TD (λ) and the Proximal Algorithm

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Optimization Methods Workshop
NIPS 2017

A Bridge Between Convex Analysis and Approximate Dynamic Programming

Convex Analysis
Deterministic Problems
Geometric Ideas
Iterative Descent
Proximal Algorithms

Approximate DP
Stochastic Problems
Simulation Ideas Value and Policy Iteration Temporal Differences

Fixed Point Problem Formulation

Problem: Solve $x=T(x)$
We assume that $T: \Re^{n} \mapsto \Re^{n}$ has a unique fixed point and is nonexpansive,

$$
\left\|T\left(x_{1}\right)-T\left(x_{2}\right)\right\| \leq \gamma\left\|x_{1}-x_{2}\right\|, \quad \forall x_{1}, x_{2} \in \Re^{n},
$$

where $0 \leq \gamma \leq 1$ and $\|\cdot\|$ is some norm

Special focus for this talk: The linear case

$$
x=A x+b
$$

where $I-A$ is invertible and A has spectral radius ≤ 1

Proximal Algorithm - Convex Analysis (Martinet, 1970)

The proximal mapping $P^{(c)}: \Re^{n} \mapsto \Re^{n}$ for $x-T(x)=0$, where $c>0$

$$
P^{(c)}(x)=\text { Unique solution of } y-T(y)=\frac{1}{c}(x-y)
$$

The proximal algorithm is

$$
x_{k+1}=P^{(c)}\left(x_{k}\right)
$$

Policy Iteration in DP - Bellman's Equation

Solve $x=T(x)=\min _{\mu} T_{\mu}(x)$ where μ : a policy, $T_{\mu}(x)=A_{\mu} x+b_{\mu}$
Policy iteration alternates between policy evaluation and policy improvement

$$
x_{k}=T_{\mu_{k}}\left(x_{k}\right), \quad(\text { linear }), \quad \mu_{k+1} \in \arg \min _{\mu} T_{\mu}\left(x_{k}\right), \quad \text { (componentwise) }
$$

Alternative policy evaluation based on the TD (Temporal Differences) mapping

 For $\lambda \in(0,1)$ solve $x=T_{\mu}^{(\lambda)}(x)$ where $T_{\mu}^{(\lambda)}$ is the multistep linear mapping$$
T_{\mu}^{(\lambda)}=(1-\lambda) \sum_{\ell=0}^{\infty} \lambda^{\ell} T_{\mu}^{\ell+1}
$$

that has the same fixed point as T_{μ}

Iterative policy evaluation: Iterate one or more times with $T_{\mu_{k}}$ or $T_{\mu_{k}}^{(\lambda)}$

- $x_{k+1}=T_{\mu_{k}}\left(x_{k}\right)$ (value iteration) or $x_{k+1}=T_{\mu_{k}}^{(\lambda)}\left(x_{k}\right)$ (λ-policy evaluation)
- $x_{k+1}=x_{k}+\gamma_{k}\left(\right.$ sample $\left.T_{\mu_{k}}^{(\lambda)}\left(x_{k}\right)-x_{k}\right)$ with $\gamma_{k} \downarrow 0$ (TD (λ) algorithm)

Policy Evaluation with Subspace Projection for Very Large Problems

Use intermediate projection onto a subspace of basis functions
For a fixed policy, solve the projected equation $x=\Pi T^{(\lambda)}(x)$ (Galerkin approximation)

$$
\begin{gathered}
x_{k+1}=\Pi T^{(\lambda)}\left(x_{k}\right), \quad \text { Projected } \lambda \text {-policy evaluation } \\
x_{k+1}=x_{k}+\gamma_{k} \Pi\left(\text { sample } T^{(\lambda)}\left(x_{k}\right)-x_{k}\right), \quad \text { Projected } T D(\lambda)
\end{gathered}
$$

Simulation-based implementations (key characteristic of RL)

- For large dimension (e.g., $n>10^{10}$) there is no alternative to simulation (because of high-dimensional inner products)
- How simulation is implemented makes a big difference; e.g., sample collection, correlations, bias, choice of λ, etc. (We will not deal with that in this lecture.)
- A lot of know-how has been accumulated over the last 30 years

