Topics in Reinforcement Learning:
Rollout and Approximate Policy lteration

ASU, CSE 691, Spring 2021

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 4
A Closer Look at Approximations in DP/RL

Bertsekas Reinforcement Learning 1/30

° Approximation in Value and Policy Space

e From Values to Policies to New Values to New Policies
e General Issues of Approximation in Value Space

0 Special Multistep Lookahead Issues

© Rollout for Deterministic Finite-State Problems

Bertsekas Reinforcement Learning 2/30

Recall the Stochastic DP Algorithm

Produces the optimal costs J;(xx) of the tail subproblems that start at xx
Start with Jy(xn) = gn(xn), and fork =0,...,N —1, let

Ji(X) = min E{gk(xk,uk,wk)+JZ+1(fk(xk,uk7Wk))}, for all x.
Uk € Uk (xk)

@ The optimal cost J*(xp) is obtained at the last step: J; (x0) = J* (o).

Online implementation of the optimal policy, given J;, ..., J§_,

Sequentially, going forward, for k = 0,1,..., N — 1, observe xx and apply

Ug €arg min E{Qk(X/n Ui, Wie) + Ji g1 (fie(Xc, Uiy Wk))}~
Uk € U (xic)

The main difficulties: Too much computation, too much memory storage.

Approximation in value space:

Use Jks in place of Jiy1; possibly approximate E{-} and miny,

Bertsekas Reinforcement Learning 4/30

Approximation in Value Space: One-Step Lookahead

Approximate Min

Discretization

Simplification First Step “Future”
Multiagent -— »

\?nin/‘E{gk(xk, (O wk)+~fk+<$k+l)}

UL

Approximate Cost-to-Go jk+l

Approximate E{-} Problem approximation
Certainty equivalence Rollout, Model Predictive Control
Adaptive simulation Parametric approximation
Monte Carlo tree search Neural nets
Aggregation

Approximation in value space and one-step lookahead minimization defines:
@ The control to use at state xx for on-line play

@ A suboptimal control law fix that can be approximated by off-line training

The three approximations; they can be addressed separately
@ How to construct the cost function approximations Jy.1.
@ How to simplify E{-} operation.
@ How to simplify min operation.

Bertsekas

Reinforcement Learning 5/30

Approximation in Value Space: Multistep Lookahead

At State z;,

DP minimization

First ¢ Steps “Future”
l k+0—1
min E{gk (mkaukt wk) + Z gm (mmaﬂrm(mm),l“m) + Jk+l(xk+2)}
Ul s K15+ Hk4+0—1 ———
Cost-to-go

Lookahead Minimization Approximation

@ At state xk, we solve an ¢-stage version of the DP problem with xi as the initial
state and Jx,» as the terminal cost function

@ Use the first control of the ¢-stage policy thus obtained, discard the others

We can view /-step lookahead as a special case of one-step lookahead:

The “effective” one-step lookahead approximate cost function is the optimal cost
function of an (¢ — 1)-stage DP problem with terminal cost Jx.¢

Bertsekas Reinforcement Learning 6/30

Approximation in Value Space For Infinite Horizon

Approximate Q-Factor Q(x, u)

»

Min Approximation First Step “Puture”
«— > — »

At T f—r uglUl?x) 5 {g(l‘, U, ’LU) + Ola?(f(l’, u, w))}

E{-} Approximation Optimal Cost Approximation
————————— One-Step Lookahead ———M—————-

First ¢ Steps “Future”

< »
< » 4+— p

k+4—1
: i—k s . 0T
e i {g(xk,uk,ww + :Xk; ai=hg(as, pa(:), wi) + @ J(xku)}

————————— Multistep Lookahead — — — — .

Bertsekas Reinforcement Learning 7130

Approximation in Policy Space: The Major Alternative to Approximation

in Value Space

Control
up = /lk(a:k,rk) System State xp

» >
g

" | Environment

C~ontroller B
P (i) [

Training Data

@ |dea: Select the policy by optimization over a suitably restricted class of policies

@ The restricted class is usually a parametric family of policies fix(X«, rk),
k=0,...,N—1, of some form, where ry is a parameter (e.g., a neural net)

@ Important advantage once the parameters rx are computed: The on-line
computation of controls is often much faster ... at state xx apply ux = fix(X«, rx)

@ Important disadvantage: It does not allow for on-line replanning

Bertsekas Reinforcement Learning 8/30

From Values to Policies: Approximation in Policy Space on Top of

Approximation in Value Space

The approximate cost-to-go functions Jy_ 1 define a suboptimal policy /i
through one-step or multistep lookahead minimization

@ Given functions Jx. 1, how do we simplify the computation of jix?

