
ELSEVIER Parallel Computing 20 (1994) 1221-1247

PARALLEL
COMPUTING

Parallel shortest path auction algorithms t

L.C. P o l y m e n a k o s , D.P . B e r t s e k a s *

Laboratory for Information and Decision Systems, MIT, Cambridge, MA 02139-4307, USA

Received 11 December 1992; revised 10 May 1993, 1 November 1993

Abstract

In this paper we discuss the parallel implementation of the auction algorithm for shortest
path problems. We show that both the one-sided and the two-sided versions of the
algorithm admit asynchronous implementations. We implemented the parallel schemes for
the algorithm on a shared memory machine and tested its efficiency under various degrees
of synchronization and for different types of problems. We discuss the efficiency of the
parallel implementation of the many origins-one destination problem, the all origins-one
destination problem, and the many origins-many destinations problem.

Keywords: Shortest path problem; Auction algorithm; Shared memory multiprocessor;
Parallel implementation; Performance results

I. Introduct ion

In this paper we consider the problem of finding the shortest path from an
origin to a destination in a directed graph. Each arc has an associated length and
the objective is to find a path connecting the origin to the destination with
minimum total length. The auction algorithm for this problem was first proposed
in [4,5] and was studied further for parallel implementations in [12]. The algorithm
maintains a price for each node and a path starting at the origin. The terminal
node of the path 'bids ' for neighboring nodes based on their prices and the lengths
of the connecting arcs. The path is then appropriately extended or contracted. This
process continues until the destination becomes the terminal node of the path, in
which case the shortest path to the destination has been found.

t Work supported by NSF under Grants No. DDM-8903385 and CCR-9108058. Thanks are due for
comments and assistance with the parallel asynchronous codes to David Castanon.

* Corresponding author. Email: bertsekas@lids.mit.edu

0167-8191/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved
SSDI 0167-8191(94)00029-A

1222 L. C. Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247

The algorithm is well suited for parallel implementation. In particular, instead
of keeping only one path, we may have many paths starting at different origins.
Furthermore, the prices set by one path will be of use to the other paths for their
extensions and contractions. This is a key feature of auction-like algorithms, which
makes them appealing for parallel implementation. Actually, we will show that the
algorithm admits a totally asynchronous implementation whereby the bidding may
be done with out-of-date price information. Such an implementation minimizes the
synchronization penalty, i.e. the delay incurred when several processors synchro-
nize in order to base their bids on up-to-date information about the prices of the
nodes.

In this paper we explore various parallelization schemes and prove their validity
for the many origins-one destination, and the many origins-many destinations
shortest path problems. We develop algorithms which run asynchronously from
both the origins and the destinations. Extensions and contractions on the various
paths can happen either synchronously or asynchronously. Finally, we present
running time results from implementations on a shared memory, multiple instruc-
tion, multiple data stream parallel computer, the Encore Multimax.

Our results with randomly generated test problems with no discernible special
structure are encouraging, showing that the parallel auction algorithm is capable of
significant speedup. While there are several algorithms of the label setting and
label correcting type, which can be parallelized, there are no published experimen-
tal results with parallel implementations of these methods, and there is consider-
able doubt regarding their potential.

The paper is organized as follows: In the next section we provide an overview of
the serial auction shortest path algorithm and in Section 3 we develop and prove
the validity of the parallel asynchronous one-sided auction algorithm (running
from the origins only). The line of analysis bears similarity with a corresponding
analysis of the auction algorithm for the assignment problem [1]. In Section 4 we
extend the one-sided asynchronous scheme to two-sided asynchronous schemes for
both the many origins-one destination and the many origins-many destinations
problems. In Section 5 we discuss various implementations and we report compu-
tational results with different types of graphs.

2. The auction shortest path algorithm

We assume that we have a directed graph (.,Y, ~') where W is the set of nodes
and ~ is the set of arcs. To simplify notation, we assume that for each pair of
nodes i and j there is at most one arc starting at i and ending at j; such an arc is
referred to as (i, j). For convenience in stating the algorithms, we also assume that
there is at least one outgoing and at least one incoming arc to each node. Each arc
(i, j') ~ ' has a length air We introduce two special nodes s and d, referred to as
the origin and the destination. The shortest path problem is to find the path of
smallest length among all paths that start at s and end at d. We introduce also the
following definitions:

L.C. Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247 1223

• A walk is a sequence of nodes, (il, i 2 ik), and a corresponding sequence of
arcs, such that (ira, i m + O E J for all m = 1 k - 1.