KEY POINT OF THIS TALK

Extrapolation Formula $T^{(\lambda)}=T \cdot P^{(c)}=P^{(c)} \cdot T$

$$
T^{(\lambda)} \text { IS FASTER }
$$

TD (λ) IS A STOCHASTIC PROXIMAL ALGORITHM FOR LINEAR FIXED POINTS

Visualization

The extrapolated iterate $T(\bar{x})$ is closer to x^{*} than the proximal iterate \bar{x} A FREE LUNCH

Potential Implications of the TD-Proximal Relation

Benefit to the TD context

- Clarify the nature of $\operatorname{TD}(\lambda)$ and other TD methods
- Bring proximal methodology and insights to bear on exact and approximate DP

Benefit to the proximal context

- Bring large scale DP/RL methodology to bear on the proximal mainstream
- Develop new convex analysis algorithms based on DP/RL ideas

References for this Talk

- D. P. Bertsekas, "Proximal Algorithms and Temporal Differences for Large Linear Systems: Extrapolation, Approximation, and Simulation," Report LIDS-P-3205, MIT, Oct. 2016 (rev. Nov. 2017)

Related book references:

- D. P. Bertsekas, Abstract Dynamic Programming, 2nd Edition, in press
- D. P. Bertsekas, Convex Optimization Algorithms, 2015
- D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, 1996

Related works on Monte Carlo solution methods for linear systems:

- D. P. Bertsekas and H. Yu, "Projected Equation Methods for Approximate Solution of Large Linear Systems," J. of Comp. and Applied Mathematics, Vol. 227, 2009
- M. Wang and D. P. Bertsekas, "Convergence of Iterative Simulation-Based Methods for Singular Linear Systems", Stoch. Systems, Vol. 3, 2013
- M. Wang and D. P. Bertsekas, "Stabilization of Stochastic Iterative Methods for Singular and Nearly Singular Linear Systems", Math. of Op. Res., Vol. 39, 2013

Outline

(1) Acceleration of the Proximal Algorithm for Linear Systems
(2) Acceleration of the Proximal Algorithm for Nonlinear Systems
(3) Acceleration of Forward-Backward and Proximal Gradient Algorithms
(4) Linearized Proximal Algorithms for Nonlinear Systems

The Extrapolation Formula

Let $c>0$ and $\lambda=\frac{c}{c+1}$. Consider the proximal mapping

$$
P^{(c)}(x)=\text { Unique solution of } y-T(y)=\frac{1}{c}(x-y)
$$

Then:

$$
T^{(\lambda)}=T \cdot P^{(c)}=P^{(c)} \cdot T
$$

and $x, P^{(c)}(x)$, and $T^{(\lambda)}(x)$ are colinear:

$$
T^{(\lambda)}(x)=P^{(c)}(x)+\frac{1}{c}\left(P^{(c)}(x)-x\right)
$$

Extrapolation Formula $T^{(\lambda)}=T \cdot P^{(c)}=P^{(c)} \cdot T$

Proof outline

Main idea: Express the proximal mapping in terms of a power series

We have

$$
P^{(c)}(x)=\left(\frac{c+1}{c} I-A\right)^{-1}\left(b+\frac{1}{c} x\right)
$$

and by a series expansion

$$
\left(\frac{c+1}{c} I-A\right)^{-1}=\left(\frac{1}{\lambda} I-A\right)^{-1}=\lambda(I-\lambda A)^{-1}=\lambda \sum_{\ell=0}^{\infty}(\lambda A)^{\ell}
$$

Recall that

$$
T^{(\lambda)}(x)=(1-\lambda) \sum_{\ell=0}^{\infty} \lambda^{\ell} A^{\ell+1} x+\sum_{\ell=0}^{\infty} \lambda^{\ell} A^{\ell} b
$$

