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° Approximation in Value and Policy Space

e From Values to Policies to New Values to New Policies
e General Issues of Approximation in Value Space

0 Special Multistep Lookahead Issues

© Rollout for Deterministic Finite-State Problems
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Recall the Stochastic DP Algorithm

Produces the optimal costs J;(xx) of the tail subproblems that start at xx
Start with Jy(xn) = gn(xn), and fork =0,...,N —1, let

Ji(X) = min E{gk(xk,uk,wk)+JZ+1(fk(xk,uk7Wk))}, for all x.
Uk € Uk (xk)

@ The optimal cost J*(xp) is obtained at the last step: J; (x0) = J* (o).

Online implementation of the optimal policy, given J;, ..., J§_,

Sequentially, going forward, for k = 0,1,..., N — 1, observe xx and apply

Ug €arg min E{Qk(X/n Ui, Wie) + Ji g1 (fie(Xc, Uiy Wk))}~
Uk € U (xic)

The main difficulties: Too much computation, too much memory storage.

Approximation in value space:

Use Jks in place of Jiy1; possibly approximate E{-} and miny,
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Approximation in Value Space: One-Step Lookahead

Approximate Min

Discretization

Simplification First Step “Future”
Multiagent -— »

\?nin/‘E{gk(xk, (O wk)+~fk+<$k+l)}

UL

Approximate Cost-to-Go jk+l

Approximate E{-} Problem approximation
Certainty equivalence Rollout, Model Predictive Control
Adaptive simulation Parametric approximation
Monte Carlo tree search Neural nets
Aggregation

Approximation in value space and one-step lookahead minimization defines:
@ The control to use at state xx for on-line play

@ A suboptimal control law fix that can be approximated by off-line training

The three approximations; they can be addressed separately
@ How to construct the cost function approximations Jy.1.
@ How to simplify E{-} operation.
@ How to simplify min operation.
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Approximation in Value Space: Multistep Lookahead

At State z;,

DP minimization

First ¢ Steps “Future”
l k+0—1
min E{gk (mkaukt wk) + Z gm (mmaﬂrm(mm),l“m) + Jk+l(xk+2)}
Ul s K15+ Hk4+0—1 ———
Cost-to-go

Lookahead Minimization Approximation

@ At state xk, we solve an ¢-stage version of the DP problem with xi as the initial
state and Jx,» as the terminal cost function

@ Use the first control of the ¢-stage policy thus obtained, discard the others

We can view /-step lookahead as a special case of one-step lookahead:

The “effective” one-step lookahead approximate cost function is the optimal cost
function of an (¢ — 1)-stage DP problem with terminal cost Jx.¢
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Approximation in Value Space For Infinite Horizon

Approximate Q-Factor Q(x, u)

»

Min Approximation First Step “Puture”
«— > — »

At T f—r uglUl?x) 5 {g(l‘, U, ’LU) + Ola?(f(l’, u, w))}

E{-} Approximation Optimal Cost Approximation
————————— One-Step Lookahead ———M—————-

First ¢ Steps “Future”

< »
< » 4+— p

k+4—1
: i—k s . 0T
e i {g(xk,uk,ww + :Xk; ai=hg(as, pa(:), wi) + @ J(xku)}

————————— Multistep Lookahead — — — — .
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Approximation in Policy Space: The Major Alternative to Approximation

in Value Space

Control
up = /lk(a:k,rk) System State xp

» >
g

" | Environment

C~ontroller B
P (i) [

Training Data

@ |dea: Select the policy by optimization over a suitably restricted class of policies

@ The restricted class is usually a parametric family of policies fix(X«, rk),
k=0,...,N—1, of some form, where ry is a parameter (e.g., a neural net)

@ Important advantage once the parameters rx are computed: The on-line
computation of controls is often much faster ... at state xx apply ux = fix(X«, rx)

@ Important disadvantage: It does not allow for on-line replanning
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From Values to Policies: Approximation in Policy Space on Top of

Approximation in Value Space

The approximate cost-to-go functions Jy_ 1 define a suboptimal policy /i
through one-step or multistep lookahead minimization

@ Given functions Jx. 1, how do we simplify the computation of jix?

