
November 1994 LIDS-P-2276

RELAX-IV: A Faster Version of the RELAX Code

for Solving Minimum Cost Flow Problems 1

by

Dimitri P. Bertsekas 2 and Paul Tseng 3

Abstract

The structure of dual ascent methods is particularly well-suited for taking advantage of

good initial dual solutions of minimum cost flow problems. For this reason, these methods are

extremely efficient for reoptimization and sensitivity analysis. In the absence of prior knowl-

edge of a good initial dual solution, one may attempt to find such a solution by means of a

heuristic initialization. RELAX-IV is a minimum cost flow code that combines the RELAX code

of [BeT88a], [BeT88b] with an initialization based on a recently proposed auction/sequential

shortest path algorithm. This initialization is shown to be extremely helpful in speeding up the

solution of difficult problems, involving for example long augmenting paths, for which the relax-

ation method has been known to be slow. On the other hand, this initialization procedure does

not significantly deteriorate the performance of the relaxation method for the types of problems

where it has been known to be very fast.

To obtain the FORTRAN version of the RELAX-IV code, log onto the first author’s web page

http://mit.edu/dimitrib/www/home.html

For a line-by-line C++ translation of the RELAX-IV code written at the University of Pisa, log

onto

http://www.di.unipi.it/di/groups/optimize/Software/MCF.html

1 Research supported by NSF under Grant CCR-9103804 and Grant CCR-9311621.
2 Dept. of Electrical Engineering and Computer Science, M.I.T., Cambridge, Mass., 02139.
3 Dept. of Mathematics, Univ. of Washington, Seattle, Wash., 98195.

1

1. Introduction

1. INTRODUCTION

This paper provides a brief description of a new version of the RELAX code for solving the

classical minimum cost flow problem with integer data. In the problem (abbreviated as (MCF)),

we are given a directed graph comprising node set N and arc set A ⊂ N ×N . We are also given,

for each (i, j) ∈ A, an integer aij and a positive integer cij , which may be viewed as, respectively,

the cost and the capacity of arc (i, j), and, for each i ∈ N , an integer si, which may be viewed

as the exogenous supply of node i. The aim is to find an arc flow xij , for all (i, j) ∈ A, that

minimize
∑

(i,j)∈A

aijxij ,

subject to satisfying the flow conservation and the capacity constraints:

∑

{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = si, ∀ i ∈ N , (1)

0 ≤ xij ≤ cij , ∀ (i, j) ∈ A. (2)

We denote by x the flow vector consisting of the arc flows xij , (i, j) ∈ A. A flow vector x is called

feasible if it satisfies the constraints (1) and (2) and is called optimal if it solves (MCF).

We introduce a price pi for each node i, which may be viewed as a dual variable associated

to the flow conservation constraint at i. We denote by p the vector consisting of pi, i ∈ N . A

price vector p, and a flow vector x are said to satisfy complementary slackness (CS for short) if

x satisfies the capacity constraints (2) and

xij < cij ⇒ pi ≤ aij + pj ∀ (i, j) ∈ A,

0 < xji ⇒ pi ≤ pj − aji ∀ (j, i) ∈ A.

It is well-known that if x is feasible, and (x, p) satisfies CS, then x is optimal for (MCF) and p

is optimal for a corresponding dual problem.

Dual ascent methods generate a sequence of price vectors, each with an improved value of

dual cost. Many of these methods also generate flow vectors satisfying CS together with the price

vectors, and modify these flow vectors through the use of augmentations. Historically, the first

dual ascent method is the primal-dual method of Ford and Fulkerson [FoF57], [FoF62]. The relax-

ation method originally proposed for assignment problems by Bertsekas [Ber81] and for minimum

cost flow problems by Bertsekas [Ber85], and further developed by Tseng [Tse86] and Tseng and

Bertsekas [BeT88a] is another dual ascent method, which differs from the primal-dual method in

2

2. Initialization Using the Auction Algorithm

the choice of ascent direction. While the primal-dual method aims for an ascent direction with as

“steep” a slope as possible at the expense of considerable computational overhead, the relaxation

method aims at finding an ascent direction quickly, and often selects a coordinate direction that

corresponds to a single price. Thus the relaxation method resembles a coordinate ascent method,

although the directions it uses are not always coordinate directions. A detailed discussion of the

theory and the implementation of primal-dual methods, dual ascent methods, and the relaxation

method can be found in the first author’s text [Ber98].

The relaxation method has proved particularly effective in practice. Its implementation in

the RELAX code described in [BeT88b], has resulted in very fast solution times relative to its

main competitors for many types of problems, particularly those involving graphs with relatively

small diameter, or more generally, relatively short augmenting paths.

Several minimum cost flow algorithms, including the primal-simplex, the primal-dual and

the relaxation method tend to be slow when faced with problems involving graphs with large

diameter and long augmenting paths, such as grid graphs. This phenomenon cannot be explained

by the presently existing worst-case complexity analysis, but has been consistently observed in

practice, and can be understood through a closer examination of the calculations involved in a

typical iteration of each method. The adverse effect of long augmenting paths is particularly

strong for the relaxation method. In particular, there are difficult problems for which earlier

versions of RELAX can be very slow relative to its competitors.