@ |dea: Approximate jix using some form of least squares and a training set of a
large number q of sample pairs (x¢, ug), s =1,...,q, where u; = fik(X?):

u; € arg min E{gk Xg, Uy Wi) + Ji (fe(X2, wk))}
ueUg(x
Similarly for multistep lookahead.

@ Example (for finite number of controls): Introduce a parametric family of
randomized policies ux(Xk, rx), k =0, ..., N — 1, of some form (e.g., a neural net),
where ry is a parameter. Then estimatée the parameters ri by least squares fit:

ri € argmin S Nlug = e, n)|?
s=1
@ For this, the parametrization ux(xg, r) must take continuous values.

@ To deal with this, u; is coded to take values 0 or 1 and (X, r) is a randomized
policy (relation to classification ... policy <—> classifier; more on this later).

Bertsekas Reinforcement Learning 10/30

From Policies to Values to New Policies by Rollout

Stages Beyond
Truncation
7777777777777777777 [~®

Rollout

with
,,,,,,,,,,,,,,,,,, Y
Terminal Cost
Approximation
,,,,,,,,,,,,,,,,,, »glor Stages

Beyond

Truncation

,,,,,,,,,,,,,,,,,, »®

,,,,,,,,,,,,,,,,,, Y

Possible
States @j1

@ Start with some policy = = {uo, - .., un—1}, @ base policy, possibly obtained
through approximation in policy space

@ Use one-step or multistep lookahead rollout where Jy ;1 (Xk:1) ~ Jir1.x(Xk11)
@ The policy 7 = {jio, . - ., un—1} thus obtained is the truncated rollout policy

@ Important issue: How to compute Jki1,x(Xk+1)?

For deterministic problems: Run 7 from x4 once and accumulate stage costs
For stochastic problems: Run 7 from x4 many times and Monte Carlo average

Bertsekas Reinforcement Learning 11/30

Combined Approximation in Value and Policy Space

Approximation —
.| Base | in Value Space .| Approximation _
| Policy "l Multistep "|in Policy Space o
Lookahead
Cost Data Policy Data

by Simulation by Rollout

A

Approximate Rollout Policy
Perpetual rollout and policy improvement

@ A fundamental property: In its idealized form (no approximations) each new policy
has no worse cost function than the preceding one, i.e., for all xx and k,

Jk,7#(Xk) < Ik, (Xk)

@ Thus the algorithm is capable of self-improvement or self-learning (no external
training data is needed)

@ lts natural extension to infinite horizon problems is the policy iteration (PI)
algorithm, and its foundation is the policy improvement property

@ With approximations, self-improvement is approximate (to within an error bound)

@ There are many variations of this scheme: Optimistic PI, Q-learning, temporal
differences, etc. They involve challenging implementation issues

Bertsekas Reinforcement Learning 12/30

Balance Between Off-Line and On-Line Computations

Approximate Min
Discretization

Simplification First Step “Future”
Multiagent

\?13111/‘E{gk(wk, U, wk)+jk-+££71k+1)}

Approximate Cost-to-Go zjk+1

Approximate E{-} Problem approximation
Certainty equivalence Rollout, Model Predictive Control
Adaptive simulation Parametric approximation
Monte Carlo tree search Neural nets
Aggregation

@ Off-line methods (primarily): All the functions Jx_1 are computed for every k,
before the control process begins.

@ Examples of off-line methods: Neural network and other parametric
approximations in the context of Pl-like methods; also aggregation.

@ On-line methods (primarily): The values Ji1(xk:1) are computed only at the

relevant next states xx..1, and are used to compute the control to be applied at the
N time steps.

@ Examples of on-line methods: Rollout and MPC.

Bertsekas Reinforcement Learning 14/30

Simplifying the Expected Value Calculation: Probabilistic Approximation

Modify the probability distributions P(wi | X«, Ux) to simplify the lookahead minimization
and/or the calculation/training of Jx¢.

v

Assume certainty equivalence (inspired by linear-quadratic control problems)
@ Replace uncertain quantities with deterministic nominal values.

@ Then the lookahead and tail problems are deterministic, so they could be solvable
by DP or by special deterministic methods on-line.

@ Use expected values or forecasts to determine nominal values; update policy
when forecasts change (on-line replanning).

@ A major possibility for POMDP: Use state estimates instead of belief states.

@ A variant: Partial certainty equivalence. Fix only some uncertain quantities to
nominal values.

@ A generalization: Approximate E{-} by limited simulation.