@ |dea: Approximate jix using some form of least squares and a training set of a
large number q of sample pairs (x¢, ug), s =1,...,q, where u; = fik(X?):

u; € arg min E{gk Xg, Uy Wi) + Ji (fe(X2, wk))}
ueUg(x
Similarly for multistep lookahead.

@ Example (for finite number of controls): Introduce a parametric family of
randomized policies ux(Xk, rx), k =0, ..., N — 1, of some form (e.g., a neural net),
where ry is a parameter. Then estimatée the parameters ri by least squares fit:

ri € argmin S Nlug = e, n)|?
s=1
@ For this, the parametrization ux(xg, r) must take continuous values.

@ To deal with this, u; is coded to take values 0 or 1 and (X, r) is a randomized
policy (relation to classification ... policy <—> classifier; more on this later).
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From Policies to Values to New Policies by Rollout

Stages Beyond
Truncation
7777777777777777777 [~®

Rollout

with
,,,,,,,,,,,,,,,,,, Y
Terminal Cost
Approximation
,,,,,,,,,,,,,,,,,, »glor Stages

Beyond

Truncation

,,,,,,,,,,,,,,,,,, »®

,,,,,,,,,,,,,,,,,, Y

Possible
States @j1

@ Start with some policy = = {uo, - .., un—1}, @ base policy, possibly obtained
through approximation in policy space

@ Use one-step or multistep lookahead rollout where Jy ;1 (Xk:1) ~ Jir1.x(Xk11)
@ The policy 7 = {jio, . - ., un—1} thus obtained is the truncated rollout policy

@ Important issue: How to compute Jki1,x(Xk+1)?

For deterministic problems: Run 7 from x4 once and accumulate stage costs
For stochastic problems: Run 7 from x4 many times and Monte Carlo average
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Combined Approximation in Value and Policy Space

Approximation —
.| Base | in Value Space .| Approximation _
| Policy "l Multistep "|in Policy Space o
Lookahead
Cost Data Policy Data

by Simulation by Rollout

A

Approximate Rollout Policy
Perpetual rollout and policy improvement

@ A fundamental property: In its idealized form (no approximations) each new policy
has no worse cost function than the preceding one, i.e., for all xx and k,

Jk,7#(Xk) < Ik, (Xk)

@ Thus the algorithm is capable of self-improvement or self-learning (no external
training data is needed)

@ lts natural extension to infinite horizon problems is the policy iteration (PI)
algorithm, and its foundation is the policy improvement property

@ With approximations, self-improvement is approximate (to within an error bound)

@ There are many variations of this scheme: Optimistic PI, Q-learning, temporal
differences, etc. They involve challenging implementation issues
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Balance Between Off-Line and On-Line Computations

Approximate Min
Discretization

Simplification First Step “Future”
Multiagent

\?13111/‘E{gk(wk, U, wk)+jk-+££71k+1)}

Approximate Cost-to-Go zjk+1

Approximate E{-} Problem approximation
Certainty equivalence Rollout, Model Predictive Control
Adaptive simulation Parametric approximation
Monte Carlo tree search Neural nets
Aggregation

@ Off-line methods (primarily): All the functions Jx_1 are computed for every k,
before the control process begins.

@ Examples of off-line methods: Neural network and other parametric
approximations in the context of Pl-like methods; also aggregation.

@ On-line methods (primarily): The values Ji1(xk:1) are computed only at the

relevant next states xx..1, and are used to compute the control to be applied at the
N time steps.

@ Examples of on-line methods: Rollout and MPC.
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Simplifying the Expected Value Calculation: Probabilistic Approximation

Modify the probability distributions P(wi | X«, Ux) to simplify the lookahead minimization
and/or the calculation/training of Jx¢.

v

Assume certainty equivalence (inspired by linear-quadratic control problems)
@ Replace uncertain quantities with deterministic nominal values.

@ Then the lookahead and tail problems are deterministic, so they could be solvable
by DP or by special deterministic methods on-line.

@ Use expected values or forecasts to determine nominal values; update policy
when forecasts change (on-line replanning).

@ A major possibility for POMDP: Use state estimates instead of belief states.

@ A variant: Partial certainty equivalence. Fix only some uncertain quantities to
nominal values.