An important advantage of dual ascent methods over the primal simplex method is that they

are very well-suited for reoptimization and sensitivity analysis. The reason is that the optimal

prices obtained from solution of some problem, are feasible and very likely excellent starting

prices for solving a slighly different problem. The primal simplex method does not afford this

flexibility because the optimal flows obtained from solution of a problem, may not be feasible

for a slighly different problem, and they may not be easily used to obtain a good initial basic

solution.

This advantage of dual ascent methods can also be exploited when solving a new problem

by trying to obtain good initial prices with some heuristic method. The purpose of the new

version of the RELAX code, called RELAX-IV, is to improve the performance of the relaxation

method for difficult problems by providing a procedure to obtain good sets of starting prices and

flows. We describe this initialization procedure below.

3

3. Some Computational Results

3. INITIALIZATION USING THE AUCTION ALGORITHM

The auction algorithm for the minimum cost flow problem was introduced in [Ber92] and is

also described in the Appendix. It relies on a sequential shortest path augmentation approach,

where the length of each arc is equal to its reduced cost. Each shortest path is constructed by

means of the recently proposed auction/shortest path algorithm [Ber91a], [Ber91b]. However,

the naive implementation of this approach fails because of the presence of zero cost cycles. This

difficulty is overcome by using as arc lengths ε-perturbations of reduced costs and by using ε-

complementary slackness conditions in place of the usual complementary slackness conditions.

For good practical performance, ε-scaling is also important here: the normal way to operate

the method is to start with a relatively large value of ε in order to obtain good starting prices

for applying the method for smaller values of ε. A detailed discussion of auction/shortest path

algorithm and other auction-like algorithms can be found in the first author’s textbook [Ber98].

The auction algorithm is not adversely affected by long augmenting paths to the extent

that the relaxation method is, particularly for relatively large values of ε. As a result, it is a good

candidate for initialization of the relaxation method. In particular, the auction initialization of

RELAX-IV uses one or two scaling phases of the auction algorithm with relatively high values

of ε. The number of scaling phases and values of ε can be adjusted by the user. The default

initialization uses one scaling phase with ε = C/8, where C is the cost range (the difference

between maximum and minimum arc cost).

3. SOME COMPUTATIONAL RESULTS

In this section we report on the performance of RELAX-IV on various test problems, in-

cluding NETGEN problems and grid-type problems, and compare the performance to those of

RELAXT-III [BeT88b], an earlier version of RELAX that does not have the auction initializa-

tion, and of NETFLO, a very efficient Fortran implementation of the network primal-simplex

method written by Kennington and Helgason [KeH80]. All three Fortran codes were compiled

and ran on a DECstation 3100 under the operating system Ultrix 4.2. The test problems were

generated by the following five problem generators: (i) NETGEN, by D. Klingman, A. Napier

and J. Stutz [KNS74], which generates assignment/transportation/transshipment problems with

random structure; (ii) MESH and GOTO, by A. V. Goldberg (see [ReV93]), which generate trans-

shipment problems with a grid structure (GOTO problems differ from MESH problems mainly in

that all grid nodes are pure transshipment nodes, rather than sources/sinks, and a super source

4

3. Some Computational Results

and a super sink are added and joined to some of the grid nodes); (iii) GRIDGRAPH, by M. G.

C. Resende and G. Veiga [ReV93], which generates grid-type transshipment problems much like

GOTO, but with the supply at the super source set to the maximum possible; (iv) GRIDGEN,

by D. P. Bertsekas [Ber91a, Appendix A.1], which generates grid-type transshipment problems

with multiple sources/sinks and transshipment nodes. To better compare our results with those

existing, we generated the same NETGEN problems as in [BeT88a], the same MESH, GOTO,

GRIDGRAPH problems as in [ReV93], and we generated GRIDGEN problems with the same

number of nodes, number of arcs, total supply, cost range, and capacity range as the GOTO

problems in [ReV93]. In addition, a number of the GTE-BAD problems [LSS91], which are 49-

node-520-arc shortest-path-type problems arising from the solution of a certain multicommodity

flow problem, were used in our tests. The GOTO, GRIDGRAPH and GTE-BAD problems are

considered to be difficult for the relaxation method, so they in some sense provide the stiffest

test for RELAX-IV.

The test results are summarized in Tables 1 to 6. We make the following observations: First,

RELAX-IV with option 1 (using auction initialization) is faster than RELAX-IV with option 0

(no auction initialization) on the GOTO and GRIDGRAPH problems, but is either comparable to

or slower than the latter on other problems. This confirms the benefit of using auction initializa-

tion on difficult grid-type problems and points to the following optimal setting for RELAX-IV:

use option 1 on difficult grid-type problems and use option 0 on all other problems. Second,

compared to RELAXT-III, RELAX-IV with the optimal setting is either faster or comparable

on all test problems. Compared to NETFLO, RELAX-IV with the optimal setting is faster on

NETGEN and MESH problems, is somewhat faster on GRIDGEN problems, is comparable on

GOTO problems (faster on some and slower on others), and is slower on the GTE-BAD and

GRIDGRAPH problems. (The results on the GTE-BAD problems are difficult to judge due to

the small size and special structure of the problems. The results on the GRIDGRAPH problems

can be partially explained by noting that these problems, with the supply at the super source set

to the maximum possible, are nearly primal infeasible. Such problems are known to be difficult

for dual ascent methods since the corresponding dual problems are nearly unbounded.) Thus,

RELAX-IV is efficient not only on problems for which the relaxation method is known to be

very fast (such as NETGEN and MESH problems) but also on problems for which the relaxation

method has been very slow (such as GOTO and GTE-BAD problems). On GRIDGRAPH prob-

lems, RELAX-IV shows clear improvement over its predecessor RELAXT-III, but is still slower

than NETFLO.