Bertsekas Reinforcement Learning 15/30

Model-Based vs Model-Free

What does model-free mean? Is it good or bad? There is no free lunch in RL)

We will not deal with interactions with the environment for combined model
identification and control (this is hard)

For us it’s all model-based (but the model may be a computer/simulation model)

Monte Carlo simulation is useful when:

@ A mathematical model of the probabilities px(wx | Xk, ux) is not available but a
computer model/simulator is. It simulates sample probabilistic transitions to a
successor state Xy 1

@ When for reasons of computational efficiency we prefer to compute expected
values by using sampling and Monte Carlo simulation; e.g., approximate an
integral or a huge sum of numbers by a Monte Carlo estimate

A common example: Simulation-based calculations of approximate Q-factors

E{Q’k(Xk, Uk, Wk) + Jii1 (Fe(Xk, Uk, Wk))}

See the next slide

Bertsekas Reinforcement Learning 16/30

Monte Carlo-Based Q-Factor Approximation for Stochastic Problems

(for Given Ji1)

Sample Sample
State a7 Next State j | - Sample Q-Factor
) Simulator Jr+1 _ >
Sample Sample . By =gi+ ,]kJrl(;ziH)
Control uj, Transition Cost g§

@ Use the simulator to collect a large number of “representative” samples of
state-control-successor states-stage cost quadruplets (xi, Ug, X¢.1, gi), and
corresponding sample Q-factors

Bi=gf +J1(Xep1), s=1,...,q9

@ Introduce a parametric family of Q-factors ék(xk, Uk, Ik)-
@ Determine the parameter vector 7 by the least-squares fit

q
— . 2 2
Tic € argmin > (Qu(xE, uf, 1) — BR)
s=1

@ Use the policy

fik(xk) € arg min Qu(Xk, Uk, Tic)
Uk € Uy (xk)

Bertsekas Reinforcement Learning 17/30

Multistep Lookahead Issues

At State z,

DP minimization

First ¢ Steps “Future”
l k+0—1
min E{gk.(:zzk,11k, wg) + Z gm(:zrm,y,m(:zrm). 'lffm) + Jk+g(xk+g)}
Uk sHhk415- s Hk4+0—1 e
Cost-to-go

Lookahead Minimization Approximation

Main hope:
@ Lookahead over many steps will work better than over few steps
@ Intuition: With long lookahead we act optimally over more stages; with long
enough lookahead we are optimal
@ Bottom line: By using a long-step lookahead, we can afford a simpler/less
accurate cost-to-go approximation.

Main difficulty:

Minimization over many stages is costly; stochastic problems are harder because of a
larger branching factor of the lookahead tree.

Bertsekas Reinforcement Learning 19/30

Multistep Lookahead and Deterministic Problems

ot——

e

— T

Jire
— T
Lookahead trce\‘o/
£ Steps [———

Shortest path problem

—
(Cost Function

TN

If the problem is deterministic and finite-state, the lookahead minimization is a shortest
path problem and may be solved on-line

If the problem has continuous-state/control
@ [f the problem is deterministic, the lookahead minimization may be quickly solvable
by nonlinear programming (MPC case)

@ If the problem is stochastic, the lookahead minimization may be solvable by
stochastic programming (to be discussed later)

4

If the problem is stochastic and finite-state, the lookahead minimization can be split into
a first stochastic step and a deterministic remainder; i.e., use a deterministic shortest
path problem approximation for the remaining steps

Bertsekas Reinforcement Learning 20/30

Let’s Take a Break; Consider the Following Challenge Question

Will longer lookahead produce a better policy than shorter lookahead?

Consider the following example J

0~ Optimal
U
Initial

Stat . .
ae Suboptimal

2-step lookahead
3-step lookahead

Two controls, u, u’, and cost function approximation Jk(xk) =0.
There is a choice only at xg.

Bertsekas Reinforcement Learning 21/30

The Answer is that “Usually" Longer is Better, but NOT for this Example

0~0Optimal
u
Initial

State Suboptimal

2-step lookahead
3-step lookahead

Problem with “edge effects": u will be preferred based on 2-step lookahead. v’ will be
preferred based on 3-step lookahead J

Bertsekas Reinforcement Learning 22/30

Rollout will be Important for this Course

Aim of rollout: Start with a policy, get a better policy
It is the basic building block of the fundamental DP algorithm of policy iteration

Reasons why it will be important:
@ Rollout is the RL method that is easiest to understand and apply

@ Rollout is the not the most ambitious RL method, but it is the most reliably
successful

@ ltis very general: Applies to deterministic and stochastic, to finite horizon and
infinite horizon

@ [t contains as a special case model predictive control, one of the most important
control system design methods

@ |t forms a building block for many of the RL methods used in practice (including
approximate policy iteration, Q-learning, temporal differences, etc)