• A cycle is a walk whose initial and final node are the same.
• A pa th is a walk with the additional property that all nodes i~, i 2 i k are

distinct, i.e. a path does not contain any cycles.
The length of a walk is the sum of the lengths of its arcs. We assume that all cycles
have strictly positive length. We note, however, that the initialization of the
algorithm may be difficult if some arcs have negative lengths (see [4,5]). The
methodology of this paper is thus best suited for problems with nonnegative arc
lengths and positive length cycles.

The algorithm maintains at all times a path P = (s, i~, i 2 , i k) starting at the
origin. The last node on the path, i k, is called the terminal node of P. The
degenerate pa th P = (s) may also be obtained in the course of the algorithm. We
define two operations that can be performed on a path:
• A path P = (s, i 1, i 2 , . . . , i k) can be extended by a node ik+ l ~ P such that (i k,

ik+ ~) ~ , i.e. the path becomes P = (s, i~, i 2 i~, ik+~).
• A path P = (s, i 1, i 2 ik) that is not degenerate can be contracted, i.e. it

becomes P = (s , i 1, i 2 i k_ l) .
In addition to the path, the algorithm maintains a price for each node i in the
network, which we shall denote by Pi. Let us denote by p the vector of prices Pi.
We say that a path-price pair (P, p) satisfies complementary slackness (CS) if the
following relations hold:

Pi <- aij +Pj, V(i, j) ~oae, (2.1a)

p i = a i j + p j , V (i , j) ~ P . (2.1b)

An important property is that if a path-price pair (P, p) satisfies CS, then the
portion of P between node s and any node i ~ P is a shortest path from s to i.
Furthermore, p ~ - P i is the corresponding shortest distance. To see this, let the
path be P = (s, i t, i 2 i~). Then from Eq. (2.1b) we have that

Ps=as i l+Pi l , Pi l=ai l i2+Pi2, . . . ,Pik l=aik lik+Pik •

By summing the first n (_< k) equations, we obtain that Ps -Pit , is the length of the
portion of P between s and i n. For every other path P = (s, i'1, i~ , . . . , i'n_ ~, i n)
connecting s and in, Eq. (2.1a) holds. Thus the length of the portion of P between
s and i n will be greater than or equal to P c - Pi,.

Let us now proceed to describe the algorithm. We initialize the algorithm by
picking (P, p) to be any pair satisfying CS such as, for example,

P = (s) , P i = 0 , Vi

when all arc lengths are positive. As discussed in [4], we may pick any price vector
and then run a preprocessing algorithm in order to ensure that CS will hold for the
resulting price vector and the degenerate path P = (s). The auction shortest path
algorithm maintains a path-price pair (P, p) which satisfies CS. At each iteration,
the path P is either extended by adding a new node or is contracted by deleting its
terminal node. In the latter case, the price of the terminal node is strictly

1224 L. C. Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247

increased. In the case of the degenerate path, P = (s), the path is either extended,
or left unchanged with the price Ps being strictly increased. The iteration is as
follows:

Typical iteration. Let i be the terminal node of P.
• Step 0 (Scanning of successor nodes). If

Pi < min { aij + pj} ,
{j I(i,j) ~5~'}

go to Step 1; else go to Step 2.
• Step 1 (Contract path). Set

Pi := min { ai i + Pi} ,
{j l(i,j)E5~¢} - .

and if i * s, contract P.
• Step 2 (Extend path). Extend P by node Ji where

Ji = arg m i n {a i j + p j } .
{j](i,j) E.~ ¢}

If Ji is the destination d, stop; P is the desired shortest path.

(2.2)

(2.3)

(2.4)

The shortest path algorithm proceeds by performing such iterations until the
destination node d becomes terminal node of the path. Note that after an
extension at Step 2, P is still a path from s to Ji, that is, it contains no cycles. To
see this, assume that by adding Ji to P we created a cycle. Then this cycle must
have zero length, since for every arc (i, j) of this cycle we have by complementary
slackness that Pi = ai j + P j . However, a cycle of zero length is ruled out by our
assumptions about the graph. The validity of the algorithm and more details can be
found in [4]. We shall refer to this algorithm as the forward auction algorithm to
contrast it with the two-sided algorithm we shall develop in Section 4.

