step lookahead 3-Step lookahead 2 Stages 3
Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

1

x0 x4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-step lookahead 3-step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-step lookahead 3-step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

Two controls, u, u′, and cost function approximation J̃k (xk ) ≡ 0.
There is a choice only at x0.
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The Answer is that “Usually" Longer is Better, but NOT for this Example

⌧ Qij(⌧, u) pji(u) pjj(u) n pij(u) ↵pji(u) ↵pjj(u) 1 � ↵ i j t

pin(u) pjn(u) pni(u) pnj(u) pnn(u) ↵pij(u) ↵pji(u) ↵pjj(u)

Current State Current Stage 1 2 l Stages High Cost Low

Optimal Trajectory

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

Ay(x) + b �1(x, v) �2(x, v) �m(x, v) r x Initial

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r0�(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

1

High Cost u′ Low Cost u Optimal trajectory ℓ + 1 Stages Optimal
trajectory

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

1

High Cost u′ Low Cost u Optimal trajectory ℓ + 1 Stages Optimal
trajectory

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

1

High Cost u′ Low Cost u Optimal trajectory ℓ + 1 Stages Optimal
trajectory

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

1

High Cost Suboptimal u′ “Deceptive” Low Cost u Optimal trajectory
ℓ + 1 Stages Optimal trajectory

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

1

x0 x4 0, 1, 2, 1, 10 2-Step lookahead 3-Step lookahead 2 Stages 3
Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

1

x0 x4 0, 1, 2, 1, 10 2-Step lookahead 3-Step lookahead 2 Stages 3
Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

1

x0 x4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-step lookahead 3-step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

x0 x4 0 1 2 1 10 2-step lookahead 3-step lookahead 2 Stages 3 Stages

the costs of the four arcs on the upper path in being 0, 1, 2, 1 and
the costs of the four arcs on the lower path being 0, 2, 0, 10. From the
initial state, 2-Step lookahead with terminal cost approximation J̃2 = 0,
compares 0 + 1 with 0 + 2 and prefers the optimal control u, while 3-Step
lookahead with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2
with 0 + 2 + 0 and prefers the suboptimal control u0.

{1, 2, 3, 4, 5} {1, 2, 3} {4, 5} {1, 2} {2, 3} {1} {2} {3} {4} {5}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

Accept f0 Continue Instruction Terminate Timid Play Bold Play

1.5 � 0.5 ACDB ADBC ADCB

Noninferior Vectors Origin Node s Artificial Terminal Node t X =
{1, 2, 3, 4, 5}

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

OPEN List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

1

Problem with “edge effects": u will be preferred based on 2-step lookahead. u′ will be
preferred based on 3-step lookahead
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Rollout will be Important for this Course

Aim of rollout: Start with a policy, get a better policy
It is the basic building block of the fundamental DP algorithm of policy iteration

Reasons why it will be important:
Rollout is the RL method that is easiest to understand and apply

Rollout is the not the most ambitious RL method, but it is the most reliably
successful

It is very general: Applies to deterministic and stochastic, to finite horizon and
infinite horizon

It contains as a special case model predictive control, one of the most important
control system design methods

It forms a building block for many of the RL methods used in practice (including
approximate policy iteration, Q-learning, temporal differences, etc)
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General Structure of Deterministic Rollout with Some Base Heuristic

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk)

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk)

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
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c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from
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Prob. u Prob. 1 � u Cost 1 Cost 1 �p
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c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0
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Improper policy µ

Proper policy µ
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Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
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c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0
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Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .
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k u00
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k+1 x00
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(x)

Improper policy µ

Proper policy µ
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Initial City Current Partial Tour Next Cities

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
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Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)
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Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
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Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1
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Parametric approximation Neural nets Discretization
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Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Initial City Current Partial Tour Next Cities

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Initial City Current Partial Tour Next Cities Next States