5

3. Some Computational Results

SIZE RELAX-IV (opt=0)RELAX-IV (opt=1)RELAXT-III NETFLO

|N | |A| time time time time
5000 23000 5.5 5.8 6.1 34.1
3000 35000 3.3 4.3 3.2 13.8
5000 15000 5.9 5.3 4.8 26.8
3000 23000 2.8 2.9 2.5 9.9
2000 7000 2.4 2.7 2.7 8.4
400 15000 1.1 2.0 1.4 1.7

1600 7000 2.1 2.8 3.4 6.7
400 15000 2.0 2.5 2.3 1.4

2000 7000 2.2 2.8 2.3 11.3
400 15000 0.9 1.3 0.9 3.4

1600 7000 2.1 2.3 1.8 10.5
400 15000 2.0 2.4 1.9 5.8

3000 12000 1.8 5.6 2.1 25.4
6000 24000 9.4 10.6 11.2 84.0
6000 24000 9.1 10.9 9.4 97.5
3000 30000 3.4 4.4 3.3 25.4

Table 1. Solution time (in seconds) for RELAX-IV, RELAXT-III and NETFLO on NETGEN
problems. The first four problems are problems 37–40 in [KNS74, Table 1] (also see [BeT88a,
Table I]); the next four problems are problems 5, 10, 15, 20 in [BeT88a, Table III]; the next four
problems are problems 5, 10, 15, 20 in [BeT88a, Table IV]; the last four problems are problems
5, 10, 15, 20 in [BeT88a, Table VI].

SIZE RELAX-IV (opt=0)RELAX-IV (opt=1)RELAXT-III NETFLO

|N | |A| time time time time
256 1040 0.2 0.3 0.2 0.6

1024 4096 2.2 2.6 2.3 14.3
4096 16384 16.6 27.5 22.9 305.2
256 2048 0.3 0.4 0.4 1.5

1024 8192 2.6 2.7 2.8 40.6
4096 32768 35.4 32.4 40.1 846.5

Table 2. Solution time (in seconds) for RELAX-IV, RELAXT-III and NETFLO on MESH
problems. The first three problems are problems 1–3 in [ReV93, Table 20]; the last three problems
are problems 1–3 in [ReV93, Table 22].

SIZE RELAX-IV (opt=0)RELAX-IV (opt=1)RELAXT-III NETFLO
|N | |A| time time time time

256 2048 12.7 2.2 28.2 1.6
512 4096 57.2 7.1 299.5 8.6

1024 8192 168.9 32.2 461.5 37.5
2048 16384 1056.2 117.6 2087.9 124.5

256 4096 61.9 7.1 110.9 6.2
512 8192 309.1 21.2 539.1 21.0

1024 16384 1282.9 98.7 1874.8 80.6
2048 32768 5246.8 488.4 6422.2 317.9

Table 3. Solution time (in seconds) for RELAX-IV, RELAXT-III and NETFLO on GOTO
problems. The first four problems are problems 1–4 in [ReV93, Table 4]; the last four problems
are problems 1–4 in [ReV93, Table 6].

6

References

SIZE RELAX-IV (opt=0)RELAX-IV (opt=1)RELAXT-III NETFLO

|N | |A| time time time time
514 1040 1.9 0.5 1.5 0.2

1026 2096 6.4 2.1 6.5 0.9
2050 4208 27.5 6.8 29.2 3.8
4098 8432 130.1 21.7 150.8 14.2
514 1008 1.4 0.6 0.9 0.1

1026 2000 5.1 2.1 3.2 0.4
2050 3984 14.0 6.8 7.9 1.0
4098 7952 57.5 30.5 22.7 2.2

Table 4. Solution time (in seconds) for RELAX-IV, RELAXT-III and NETFLO on GRID-
GRAPH problems. The first four problems are problems 1–4 in [ReV93, Table 14]; the last four
problems are problems 1–4 in [ReV93, Table 16].

SIZE RELAX-IV (opt=0)RELAX-IV (opt=1)RELAXT-III NETFLO
|N | |A| time time time time

512 4096 0.2 0.3 0.4 0.4
1024 8192 1.0 1.6 0.9 1.6
2048 16384 2.4 2.1 4.8 4.0
4096 32768 7.9 6.8 4.9 9.7
512 8192 1.3 1.0 1.2 1.1

1024 16384 4.6 2.9 5.9 3.2
2048 32768 8.3 7.3 6.6 8.9
4096 65536 12.3 17.9 15.8 28.3

Table 5. Solution time (in seconds) for RELAX-IV, RELAXT-III and NETFLO on GRIDGEN
problems. For all problems, the number of sources, the number of sinks, and the number of nodes
in dimension 1 are fixed at 16; the cost range and capacity range for the added arcs are fixed at
[0,4096] and [0,16384], respectively. Total supply for the eight problems are, respectively, 85055,
153113, 173074, 213302, 210731, 260384, 315135, 382723.

PROBLEM RELAX-IV (opt=0)RELAX-IV (opt=1)RELAXT-III NETFLO
NAME time time time time
298300 0.1 0.2 0.7 0.03
451760 0.04 0.2 117.9 0.02
469010 0.04 2.1 124.0 0.02
508829 0.05 0.2 169.4 0.02

Table 6. Solution time (in seconds) for RELAX-IV, RELAXT-III and NETFLO on GTE-BAD
problems.