It is possible to weaken the positivity assumption on the cycle lengths to
non-negativity by introducing the idea of graph reduction [11,2]. Here, through the
use of certain upper bounds on the node distances, it is possible to ascertain that
some of the arcs cannot participate in a shortest path to their endnode. Such arcs
can be deleted from the graph or equivalently their arc lengths can be set to a very
large number. In addition to allowing zero length cycles, it can be shown that
graph reduction enhances the worst case running time of the auction algorithm
and improves its practical performance for some difficult problems. In this paper,
we will not discuss graph reduction further, but we note that the parallelization
schemes to be presented, admit versions with graph reduction, where the lengths
of the 'deleted' arcs are set to a very large number.

3. A forward parallel scheme

We now consider a multiple origins version of the shortest path problem, and a
parallel version of the auction algorithm for its solution. The parallelization is

L.C. Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247 1225

primarily suitable for a shared memory machine. It is based on the use and the
simultaneous update of a different path for each origin. There are several possible
schemes [12]. Here we shall restrict our analysis to a particular asynchronous
scheme, which is easy to implement and can be extended to two-sided parallel
algorithms (Section 4). According to this scheme the paths from different origins
have no common nodes, i.e. they are disjoint.

There are r origins s k ~./7, k = 1 r, and we wish to find the shortest path
from each origin to a common destination d. We will assume throughout this
section that the problem is feasible, i.e. there exists at least one path from each
origin to the destination. We maintain at each time t a price vector p(t), to which
all processors have access, and for each origin s k we maintain a path pk(t)
starting at s k. In a synchronous implementation, the algorithm consists of phases
that are separated by synchronization points, i.e. times at which processors have
ended a phase but have not started a new one. In the asynchronous implementa-
tion, there is no notion of phases; processors proceed with computations with
whatever data is accessible at the time.

We now describe the asynchronous auction algorithm in detail and prove its
validity. The synchronous version is obtained as a special case by setting R(t) = S(t)
and 7i~j(t) = t in the following description. We assume that the price vector p(t)
and the paths Pk(t) can only change at integer times and we let T = {0, 1 }
denote the set of these times. This is not a restrictive assumption since t may be
considered as an index to physical times at which some interesting events occur.

We introduce the following notation:
ik(t): Terminal node of the path Pk(t). In order to simplify the notation, we shall

drop the argument t whenever i~(t) appears as a subscript and it is clear
from the context.

S(t): The set of active paths, i.e. paths Pk(t), k = 1 r, for which the destina-
tion node has not been reached yet, that is, ik(t) ~ d.

R(t): Subset of active paths for which there will be an iteration (an at tempt to
contract or extend) at time t as will be described below.

We assume that at time t each path pk(t) ~ R(t) has calculated a scalar

uk(t) = min (ai.+Pj(7"ikj(t))) (3.1)
{j](ik,j)~S~,} k kJ

and a corresponding node attaining the minimum above

J k (t) = a r g min (ai ,+pj(~ ' i~j(t))) , (3.2)
{j l(ik,j)~.~¢} ~ ks

called the desired node of path pk(t) , by using prices pj(ri~j(t)) from some earlier
but otherwise arbitrary times ~-~kj(t) ~ [0, t].

We consider two subsets of R(t):
Rc(t): The subset of R(t) consisting of paths that are eligible to contract, given by

Rc(t) = {Pk(t) ~ R (t) l Pik(t) < uk(t)}. (3.3)

1226 L.C. Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247

Re(t): The subset of R(t) consisting of paths that are eligible to extend, in the
sense that their desired node at time t does not belong to any active path
and pik(t) = aikjk + pjk(t), i .e.