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

At state xk , for every pair (xk , uk ), uk ∈ Uk (xk ), we generate a Q-factor

Q̃k (xk , uk ) = gk (xk , uk ) + Hk+1
(
fk (xk , uk )

)
using the base heuristic [Hk+1(xk+1) is the heuristic cost starting from xk+1]

We select the control uk with minimal Q-factor

We move to next state xk+1, and continue

Multistep lookahead versions (length of lookahead limited by the branching factor
of the lookahead tree)
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Traveling Salesman Example of Rollout with a Greedy Heuristic

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk)

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk)

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial City Current Partial Tour Next Cities Nearest Neighbor

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N �1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

1

Initial City Current Partial Tour Next Cities Nearest Neighbor

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
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Rollout, Model Predictive Control
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g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)
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)
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)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
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Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1
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Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
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+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
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Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃
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Parametric approximation Neural nets Discretization
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k Permanent trajectory P k Tentative trajectory T k

min
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E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1
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0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
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Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
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T

(λ)
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Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)
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minu∈U(i)
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)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)
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Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Start End Plus Terminal Cost Approximation S1 S2 S3 S` Sm�1 Sm

Generate Improved Policy µ Next Partial Tour

Generate “Improved” Policy µ̃ by µ̃(i) 2 arg minu2U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b �1(i, v) �m(i, v) �2(i, v) Ĵ(i, v) = r0�(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Cost Vector r⇤ J̃1 = Corrected V Enlarged State Space Cost J̃0 Cost J̃1 Cost r⇤

Representative States Controls u are associated with states i

N Stages jN�1 jN i 2 Ix j 2 Iy

Sx1 Sx` Sxm x1 x` xm r⇤x1
r⇤x`

r⇤xm
Footprint Sets J̃(i) J̃(j) =

P
y2A �jyr⇤y

min
u2U(i)

nX

j=1

pij(u)
�
g(i, u, j) + ↵J̃(j)

�
i = x Ix

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

nX

j=1

pxj(u)�jy ĝ(x, u) =

nX

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J⇤(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /2 Ix �jy = 1 for j 2 Iy �jy = 0 or 1 for all j and y Each j connects to a single x

x pxj1(u) pxj2(u) pxj3(u) �j1y1 �j1y2 �j1y3 �jy with Aggregation Probabilities �jy = 0 or 1

Relate to Rm r⇤m�1 r⇤m x0
k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features
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Start End Plus Terminal Cost Approximation S1 S2 S3 S` Sm�1 Sm

Generate Improved Policy µ Next Partial Tours

Generate “Improved” Policy µ̃ by µ̃(i) 2 arg minu2U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b �1(i, v) �m(i, v) �2(i, v) Ĵ(i, v) = r0�(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Cost Vector r⇤ J̃1 = Corrected V Enlarged State Space Cost J̃0 Cost J̃1 Cost r⇤

Representative States Controls u are associated with states i

N Stages jN�1 jN i 2 Ix j 2 Iy

Sx1 Sx` Sxm x1 x` xm r⇤x1
r⇤x`

r⇤xm
Footprint Sets J̃(i) J̃(j) =

P
y2A �jyr⇤y

min
u2U(i)

nX

j=1

pij(u)
�
g(i, u, j) + ↵J̃(j)

�
i = x Ix

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

nX

j=1

pxj(u)�jy ĝ(x, u) =

nX

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J⇤(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /2 Ix �jy = 1 for j 2 Iy �jy = 0 or 1 for all j and y Each j connects to a single x

x pxj1(u) pxj2(u) pxj3(u) �j1y1 �j1y2 �j1y3 �jy with Aggregation Probabilities �jy = 0 or 1

Relate to Rm r⇤m�1 r⇤m x0
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Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

1

N cities c = 0, . . . ,N − 1; each pair of distinct cities c, c′, has traversal cost
g(c, c′)

Find a minimum cost tour that visits each city once and returns to the initial city