Using these relations and the fact $\frac{1}{c}=\frac{1-\lambda}{\lambda}$, it follows that

$$
T^{(\lambda)}=T \cdot P^{(c)}=P^{(c)} \cdot T
$$

Acceleration

The eigenvalues of $T^{(\lambda)}$ and $P^{(c)}$ are simply related:

$$
\theta_{i}=\zeta_{i} \cdot \bar{\theta}_{i}
$$

where

$$
\theta_{i}=i \text { th } \operatorname{Eig}\left(T^{(\lambda)}\right), \quad \bar{\theta}_{i}=i \text { th } \operatorname{Eig}\left(P^{(c)}\right), \quad \zeta_{i}=i \text { th } \operatorname{Eig}(A)
$$

Moreover, $T^{(\lambda)}$ and $P^{(c)}$ have the same eigenvectors

$$
\text { Spectral radius of } T^{(\lambda)} \leq \text { Spectral radius of } P^{(c)}
$$

(1) Acceleration of the Proximal Algorithm for Linear Systems

(2) Acceleration of the Proximal Algorithm for Nonlinear Systems
(3) Acceleration of Forward-Backward and Proximal Gradient Algorithms

4 Linearized Proximal Algorithms for Nonlinear Systems

Nonlinear System $x=T(x)$ - Proximal Extrapolation

- Assume that the system has a unique solution x^{*}, and T is nonexpansive:

$$
\left\|T\left(x_{1}\right)-T\left(x_{2}\right)\right\| \leq \gamma\left\|x_{1}-x_{2}\right\|, \quad \forall x_{1}, x_{2} \in \Re^{n}
$$

where $\|\cdot\|$ is some Euclidean norm and γ is a scalar with $0 \leq \gamma \leq 1$

- Consider the proximal mapping $P^{(c)}$:

$$
P^{(c)}(x)=\text { Unique solution of } y-T(y)=\frac{1}{c}(x-y)
$$

- Define the extrapolated proximal mapping

$$
E^{(c)}(x)=x+\frac{c+1}{c}\left(P^{(c)}(x)-x\right)
$$

- Important difference: $P^{(c)}(x)$ and $E^{(c)}(x)$ cannot be easily computed by simulation

Similar to the linear case, we have

$$
E^{(c)}(x)=T\left(P^{(c)}(x)\right), \quad\left\|E^{(c)}(x)-x^{*}\right\| \leq \gamma\left\|P^{(c)}(x)-x^{*}\right\|
$$

Geometric Interpretation and Proof

From the definition of $P^{(c)}$, we have

$$
T\left(P^{(c)}(x)\right)=P^{(c)}(x)+\frac{1}{c}\left(P^{(c)}(x)-x\right)
$$

so that

$$
T\left(P^{(c)}(x)\right)=x+\frac{c+1}{c}\left(P^{(c)}(x)-x\right) \stackrel{\text { def }}{=} E^{(c)}(x)
$$

Hence, using the assumption,

$$
\left\|E^{(c)}(x)-x^{*}\right\|=\left\|T\left(P^{(c)}(x)\right)-x^{*}\right\|=\left\|T\left(P^{(c)}(x)\right)-T\left(x^{*}\right)\right\| \leq \gamma\left\|P^{(c)}(x)-x^{*}\right\|
$$

(1) Acceleration of the Proximal Algorithm for Linear Systems

(2) Acceleration of the Proximal Algorithm for Nonlinear Systems

(3) Acceleration of Forward-Backward and Proximal Gradient Algorithms

4 Linearized Proximal Algorithms for Nonlinear Systems

Forward-Backward Splitting Algorithm for Fixed Point Problem

$$
x=T(x)-H(x)
$$

$$
x_{k+1}=P^{(\alpha)}\left(x_{k}-\alpha H\left(x_{k}\right)\right), \quad \alpha>0
$$

Properties (Lions and Mercier, 1979, Gabay, 1983, Tseng, 1991):

- If T is nonexpansive, and H is single-valued and strongly monotone, the F-B algorithm converges to x^{*} if α is sufficiently small
- For a minimization problem where H is the gradient of a strongly convex function, FB $=$ the proximal gradient algorithm

Extrapolation and Acceleration

Extrapolated forward-backward algorithm

$$
\begin{gathered}
z_{k}=x_{k}-\alpha H\left(x_{k}\right), \quad \bar{x}_{k}=P^{(\alpha)}\left(z_{k}\right) \quad \text { (Forward-Backward Iteration) } \\
x_{k+1}=\bar{x}_{k}+\frac{1}{\alpha}\left(\bar{x}_{k}-z_{k}\right)-H\left(\bar{x}_{k}\right) \quad \text { (Extrapolation) }
\end{gathered}
$$