R e (t) = (p k (t) ~ R (t) [j k (t) ¢ ~ [,.J pm(t) ,Pi~(t)=aik ,k+Pjk(t)}"
pm(t)~S(t)

(3.4)

We note that R(t) may contain paths which are neither in Rc(t) nor in Re(t).
These are the paths pk(t) such that pi.(t)= vk(t) but either jk(t) belongs to
another active path or pik(t)< aikYk +pjk(~). The latter case may occur because
Vk(t) was computed with out-of-date price information. We also define:
E(t): The set of desired nodes corresponding to active paths eligible to extend,

that is,

E(t) = {jk(t) l P~(t) ~Re(t)} . (3.5)

We consider the following assumptions:

Assumption 1. For all t, if a path P is active, then there will be an iteration for P at
some time t' >_ t, i.e. for all t,

P ~ S (t) ~ P ~ R (t ') forsome t '> t. (3.6)

Assumption 2. For all i, j, t we have

lim~'ij(t) ~ ~.
t ---~ c~

These assumptions are necessary because the problem cannot be solved if active
paths stop iterating and if old information is not eventually discarded.

Initially, the common price vector p(0) paired with any active path at time 0
must satisfy the CS conditions. Furthermore, we assume that the initial active
paths are node-disjoint. Thus at time t = 0 we have for all (i, j) ~ ¢ and all active
paths P~(0), Pk'(0) ~ S(0):

Pi(O) < aij +pj(0) ,

Pi(O) =aii+Pj(O), i f (i , j) ~ P k (0) forsome k,

Pk(O) NPk'(o) = 0, if k 4:k'.

If all arc lengths are nonnegative, one possible choice is to select all prices pi(0) to
be zero and to select as initial paths the trivial paths Pk(0)= (Sk), k = 1, . . . , r.
However, if some arc lengths are negative, a suitable initial choice of p(0) and
pk(o) may not be obvious, and may require considerable computation to obtain. It
will be shown that the above properties are maintained during the algorithm.

At each time t, if R(t) is empty, nothing happens. If R(t) is nonempty then:
(a) For each Pk(t) ~ Rc(t) we set the price of node i k to vk(t), and if ik(t) ~ sk,

then Pk(t) is contracted.

L.C. Polymenakos, D.P. Bertsekas /Parallel Computing 20 (1994) 1221-1247 1227

(b) For each j ~ E(t) , we consider the subset of paths that are eligible to extend
and for which j is the desired node, that is,

Bj(t) ~- (p k (t) ~ Re(t) l Pik(t) =aik j + l~i(Tikj(t))).
A single path from Bj(t), called the desired path of node j, and denoted by
Pj(t), is selected. Path Pj(t) extends to j and we say that a successful extension
of P~(t) to j was performed. If j = d, then Pj(t) becomes an inactive path and
never enters the set of active paths again.

Thus the following changes in the paths and the prices occur:
• If pk(t) ~ Re(t) then:

Pik(,)(t + 1) = Vk(t), pk(t + 1) =

• If j ~ E(t) and pk(t) = P~(t), then:

pk(t+ 1) =Pk(t) U {j)

' p k (t) \ { i k (t) } , ifik(t)--/:S k,

pk (t) , if ik(t) =S k

and if in addition j(t) = d, then S(t + 1) = S(t)\{pk(t)}.
• If i -~ ik(t) for all pk(t) f~ Rc(t), then Pi(t + 1) =pi(t) .
• If pk(t) ~ Re(t) and pk(t) -~ Pj(t) for all j ~ E(t), then pk(t + 1) = pk(t).
The above formulation of the algorithm requires that the time index t takes an
infinite number of values. This is a mathematical convenience, and in practice the
algorithm can be terminated once there are no more active paths. We say that the
algorithm terminates at time t if t is the first time such that S(t) is empty, so that
no prices or paths change after time t.

In the analysis that follows we prove the validity and termination of the parallel
algorithm described. The issues that need to be addressed are the following:
• First we must prove that the active paths are node-disjoint, and when paired

with the price vector, satisfy complementary slackness throughout the algorithm
(Propositions 3.1 and 3.2). Complementary slackness will then guarantee that if a
path extends to the destination, then it must be a shortest path from the
corresponding origin to the destination.

• Next we must prove that following any time prior to termination, at least one
successful extension will be performed (see the subsequent Lemma 3.4). Further-
more, the number of possible contractions is bounded from above (see the
subsequent Lemma 3.3). Termination of the algorithm will then follow.

Proposition 3.1. The active paths remain node-disjoint during the algorithm, i.e. for
all t and pk(t), Pk'(t) ~ S(t):

k ~ k' ~ pk (t) Npk' (t) =~J.