REFERENCES

[Ber81] Bertsekas, D. P., “A New Algorithm for the Assignment Problem,” Math. Programming,

Vol. 21, 1981, pp. 152-171.

7

References

[Ber85] Bertsekas, D. P., “A Unified Framework for Minimum Cost Network Flow Problems,”

Math. Programming, Vol. 32, 1985, pp. 125-145.

[Ber86] Bertsekas, D. P., “Distributed Asynchronous Relaxation Methods for Linear Network

Flow Problems,” Laboratory for Information and Decision Systems Report P-1606, M.I.T., Cam-

bridge, Nov. 1986.

[Ber91a] Bertsekas, D. P., Linear Network Optimization: Algorithms and Codes, MIT Press,

Cambridge, MA, 1991.

[Ber91b] Bertsekas, D. P., “The Auction Algorithm for Shortest Paths,” SIAM Journal on Opti-

mization, Vol. 1, 1991, pp. 425-447.

[Ber92] Bertsekas, D. P., “An Auction/Sequential Shortest Path Algorithm for the Min Cost Flow

Problem,” Laboratory for Information and Decision Systems Report P-2146, M.I.T., Cambridge,

MA, 1992.

[Ber93] Bertsekas, D. P., “An Auction Algorithm for the Max-Flow Problem,” Report Laboratory

for Information and Decision Systems Report P-2193, M.I.T., Cambridge, Aug. 1993; Journal of

Optimization Theory and Applications, to appear.

[Ber98] Bertsekas, D. P., Network Optimization: Continuous and Discrete Models, Athena Sci-

entific, Belmont, MA, 1998.

[BeE87] Bertsekas, D. P., and Eckstein, J., “Distributed Asynchronous Relaxation Methods for

Linear Network Flow Problems,” Proc. of IFAC ’87, Munich, Germany, July 1987.

[BPS92] Bertsekas, D. P., Pallottino, S., and Scutella’, M. G., “Polynomial Auction Algorithms

for Shortest Paths,” Laboratory for Information and Decision Systems Report P-2107, M.I.T.,

Cambridge, May 1992; Computational Optimization and Applications, to appear.

[BeE88] Bertsekas, D. P., and Eckstein, J., “Dual Coordinate Step Methods for Linear Network

Flow Problems,” Mathematical Programming, Series B, Vol. 42, 1988, pp. 203-243.

[BeT88a] Bertsekas, D. P., and Tseng, P., “Relaxation Methods for Minimum Cost Ordinary and

Generalized Network Flow Problems,” Operations Research, Vol. 36, 1988, pp. 93-114.

[BeT88b] Bertsekas, D. P., and Tseng, P., “RELAX: A Computer Code for Minimum Cost

Network Flow Problems,” Annals of Operations Research, Vol. 13, 1988, pp. 127-190.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., “Parallel and Distributed Computation: Numerical

Methods,” Prentice-Hall, Englewood Cliffs, NJ, 1989.

8

References

[CDP92] Cerulli, R., De Leone, R., and Piacente, G., “A Modified Auction Algorithm for the

Shortest Path Problem,” University of Salerno Report, Preprint, 1992.

[FoF57] Ford, L. R., Jr., and Fulkerson, D. R., “A Primal-Dual Algorithm for the Capacitated

Hitchcock Problem,” Naval Research Logistics Quarterly, Vol. 4, 1957, pp. 47-54.

[FoF62] Ford, L. R., Jr., and Fulkerson, D. R., Flows in Networks, Princeton University Press,

Princeton, NJ, 1962.

[Gol87] Goldberg, A. V., “Efficient Graph Algorithms for Sequential and Parallel Computers,”

Laboratory for Computer Science Technical Report TR-374, M.I.T., Cambridge, MA, 1987.

[GoT90] Goldberg, A. V., and Tarjan, R. E., “Solving Minimum Cost Flow Problems by Succes-

sive Approximation,” Mathematics of Operations Research, Vol. 15, 1990, pp. 430-466.

[KeH80] Kennington, J. L., and Helgason, R. V., Algorithms for Network Programming, John

Wiley and Sons, New York, NY, 1980.

[KNS74] Klingman, D., Napier, A., and Stutz, J., “NETGEN - A Program for Generating Large

Scale (Un) Capacitated Assignment, Transportation, and Minimum Cost Flow Network Prob-

lems,” Management Science, Vol. 20, 1974, pp. 814-822.

[LSS91] Leong, T., Shor, P. W., and Stein, C., “Implementation of a Combinatorial Multi-

commodity Flow Algorithm,” in Network Flow and Matching: First DIMACS Implementation

Challenge, Edited by D. Johnson and C. McGeoch, American Mathematical Society, Providence,

RI, 1991, pp. 387-406.

[MPS91] Mazzoni, G., Pallotino, S., and Scutella’, M. G., “The Maximum Flow Problem: A

Max-Preflow Approach,” European Journal of Operational Research, Vol. 53, 1991, pp. 257-278.

[PaS91] Pallottino, S., and Scutella’, M. G., “Strongly Polynomial Algorithms for Shortest Paths,”

Ricerca Operativa, Vol. 60, 1991, pp. 33-53.