@ A generalization: Approximate E{-} by limited simulation.
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Model-Based vs Model-Free

What does model-free mean? Is it good or bad? There is no free lunch in RL )

We will not deal with interactions with the environment for combined model
identification and control (this is hard)

For us it’s all model-based (but the model may be a computer/simulation model)

Monte Carlo simulation is useful when:

@ A mathematical model of the probabilities px(wx | Xk, ux) is not available but a
computer model/simulator is. It simulates sample probabilistic transitions to a
successor state Xy 1

@ When for reasons of computational efficiency we prefer to compute expected
values by using sampling and Monte Carlo simulation; e.g., approximate an
integral or a huge sum of numbers by a Monte Carlo estimate

A common example: Simulation-based calculations of approximate Q-factors

E{Q’k(Xk, Uk, Wk) + Jii1 (Fe(Xk, Uk, Wk))}

See the next slide
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Monte Carlo-Based Q-Factor Approximation for Stochastic Problems

(for Given Ji1)

Sample Sample
State a7 Next State j | - Sample Q-Factor
) Simulator Jr+1 _ >
Sample Sample . By =gi+ ,]kJrl(;ziH)
Control uj, Transition Cost g§

@ Use the simulator to collect a large number of “representative” samples of
state-control-successor states-stage cost quadruplets (xi, Ug, X¢.1, gi), and
corresponding sample Q-factors

Bi=gf +J1(Xep1), s=1,...,q9

@ Introduce a parametric family of Q-factors ék(xk, Uk, Ik )-
@ Determine the parameter vector 7 by the least-squares fit

q
— . 2 2
Tic € argmin > (Qu(xE, uf, 1) — BR)
s=1

@ Use the policy

fik(xk) € arg  min  Qu(Xk, Uk, Tic)
Uk € Uy (xk)
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Multistep Lookahead Issues

At State z,

DP minimization

First ¢ Steps “Future”
l k+0—1
min E{gk.(:zzk,11k, wg) + Z gm(:zrm,y,m(:zrm). 'lffm) + Jk+g(xk+g)}
Uk sHhk415- s Hk4+0—1 e
Cost-to-go

Lookahead Minimization Approximation

Main hope:
@ Lookahead over many steps will work better than over few steps
@ Intuition: With long lookahead we act optimally over more stages; with long
enough lookahead we are optimal
@ Bottom line: By using a long-step lookahead, we can afford a simpler/less
accurate cost-to-go approximation.

Main difficulty:

Minimization over many stages is costly; stochastic problems are harder because of a
larger branching factor of the lookahead tree.
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Multistep Lookahead and Deterministic Problems

ot——

e

— T

Jire
— T
Lookahead trce\‘o/
£ Steps [———

Shortest path problem

—
(Cost Function

TN

If the problem is deterministic and finite-state, the lookahead minimization is a shortest
path problem and may be solved on-line

If the problem has continuous-state/control
@ [f the problem is deterministic, the lookahead minimization may be quickly solvable
by nonlinear programming (MPC case)

@ If the problem is stochastic, the lookahead minimization may be solvable by
stochastic programming (to be discussed later)

4

If the problem is stochastic and finite-state, the lookahead minimization can be split into
a first stochastic step and a deterministic remainder; i.e., use a deterministic shortest
path problem approximation for the remaining steps
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Let’s Take a Break; Consider the Following Challenge Question

Will longer lookahead produce a better policy than shorter lookahead?

Consider the following example J

0~ Optimal
U
Initial

Stat . .
ae Suboptimal

2-step lookahead
3-step lookahead

Two controls, u, u’, and cost function approximation Jk(xk) =0.
There is a choice only at xg.
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The Answer is that “Usually" Longer is Better, but NOT for this Example

0~0Optimal
u
Initial

State Suboptimal

2-step lookahead
3-step lookahead

Problem with “edge effects": u will be preferred based on 2-step lookahead. v’ will be
preferred based on 3-step lookahead J
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Rollout will be Important for this Course

Aim of rollout: Start with a policy, get a better policy
It is the basic building block of the fundamental DP algorithm of policy iteration

Reasons why it will be important:
@ Rollout is the RL method that is easiest to understand and apply

@ Rollout is the not the most ambitious RL method, but it is the most reliably
successful

@ ltis very general: Applies to deterministic and stochastic, to finite horizon and
infinite horizon

@ [t contains as a special case model predictive control, one of the most important
control system design methods