Proof. We use induction. The active paths pk(0) are node-disjoint by assump-
tion. Let us assume that the active paths Pg(t) are node-disjoint. We shall prove
that the active paths pk(t + 1) are node disjoint.

1228 L. C. Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247

From the inductive hypothesis it is clear that two active paths pk(t + 1) and
Pk'(t + 1) have a common node only if one of the following holds:
(a) At time t, one of the paths P~(t) or Pk'(t) extended to a node belonging to the

other.
(b) Both paths Pk(t) and P~'(t) extended to the same node at time t.
From the description of the algorithm (cf. Eq. (3.4)) we see that, at time t, paths
can only extend to nodes j ~ U p,.(t)~s(t)Pm(t), making case (a) impossible.
Furthermore, by the rules of the algorithm, only one path can extend at time t to a
node of E(t), making case (b) impossible. []

Proposition 3.2. For all t, the actiue paths and the price vector satisfy the CS
conditions.

Proof. We use induction. The algorithm starts at time t = 0 with path-price pairs
that satisfy CS. Let us assume that CS is maintained up to time t for all path-price
pairs. We shall prove that CS is maintained at time t + 1.

We first consider the nodes whose price changes at time t. These are the
terminal nodes ik(t) of the paths in Re(t). For these nodes we have:

t = min a . pik(t) (-F 1) Uk(t) =(ik(t),j)~.a¢(tk(t) -k- pj('l'ik(t)j(t)))

The structure of the algorithm [cf. the definition of Re(t)] is such that prices can
only increase. Thus in view of rii(t) < t < t + 1 for all (i, j) E~¢, we have

pj(ri j(t)) <pj(t) <Pi(t + 1), Vj ~ X .

Combining the last two relations, we see that

pik(t)(t + 1) < min la i , +pj(t + 1)}, Vik(t) suchthat Pk(t) ~R~(t).
(ik,J) ~,~¢t kJ

For all nodes i whose price does not change at time t, we have by the induction
hypothesis

pi(t + 1) = p (/) < aij +pj(t) < aij + p j (t + l) , Vj with (i , j) ~ ¢ .

Combining the last two relations we have

pi(t + 1) < aij +pj(t + 1), for all arcs (i , j) .

There remains to prove that the condition

Pi(t + 1) = aij +pj(t + 1) (3.7)

holds for every arc (i, j) that belongs to some path Pk(t + 1) ~ S(t + 1). For such
an arc (i, j) either j ~ E(t) in which case Eq. (3.7) holds by Eq. (3.4) and (3.5), or
else (i, j) belongs to some path Pk(t) ~ S(t), in which case Eq. (3.7) holds by the
induction hypothesis and the fact Pi(t) =Pi(t + 1) and pj(t) =pj(t + 1). [A node i
changes price at time t if it is the terminal node of some path Pk(t) ~ R~(t). Such
a node will not belong to Pk(t + 1) since pk(t + 1) is contracted at time t, and will
not belong to Pk'(t + 1) ~ S(t + 1) for k 4: k', since Pk(t) and Pk'(t) are node-dis-
joint and Pg'(t) cannot extend to a node of Pg(t).] The induction is complete. []

L. C. Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247 1229

Based on Proposition 3.2 and the discussion following Eq. (2.1) we have:

Lemma 3.1. I f an active path Pk(t) extends to a node i, then Pk(t + 1) is a shortest
path from s k to i.

Proof. By Proposition 3.2 we conclude that if path pk extends to a node i, then the
CS condition (2.1a) holds with equality on that path. Thus from our analysis of the
auction algorithm in Section 2, we conclude that a shortest path from origin s k to
node i has been found. []

An immediate conclusion from the above lemma is that if an active path pk(t)
extends to the destination then Pk(t + 1) is a shortest path from s k to d. We now
prove some lemmas that we will need to prove that the algorithm terminates.

Lemma 3.2. For the destination node d we have for all t:

(a) pd(t)=pal(O).
(b) I f jk(t) = d for some active path pk(t) , then d ~ E(t).