[PaS82] Papadimitriou, C. H., and Steiglitz, K., Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, Englewood Cliffs, NJ, 1982.

[ReV93] Resende, M. G. C., and Veiga, G., “An Efficient Implementation of a Network Interior

Point Method,” in Network Flow and Matching: First DIMACS Implementation Challenge,

Edited by D. Johnson and C. McGeoch, American Mathematical Society, Providence, RI, 1993,

pp. 299-348.

[Roc84] Rockafellar, R. T., Network Flows and Monotropic Programming, Wiley-Interscience,

9

APPENDIX: The Auction Algorithm for Minimum Cost Flow

New York, NY, 1984.

[Tse86] Tseng, P., “Relaxation Methods for Monotropic Programming,” Ph.D. Thesis, Depart-

ment of Electrical Engineering and Operations Research Center, M.I.T., Cambridge, MA, 1986.

APPENDIX: THE AUCTION ALGORITHM FOR MINIMUM COST FLOW

For a given flow vector x, the surplus of node i is defined as the difference between the

supply of i and the net outflow from i,

gi = si +
∑

{j|(j,i)∈A}

xji −
∑

{j|(i,j)∈A}

xij . (3)

Given a scalar ε ≥ 0, a flow-price vector pair (x, p) is said to satisfy ε-complementary

slackness (ε-CS for short) if x satisfies the capacity constraints (2) and

xij < cij ⇒ pi ≤ aij + pj + ε ∀ (i, j) ∈ A, (4)

0 < xji ⇒ pi ≤ pj − aji + ε ∀ (j, i) ∈ A. (5)

ε-CS was introduced in [Ber86] in the context of the ε-relaxation method, and its utility is due

in large measure to the following proposition, which relies on the integrality of the problem data

(see e.g. [BeT89] or [Ber91a] for a proof).

Proposition 1: If ε < 1/N , x is feasible, and (x, p) satisfies ε-CS, then x is optimal for

(MCF).

Note that when ε = 0 the ε-CS conditions (4) and (5) reduce to the usual complementary

slackness conditions. A standard duality result (see e.g., [BeT89], [Ber91a], [PaS82], [Roc84])

states that if x is feasible and together with some p satisfies these complementary slackness

conditions, then x is optimal and p is optimal for an associated dual problem.

The classical primal-dual method maintains a pair (x, p) satisfying complementary slackness

(ε = 0), and at each iteration constructs a shortest path from some node with positive surplus to

the set of nodes with negative surplus, along which it performs an augmentation of the current

flow vector. The shortest path computation is performed in the reduced graph GR =
(
N ,AR

)

whose arc set AR consists of an arc (i, j) for each arc (i, j) ∈ A with xij < cij , and an arc (j, i)

10

APPENDIX: The Auction Algorithm for Minimum Cost Flow

for each arc (i, j) ∈ A with 0 < xij . The arc lengths are aij + pj − pi for the arcs (i, j) ∈ A with

xij < cij , and pi−aij −pj for the arcs (j, i) corresponding to arcs (i, j) ∈ A with 0 < xij . It is in

principle possible to solve the shortest path problem by any shortest path method that requires

nonnegative arc lengths, such as a Dijkstra-like method. The recently proposed auction algorithm

for shortest paths (see [Ber91a], [Ber91b]) offers some advantages in this respect because of its

ability to transfer information from one shortest path computation to the next, but requires that

all cycles have strictly positive length. This method maintains a path, which is extended or

contracted by a single arc at each iteration. Unfortunately, however, the method cannot be used

conveniently in the context of the sequential shortest path method because the reduced graph has

cycles with zero length [each arc (i, j) with 0 < xij < cij gives rise to the zero length arcs (i, j)

and (j, i) in the reduced graph], and the path maintained by the auction/shortest path method

can “double up on itself” and close a cycle.

To overcome this difficulty, it is possible to use auction/shortest path algorithms with graph

reduction, as proposed in [PaS91] and [BPS92]. However, this requires considerable overhead

and a separation of the shortest path construction process from the price change operations of

the primal-dual algorithm. We use instead an alternative approach, where the auction/shortest

path construction process is blended harmoniously with the remainder of the algorithm. In this

approach, we use ε-perturbations of the arc lengths, which ensure that the path generated by the

auction/shortest path method does not close a cycle through an extension. We first introduce

some terminology.

Given a flow-price pair (x, p) satisfying ε-CS, an arc (i, j) is said to be ε+-unblocked if

pi = pj + aij + ε and xij < cij , (6)

and an arc (j, i) is said to be ε−-unblocked if

pi = pj − aji + ε and 0 < xji. (7)

The admissible graph corresponding to (x, p) is defined as G∗ = (N ,A∗), where the arc set A∗

consists of an arc (i, j) for each ε+-unblocked arc (i, j) ∈ A, and an arc (i, j) for each ε−-unblocked

arc (j, i) ∈ A.

A path P is a sequence of nodes (n1, n2, . . . , nk) and a corresponding sequence of k− 1 arcs

such that the ith arc in the sequence is either (ni, ni+1) (in which case it is called a forward arc)

or (ni+1, ni) (in which case it is called a backward arc). For any path P , we denote by s(P) and

t(P) the start and terminal nodes of P , respectively, and by P+ and P− the sets of forward and

backward arcs of P , respectively. We say that the path is simple if it has no repeated nodes.