Bertsekas Reinforcement Learning 24/30

General Structure of Deterministic Rollout with Some Base Heuristic

Next States

Current State

Heuristic

Q-Factors

@ At state x, for every pair (X, ux), ux € Uk(Xk), we generate a Q-factor
Qu(Xk, Uk) = Gk (Xk, Ux) + Hii1 (F(Xk, Ux))

using the base heuristic [Hk+1(Xk+1) is the heuristic cost starting from x1]
@ We select the control ux with minimal Q-factor
@ We move to next state xx. 1, and continue

@ Multistep lookahead versions (length of lookahead limited by the branching factor
of the lookahead tree)

Bertsekas Reinforcement Learning 25/30

Traveling Salesman Example of Rollout with a Greedy Heuristic

Next Partial
Tours

. Complete Tours
Next Cities

Current ‘
Partial Tour £

Nearest Neighbor

Initial City Heuristic

Nearest Neighbor
Heuristic

Nearest Neighbor
Heuristic

@ Ncities ¢ =0, ..., N — 1; each pair of distinct cities ¢, ¢’, has traversal cost
g(c,c)
@ Find a minimum cost tour that visits each city once and returns to the initial city

@ Recall that it can be viewed as a shortest path/deterministic DP problem. States
are the partial tours, i.e., the sequences of ordered collections of distinct cities

@ Nearest neighbor heuristic; chooses the best one-hop extension of a partial tour

@ Rollout algorithm: Start at some city; given a partial tour {co, . . ., ¢} of distinct

cities, select as next city cx+1 the one that yielded the minimum cost tour under the
nearest neighbor heuristic

Bertsekas Reinforcement Learning 26/30

Traveling Salesman Example: Rollout with a Nearest Neighbor Heuristic

Initial State x¢

15

1
™~ Base Heu

Matrix of Intercity
Travel Costs

Base heuristic: Nearest neighbor
The rollout algorithm has “long range vision" that the base heuristic lacks J

Bertsekas Reinforcement Learning 27/30

Criteria for Cost Improvement of a Rollout Algorithm - Sequential

Consistency

@ Cost improvement is not automatic: Special conditions must hold to guarantee that
the rollout policy has no worse performance than the base heuristic

@ Two such conditions are sequential consistency and sequential improvement.
@ A sequentially consistent heuristic is also sequentially improving
@ Any heuristic can be modified to become sequentially improving (see next lecture)

4

The base heuristic is sequentially consistent if it “stays the course"
@ If the heuristic generates the sequence

{ X X155 XN}
starting from state x, it also generates the sequence
{Xk+1 geeoyg XN}

starting from state X+

@ The base heuristic is sequentially consistent if and only if it can be implemented
with a legitimate DP policy {uo, ..., un—1}

@ “Greedy" heuristics are sequentially consistent (e.g., nearest neighbor for TS)

Bertsekas Reinforcement Learning 28/30

Sequentially Improvement Criterion - Holds in MPC

Sequential improvement holds if (Best heuristic Q-factor at xx < Heuristic cost)

min) [gk(Xk, Uk) + Hk+1 (fk(Xk, Uk)):| < Hk(Xk), for all xx

Uy € Uk (Xk

where Hi(xx) is the cost of the trajectory generated by the heuristic starting from x
Holds under sequential consistency [Hk(Xx) is the heuristic’s Q-factor at xk]

Cost improvement property for a sequentially improving heuristic:

Let the rollout policy be & = {jio, - . ., fin—1}, and let Jx = (x«) denote its cost starting
from xx. Then for all xx and k, Jx = (xx) < Hik(xx)

Proof by induction: It holds for k = N, since Jy > = Hy = gn. Assume that it
holds for index k + 1

Ji#(Xk) = gk (X, fix (X)) + Jks1,7 (fk (XK, ﬁk(Xk)))
< Gk (Xk, fik(Xk)) + Hicer (Fe(Xk, fik (X))
= min [gk(Xk, Uk) + Hk+1 (fk(Xk7 uk))]

Uk € Uy (xk)

< Hk(x«)

Bertsekas Reinforcement Learning 29/30

About the Next Lecture

We will cover:

@ Extensions of deterministic rollout
Continuous time deterministic rollout
Rollout for stochastic problems
Monte Carlo tree search
Continuous space deterministic rollout

Homework to be announced)

Watch videolecture 4 from 2019 ASU course offering)

Bertsekas Reinforcement Learning 30/30

	Approximation in Value and Policy Space
	From Values to Policies to New Values to New Policies
	General Issues of Approximation in Value Space
	Special Multistep Lookahead Issues
	Rollout for Deterministic Finite-State Problems