Recall that it can be viewed as a shortest path/deterministic DP problem. States
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Traveling Salesman Example: Rollout with a Nearest Neighbor Heuristic
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ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk
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Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE
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xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution
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xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution
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xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution
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Wp0 : Functions J � Ĵp0 with J(xk) ! 0 for all p0-stable ⇡

W+ =
�
J | J � J+, J(t) = 0

 

VI converges to J+ from within W+

Cost: g(xk, uk) � 0 VI converges to Ĵp from within Wp
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Cost-to-go approximation Expected value approximation

Optimal cost J∗ Jµ1(x)/Jµ0(x) = K1/K0 L0 r

TµJ Jµ = TµJµ Jµ̃ = Tµ̃Jµ̃ Cost of base policy µ

Cost of rollout policy µ̃ Optimal Base Rollout Terminal Score Ap-
proximation

Simplified minimization

Changing System, Cost, and Constraint Parameters

Linearized Bellman Eq. at Jµ Yields Rollout Policy µ̃ 20

Through Tµ̃Jµ = TJµ Lookahead Minimization

Value iterations

Rollout with Base Off-Line Obtained Policy

Policy Improvement with Base Policy µ
Policy evaluations for µ and µ̃

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

αb2 K̃ K K∗ Kk Kk+1 F (K) = αrK
r+αb2K + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step Value Network Policy Network

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

1

Base heuristic: Nearest neighbor
The rollout algorithm has “long range vision" that the base heuristic lacks
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Criteria for Cost Improvement of a Rollout Algorithm - Sequential
Consistency

Cost improvement is not automatic: Special conditions must hold to guarantee that
the rollout policy has no worse performance than the base heuristic

Two such conditions are sequential consistency and sequential improvement.

A sequentially consistent heuristic is also sequentially improving

Any heuristic can be modified to become sequentially improving (see next lecture)

The base heuristic is sequentially consistent if it “stays the course"
If the heuristic generates the sequence

{xk , xk+1, . . . , xN}

starting from state xk , it also generates the sequence

{xk+1, . . . , xN}

starting from state xk+1

The base heuristic is sequentially consistent if and only if it can be implemented
with a legitimate DP policy {µ0, . . . , µN−1}
“Greedy" heuristics are sequentially consistent (e.g., nearest neighbor for TS)
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Sequentially Improvement Criterion - Holds in MPC

Sequential improvement holds if (Best heuristic Q-factor at xk ≤ Heuristic cost)

min
uk∈Uk (xk )

[
gk (xk , uk ) + Hk+1

(
fk (xk , uk )

)]
≤ Hk (xk ), for all xk

where Hk (xk ) is the cost of the trajectory generated by the heuristic starting from xk

Holds under sequential consistency [Hk (xk ) is the heuristic’s Q-factor at xk ]

Cost improvement property for a sequentially improving heuristic:

Let the rollout policy be π̃ = {µ̃0, . . . , µ̃N−1}, and let Jk,π̃(xk ) denote its cost starting
from xk . Then for all xk and k , Jk,π̃(xk ) ≤ Hk (xk )

Proof by induction: It holds for k = N, since JN,π̃ = HN = gN . Assume that it
holds for index k + 1

Jk,π̃(xk ) = gk
(
xk , µ̃k (xk )

)
+ Jk+1,π̃

(
fk
(
xk , µ̃k (xk )

))
≤ gk

(
xk , µ̃k (xk )

)
+ Hk+1

(
fk (xk , µ̃k (xk ))

)
= min

uk∈Uk (xk )

[
gk (xk , uk ) + Hk+1

(
fk (xk , uk )

)]
≤ Hk (xk )
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About the Next Lecture

We will cover:
Extensions of deterministic rollout

Continuous time deterministic rollout

Rollout for stochastic problems

Monte Carlo tree search

Continuous space deterministic rollout

Homework to be announced

Watch videolecture 4 from 2019 ASU course offering
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