11

APPENDIX: The Auction Algorithm for Minimum Cost Flow

The path P is said to be ε-unblocked if all arcs of P+ are ε+-unblocked, and all arcs of P− are

ε−-unblocked. If P is ε-unblocked and the start node s(P) has positive surplus and the terminal

node t(P) has negative surplus, we say that P is an augmenting path. An augmentation along

such a path consists of increasing the flow of all arcs in P+ and reducing the flow of all arcs in

P− by the common increment

δ = min

{
gs(P), −gt(P), min

(i,j)∈P+
{cij − xij}, min

(i,j)∈P−
{xij}

}
. (8)

Given a path P = (n1, n2, . . . , nk), a contraction of P is the operation that deletes the

terminal node of P together with the corresponding terminal arc. An extension of P by an arc

(nk, nk+1) or an arc (nk+1, nk), replaces P by the path (n1, n2, . . . , nk, nk+1) and adds to P the

corresponding arc. For convenience of expression we allow a path P to consist of a single node i,

in which case extension by an arc (i, j) or (j, i) gives a path with start node i and terminal node

j.

The algorithm of this appendix, first proposed in [Ber92], uses a fixed ε > 0, and maintains

a flow-price pair (x, p) satisfying ε-CS and also a simple path P (possibly consisting of a single

node). It terminates when all nodes have nonnegative surplus; then either all nodes have zero

surplus and x is feasible, or else some node has negative surplus showing that the problem is

infeasible. Throughout the algorithm, x is integer, and (x, p) and P satisfy the following:

(a) The admissible graph corresponding to (x, p) is acyclic.

(b) P belongs to the admissible graph, i.e., it is ε-unblocked. Furthermore, P starts at a

node with positive surplus, and all its nodes have nonnegative surplus.

We assume that at the start of the algorithm we have a pair (x, p) satisfying ε-CS, as well as the

above two properties. In particular, initially we may choose any price vector p, select x according

to

xij =

{
cij if pi ≥ aij + pj ,

0 if pi < aij + pj ,
(9)

and choose P to consist of a single node with positive surplus. For these choices, ε-CS is satisfied

and the corresponding admissible graph is acyclic, since its arc set is empty.

At each iteration, the path P is either extended or contracted. In the case of a contraction,

the price of the terminal node of P is strictly increased. In the case of an extension, no price

change occurs, but if the new terminal node has negative surplus, P becomes augmenting, and

an augmentation along P is performed. Then the path P is replaced by the degenerate path that

consists of a single node with positive surplus, and the process is repeated.

12

APPENDIX: The Auction Algorithm for Minimum Cost Flow

Typical Iteration of the Auction/Sequential Shortest Path Algorithm

Let i be the terminal node of P . If

pi < min

{
min

{(i,j)∈A|xij<cij}

{
aij + pj + ε

}
, min
{(j,i)∈A|0<xji}

{
pj − aji + ε

}}
, (10)

go to Step 1; else go to Step 2.

Step 1 (Contract path): Set

pi := min

{
min

{(i,j)∈A|xij<cij}

{
aij + pj + ε

}
, min
{(j,i)∈A|0<xji}

{
pj − aji + ε

}}
, (11)

and if i 6= s(P), contract P . Go to the next iteration.

Step 2 (Extend path): Extend P by an arc (i, ji) or an arc (ji, i) that attains the minimum

in Eq. (10). If the surplus of ji is negative go to Step 3; otherwise, go to the next iteration.

Step 3 (Augmentation): Perform an augmentation along P . If all nodes have nonpositive

surplus, terminate the algorithm; otherwise, replace P by a path that consists of a single node

with positive surplus and go to the next iteration.

The following proposition establishes that some basic properties are maintained by the algo-

rithm.

Proposition 2: Suppose that at the start of an iteration:

(a) (x, p) satisfies ε-CS and the corresponding admissible graph is acyclic.

(b) P belongs to the admissible graph, starts at a node with positive surplus, and all its nodes

have nonnegative surplus.

Then the same is true at the start of the next iteration.

Proof: Suppose the iteration involves a contraction. Then it can be seen that the price increase

(11) preserves the ε-CS conditions (4) and (5). Furthermore, since only the price of node i changes

and no arc flow changes, the admissible graph remains unchanged except for the incident arcs

of node i. In particular, all the incident arcs of i in the admissible graph at the start of the

iteration are deleted and the arcs of the admissible graph corresponding to the arcs (i, j) and

(j, i) that attain the minimum in Eq. (11) are added. Since all these arcs are outgoing from i

in the admissible graph, a cycle cannot be closed. Finally, following a contraction, P does not

contain the terminal node i, so it belongs to the admissible graph that we had before the iteration.

Thus P consists of arcs that belong to the admissible graph that we obtain after the iteration.

13

APPENDIX: The Auction Algorithm for Minimum Cost Flow

Suppose the iteration involves an extension. Then by the ε-CS conditions (4) and (5), we must

have

pi = min

{
min

{(i,j)∈A|xij<cij}

{
aij + pj + ε

}
, min
{(j,i)∈A|0<xji}

{
pj − aji + ε

}}
, (12)

at the start of the iteration. It follows that the path P obtained by extension is simple and

ε-unblocked, since the extension arc (i, ji) must belong to the admissible graph. Since no price

or flow changes with an extension, the ε-CS conditions and the admissible graph stay unchanged

following the extension. If there is a subsequent augmentation at Step 3 because the new terminal

node ji has negative surplus, the ε-CS conditions will not be affected, while the admissible graph

will not gain any new arcs, so it will remain acyclic. Q.E.D.