We have

$$
x_{k+1}=T\left(\bar{x}_{k}\right)-H\left(\bar{x}_{k}\right)
$$

so there is acceleration if $T-H$ is contractive

Connect with TD: Apply Policy Iteration Ideas to the Proximal Context

Problem: Solve "concave" fixed point problem $x=T(x)=\min _{\mu} T_{\mu}(x)$ i th component of $T_{\mu}(x)=a(i, \mu(i))^{\prime} x+b(i, \mu(i)), \quad \mu(i) \in \mathcal{M}(i) \quad$ (Linear)

The policy iteration algorithm

$$
x_{\mu_{k}}=T_{\mu_{k}}\left(x_{\mu_{k}}\right), \quad \mu_{k+1} \in \arg \min _{\mu} T_{\mu}\left(x_{\mu_{k}}\right), \quad \text { ("Newton" method) }
$$

The λ-policy iteration algorithm

$$
x_{k+1}=T_{\mu_{k}}^{(\lambda)}\left(x_{k}\right), \quad \mu_{k+1} \in \arg \min _{\mu} T_{\mu}\left(x_{k+1}\right), \quad(\text { "prox-linear" method) }
$$

A Fundamental Difficulty

- The algorithm chases a moving target
- The $\operatorname{TD}(\lambda)$ mapping $T_{\mu_{k}}^{(\lambda)}$ "targets" the fixed point of $T_{\mu_{k}}$, but as μ_{k} changes so does the target ...
- This is why some policy iteration algorithms may not converge (particularly with cost function approximation) ...

Convergence Under Monotonicity Assumptions

Assume the following:

- For all μ, the matrix A_{μ} has nonnegative components
- The mappings T_{μ} are all contractions with respect to a common sup-norm (this can be relaxed ...)

Then:

- T is a contraction and its fixed point is $x^{*}=\min _{\mu} x_{\mu}$
- A sequence $\left\{x_{k}\right\}$ generated from an initial condition x_{0} such that $x_{0} \geq T\left(x_{0}\right)$ is monotonically nonincreasing and converges to x^{*} (this can be improved ...)

Proof idea:

- Based on DP/policy iteration arguments
- Monotonicity is critical
- Once projection is introduced in policy iteration, monotonicity may be lost

Convergence of Randomized Version Without Monotonicity

Assume the following:

- The set \mathcal{M} is finite
- The mappings T_{μ} and T are all contractions with respect to a common norm
- We use a randomized form of the linearized iteration:

$$
\begin{gathered}
x_{k+1}=T_{\mu_{k}}\left(x_{k}\right), \quad \text { with probability } p, \\
x_{k+1}=T_{\mu_{k}}^{(\lambda)}\left(x_{k}\right), \quad \text { with probability } 1-p,
\end{gathered}
$$

followed by $\mu_{k+1} \in \arg \min _{\mu} T_{\mu}\left(x_{k}\right)$

Then:

For any starting point x_{0}, a sequence $\left\{x_{k}\right\}$ generated by the algorithm converges to the fixed point of T with probability one

Randomization resolves the "moving target" problem

Concluding Remarks

- Proximal and multistep/TD iterations for fixed point problems are closely connected
- $x, P^{(c)}(x)$, and $T^{(\lambda)}(x)$ are colinear and simply related (no line search needed)
- TD (λ) mapping is "faster" than proximal
- A free lunch: Acceleration of the proximal algorithm. It can be substantial, particularly for small c
- Extrapolation formula provides new insight and justification for TD-type methods
$\mathrm{TD}(\lambda)$ is stochastic version of the proximal algorithm
$\mathrm{TD}(\lambda)$ with subspace approximation is stochastic version of the projected proximal
- The ideas extend to the forward-backward algorithm and potentially other algorithmic contexts that involve fixed points and proximal operators
- The relation between proximal and TD methods extends to classes of nonlinear fixed point problems using linearization/policy iteration ideas

Thank you!