@ |t forms a building block for many of the RL methods used in practice (including
approximate policy iteration, Q-learning, temporal differences, etc)
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General Structure of Deterministic Rollout with Some Base Heuristic

Next States

Current State

Heuristic

Q-Factors

@ At state x, for every pair (X, ux), ux € Uk(Xk), we generate a Q-factor
Qu(Xk, Uk) = Gk (Xk, Ux) + Hii1 (F(Xk, Ux))

using the base heuristic [Hk+1(Xk+1) is the heuristic cost starting from x1]
@ We select the control ux with minimal Q-factor
@ We move to next state xx. 1, and continue

@ Multistep lookahead versions (length of lookahead limited by the branching factor
of the lookahead tree)
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Traveling Salesman Example of Rollout with a Greedy Heuristic

Next Partial
Tours

. Complete Tours
Next Cities

Current ‘
Partial Tour £

Nearest Neighbor

Initial City Heuristic

Nearest Neighbor
Heuristic

Nearest Neighbor
Heuristic

@ Ncities ¢ =0, ..., N — 1; each pair of distinct cities ¢, ¢’, has traversal cost
g(c,c)
@ Find a minimum cost tour that visits each city once and returns to the initial city

@ Recall that it can be viewed as a shortest path/deterministic DP problem. States
are the partial tours, i.e., the sequences of ordered collections of distinct cities

@ Nearest neighbor heuristic; chooses the best one-hop extension of a partial tour

@ Rollout algorithm: Start at some city; given a partial tour {co, . . ., ¢} of distinct

cities, select as next city cx+1 the one that yielded the minimum cost tour under the
nearest neighbor heuristic
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Traveling Salesman Example: Rollout with a Nearest Neighbor Heuristic

Initial State x¢

15

1
™~ Base Heu

Matrix of Intercity
Travel Costs

Base heuristic: Nearest neighbor
The rollout algorithm has “long range vision" that the base heuristic lacks J
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Criteria for Cost Improvement of a Rollout Algorithm - Sequential

Consistency

@ Cost improvement is not automatic: Special conditions must hold to guarantee that
the rollout policy has no worse performance than the base heuristic

@ Two such conditions are sequential consistency and sequential improvement.
@ A sequentially consistent heuristic is also sequentially improving
@ Any heuristic can be modified to become sequentially improving (see next lecture)

4

The base heuristic is sequentially consistent if it “stays the course"
@ If the heuristic generates the sequence

{ X X155 XN}
starting from state x, it also generates the sequence
{Xk+1 geeoyg XN}

starting from state X+

@ The base heuristic is sequentially consistent if and only if it can be implemented
with a legitimate DP policy {uo, ..., un—1}

@ “Greedy" heuristics are sequentially consistent (e.g., nearest neighbor for TS)
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Sequentially Improvement Criterion - Holds in MPC

Sequential improvement holds if (Best heuristic Q-factor at xx < Heuristic cost)

min ) [gk(Xk, Uk) + Hk+1 (fk(Xk, Uk)):| < Hk(Xk), for all xx

Uy € Uk (Xk

where Hi(xx) is the cost of the trajectory generated by the heuristic starting from x
Holds under sequential consistency [Hk(Xx) is the heuristic’s Q-factor at xk]

Cost improvement property for a sequentially improving heuristic:

Let the rollout policy be & = {jio, - . ., fin—1}, and let Jx = (x«) denote its cost starting
from xx. Then for all xx and k, Jx = (xx) < Hik(xx)

Proof by induction: It holds for k = N, since Jy > = Hy = gn. Assume that it
holds for index k + 1

Ji#(Xk) = gk (X, fix (X)) + Jks1,7 (fk (XK, ﬁk(Xk)))
< Gk (Xk, fik(Xk)) + Hicer (Fe( Xk, fik (X))
= min [gk(Xk, Uk) + Hk+1 (fk(Xk7 uk))]

Uk € Uy (xk)

< Hk(x«)
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About the Next Lecture

We will cover:

@ Extensions of deterministic rollout
Continuous time deterministic rollout
Rollout for stochastic problems
Monte Carlo tree search
Continuous space deterministic rollout

Homework to be announced )

Watch videolecture 4 from 2019 ASU course offering )
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