Note that if we were to take ε = 0 (rather than ε > 0), the preceding proof would break down,

because we would not be able to prove that the admissible graph remains acyclic following an

augmentation. In particular, if following an augmentation, the flow of some arc (i, j) lies strictly

between its lower and upper bound, the arc (i, j) and the arc (j, i) would both belong to the

admissible graph, each with zero length, thereby closing a zero length cycle.

A sequence of iterations between two successive augmentations (or the sequence of iterations

up to the first augmentation) will be called an augmentation cycle. Let us fix an augmentation

cycle and let p be the price vector at the start of the cycle. The reduced graph GR = (N ,AR)

defined earlier will not change in the course of this augmentation cycle, since no arc flow will

change during the cycle, except for the augmentation at the end. Suppose that we take as arc

lengths of the reduced graph the reduced costs at the start of the cycle plus ε. In particular,

during the cycle, the arc set AR consists of an arc (i, j) with length aij + pj − pi + ε for each

arc (i, j) ∈ A with xij < cij , and an arc (j, i) with length pi − aij − pj + ε for each arc (i, j) ∈ A

with 0 < xij . Note that, because (x, p) satisfies ε-CS, the arc lengths of the reduced graph are

nonnegative. However, the reduced graph does not contain zero length cycles, since any such

cycle must belong to the admissible graph, which is acyclic.

Using these observations, it can now be seen that the augmentation cycle is just the auc-

tion/shortest path algorithm of [Ber91a], [Ber91b] applied to the problem of finding a shortest

path from the starting node s(P) to some node with negative surplus in the reduced graph GR,

using the preceding ε-perturbed arc lengths. To understand this, one should view pi − pi during

the augmentation cycle as the price of node i that is maintained by the auction/shortest path

algorithm. The price increments pi − pi obtained by the auction/shortest path algorithm are

added in effect to the starting prices pi at the end of the augmentation cycle to form the new

prices that will be used for the shortest path construction of the next augmentation cycle.

By the theory of the auction/shortest path algorithm, a shortest path in the reduced graph will

14

APPENDIX: The Auction Algorithm for Minimum Cost Flow

be found in a finite number of iterations if there exists at least one path from the starting node

s(P) to some node with negative surplus. Such a path is guaranteed to exist if the minimum

cost flow problem (MCF) is feasible. Since the augmentation will change all the flows of the

final path P by a positive integer amount, we see that each augmentation cycle reduces the total

absolute surplus
∑

i∈N |gi| by a positive integer. Therefore, there can be only a finite number of

augmentation cycles, and we have shown the following proposition.

Proposition 3: Assume that the minimum cost flow problem (MCF) is feasible. Then

the auction/sequential shortest path algorithm terminates with a pair (x, p) satisfying ε-CS.

The flow vector x is feasible and is optimal if ε < 1/N .

ε-Scaling

As in all auction algorithms, the practical performance of the algorithm may be degraded by

“price wars”, that is, prolonged sequences of iterations involving small price increases. There is a

built-in potential for price wars here because with a small ε, the reduced graph may contain cycles

with small length, which slow down the underlying auction/shortest path algorithm. (There is a

cycle of length 2ε for every arc whose flow lies strictly between the corresponding flow bounds.)

This difficulty can be addressed by ε-scaling, that is, by applying the algorithm several times,

each time decreasing ε by a constant factor, up to the threshold value of 1/(N + 1), while using

the final prices obtained for one value of ε as starting prices for the next value of ε. A polynomial

complexity bound of O
(
NA log(NC)

)
, where C is the cost range

C = max
(i,j)∈A

aij − min
(i,j)∈A

aij ,

can be proved for the resulting method. The unscaled version of the method, where ε is kept fixed

at 1/(N + 1), is pseudopolynomial. These complexity bounds can be derived using well-known

lines of analysis [Ber86a], [BeE87], [Gol87], [BeE88], [BeT89], [GoT90], and will not be proved

here.

We now describe a number of variations of the algorithms of the preceding section, which

we have empirically found to improve performance. Some of these variations are similar to

corresponding variations of a related max-flow algorithm [Ber93].

Saving the Best Candidate

A number of implementation ideas have been shown to greatly accelerate the termination

of the auction/shortest path algorithm [Ber91a], [Ber91b]. Some of these ideas are directly

15

APPENDIX: The Auction Algorithm for Minimum Cost Flow

transferable to the minimum cost flow context, and are potentially very useful. In particular, the

main computational bottleneck of the algorithm is the calculation of the best candidate arc for

extension in Eq. (10), which is done every time node i becomes the terminal node of the path.

We can reduce the number of these calculations by using the ε-CS condition

pi ≤ min

{
min

{(i,j)∈A|xij<cij}

{
aij + pj + ε

}
, min
{(j,i)∈A|0<xji}

{
pj − aji + ε

}}
, (13)

and the following observation: if some arc (i, ji) satisfies

pi = aiji + pji + ε and xiji < ciji (14)

it follows that

pi = min

{
min

{(i,j)∈A|xij<cij}

{
aij + pj + ε

}
, min
{(j,i)∈A|0<xji}

{
pj − aji + ε

}}
,

so if i is the terminal node, the path can be extended by ji. The same is true if some arc (ji, i)

satisfies

pi = ajii − pji + ε and 0 < xjii. (15)

This suggests the following implementation strategy: each time the minimum in Eq. (13) is

calculated, we store an arc (i, ji) such that Eq. (14) holds or an arc (ji, i) such that Eq. (15)

holds. At the next time node i becomes the terminal node of the path, we check whether Eq. (14)

or (15), respectively, is still satisfied, and if it is, we extend the path by node ji without going

through the calculation of the minimum in Eq. (13). In practice this device is very effective.

Using a Second Best Candidate

Suppose that each time the minimum in Eq. (13) is calculated, we store an arc (i, ji) such that

Eq. (14) holds or an arc (ji, i) such that Eq. (15) holds. Assume further that for the terminal

node i of the current path P we have available a lower bound βi on the value of the minimum in

Eq. (13) over nodes j other than j = ji, that is,

min

{
min

{(i,j)∈A|xij<cij , j 6=ji}

{
aij + pj + ε

}
, min
{(j,i)∈A|0<xji, j 6=ji}

{
pj − aji + ε

}}
≥ βi. (16)

Suppose also that the test for an extension is failed, that is, Eq. (13) holds with strict inequality.

Then if the current “best” arc is (i, ji), we can check to see whether we have

aiji + pji + ε ≤ βi and xiji < ciji (17)

and if this is so we know that (i, ji) is still the best arc, thus making the computation of the

minimum of Eq. (13) unnecessary. An analogous statement holds if the current “best” arc is

(ji, i) and we have

ajii − pji + ε ≤ βi and 0 < xjii. (18)

16

APPENDIX: The Auction Algorithm for Minimum Cost Flow

A lower bound βi can be obtained by calculating, together with the “best” arc, a “second best”

arc (i, j′i) [or (j′i, i)] in the minimization of Eq. (13), and a corresponding value βi = aij′i
+ pj′i

+ ε

(or βi = aj′
i
i − pj′

i
+ ε, respectively) out of those entering the minimization in Eq. (13). Then,

because node prices are monotonically nondecreasing throughout the algorithm, as long as no

new arc incident to i becomes admissible, we can use βi as a suitable lower bound (if a new arc

incident to i enters the admissible graph due to an augmentation, we must suitably modify βi

and the corresponding “second best” arc). Furthermore, if the test of Eqs. (17) and (18) is failed,

we can check to see whether the second best arc (i, j′i) [or (j′i, i)] is still admissible and whether

aij′i
+ pj′i

+ ε = βi (or aj′ii
− pj′i

+ ε = βi, respectively). If this is so the “second best arc” becomes

the “best” arc, thereby obviating again the calculation of the minimum in Eq. (13).

The idea of using a “second best” arc has been shown to be very effective in auction algorithms

for the assignment problem ([Ber91a], p. 176), the shortest path problem [Ber91b], [CDP92], and

max-flow problems [Ber93]. It similarly improves substantially the performance of the algorithm

of this paper.

Saving Path Fragments

Suppose that following an augmentation that starts at a node s, a portion of P starting at s

and ending at some node i is still unblocked, while the surplus of s is still positive. Then we can

start the next iteration with the same node s, move directly to the terminal node i, and continue

the search for an augmenting path from there. This variation, which was also discussed in a

different context in [MPS91], saved a modest amount of computation time in our experiments.

Early Flow Augmentations

We have found empirically that the total number of price changes is reduced if the length of

the current path (the number of arcs of the path) is not allowed to become too long. Under

some circumstances, this can lead to the path P becoming alternatively short and long many

times before an augmentation can occur. We have thus employed the heuristic of performing

an augmentation along the current path, whenever a contraction occurs with an attendant price

change of 2ε or less, and furthermore the number of arcs of the path is more than two.

Optimistic Extensions

In practice, it appears that the effectiveness of the algorithm is enhanced significantly if an

extension is performed not just when

pi = min

{
min

{(i,j)∈A|xij<cij}

{
aij + pj + ε

}
, min
{(j,i)∈A|0<xji}

{
pj − aji + ε

}}
, (19)

17

APPENDIX: The Auction Algorithm for Minimum Cost Flow

but also when the weaker condition

pi ≥ min

{
min

{(i,j)∈A|xij<cij}

{
aij + pj

}
, min
{(j,i)∈A|0<xji}

{
pj − aji

}}
(20)

holds. This maintains ε-CS, and allows the path to “extend faster” towards a negative surplus

node, but introduces a difficulty: a cycle may be closed by extending the path, that is, the

extension node ji may already belong to P . One can bypass this difficulty by keeping track of

which nodes belong to P and by checking for a potential cycle formation. Whenever a cycle is

about to be closed by extension, a “retreat” operation is performed, which backtracks along the

path and sets the price of each successive terminal node i to

min

{
min

{(i,j)∈A|xij<cij}

{
aij + pj + ε

}
, min
{(j,i)∈A|0<xji}

{
pj − aji + ε

}}
(21)

up to the point where pi strictly increases. Despite the overhead introduced by retreat operations,

in our experiments, optimistic extensions resulted in considerable net saving in computation time.

A particularly interesting fact is that in the case of a max-flow problem, the retreat operations

are unnecessary, that is, the path never closes a cycle even if the weaker criterion (20) is used for

an extension. This is shown in [Ber93], where the corresponding path construction algorithm is

studied in more detail and is embedded within the Ford-Fulkerson augmentation approach.

18