Proof. (a) Once a path extends to d, it becomes inactive. Therefore, no contraction
is performed on node d and its price remains unchanged throughout the algo-
rithm.
(b) If the desired node of path Pg(t) is d, we have

pi~(t) = a i k d + Pd('rikd(t)) = a i k d + Pd(O) "

Since d cannot belong to any active path during the algorithm, we conclude, using
the definition of E(t) (cf. Eqs. (3.4) and (3.5)), that d ~ E(t) . []

Lemma 3.2 allows us to refer to the price of the terminal node as Pd since it is
invariant over time. Our next lemma establishes that the number of possible
contractions on a node that becomes terminal node of any path is finite.

l~mma 3.3. The number of contractions performed by the algorithm at any node is
finite.

Proof. By Proposition 3.2, we know that CS is maintained by the algorithm at all
times. Therefore, for all origins s k and times t, psi(t)--Pal is an underestimate of
the shortest distance from s~ to the destination, which is finite by the feasibility
assumption. Since the prices of the origins are monotonically nondecreasing and
Pd remains unchanged throughout the algorithm, we conclude that psk(t) remains
bounded for all origins s k. We next claim that pi(t) remains bounded for all i. To
see this, note that in order to have pi(t) ~ oo, node i must become terminal node
of at least one active path, say pm, infinitely often, implying that p s (t) - p i (t) is
equal to the shortest distance from s m to i infinitely often. This implies that
p s (t) ~ ~ contradicting our earlier assertion that p s (t) is bounded.

1230 L.C. Polymenakos, D.P. Bertsekas /Parallel Computing 20 (1994) 1221-1247

It is easy to see with an inductive argument that for every node i its price is the
length of some walk starting at i plus the initial price of the final node of the walk;
we call this the modified length of the walk. If a contraction occurs at a node, its
price increases to a level corresponding to a strictly larger modified walk length.
Since the number of distinct modified walk lengths within any bounded interval is
bounded and pi(t) stays bounded, it follows that the total number of contractions
that can be performed at a node is finite. []

Our next lemma establishes that a successful extension will be eventually
performed if the algorithm has not terminated. Thus the algorithm cannot be
deadlocked prior to termination.

Lemma 3.4.

S(t) - ~ =~Re(tt) ----~ forsomet '>t .

Proof. We assume that Re(t') = ~ for all t' > t in order to reach a contradiction.
Then after t no active path will extend. Therefore, there can be at most one
contraction for each node in U pk(t)ES(t)Pk(t) except for the origins of the active
paths. From Lemma 3.3 we know that the number of possible contractions at the
origins of the active paths is finite. Thus there exists a time i > t after which the
active paths remain unchanged and the prices of all nodes in the graph remain
unchanged. Since lim t _~oorii(t)---, oo (Assumption 2), it follows that after some time
i > t > t, we have:

S(t') = S(t ') ,

R¢(t') =~,
pj(t') = pj(~'q(t')) = p j (i) ,

Uk(t') = aikJk +Pjk(t'),

These equations imply that

Vt' > i

V t ' > i

Vt' > {, j ~J7

Vt'>>_[, P k (t ') ~ R (t ')

pik(t')=ai~jk+pjk(t'), V t '>t , p k (t ') ~ R (t ') .

Since no successful extensions are performed, we conclude that the desired nodes
of all active paths in R(t') belong to other active paths, i.e.,

{Jk(t ') lPk(t ')~R(t ') } c U pm(t') , Vt' > i.
Pm(t')~S(t')

From Assumption 1, we see that every active path pk ~ S(?) will iterate at some
time t~ > ?, that is, it will belong to some set R(tk), and will thus have a desired
node j l,(tk). Let /;~ be the path P~ extended by jk(tk), and consider the subgraph
(¢47~, ~ ') consisting of the set of paths {/~k I pk ~ S(?)}. Then after time ?, the CS
condition (2.1a) will hold with equality for all arcs of the subgraph, that is,
Pi = aij + P j for all (i, j) ~ . Since each node jk(tk) belongs to the set

U Pro(i) ,

Pm(i) ES(i)\{Pt'(i)}

L. C. Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247 1231

the subgraph (~/V, ~) must contain a cycle. By summing up the CS condition
Pi = aij + P j for all arcs (i, j) of the cycle, we conclude that this cycle has zero
length, which contradicts our assumptions about arc lengths. []

Proposition 3.3. The algori thm terminates.

Proof. First we observe that between two extensions to a given node there must
be an intervening contraction at that node. Therefore, each time a node i becomes
terminal node of an active path, its price is strictly larger over the preceding time
that i became terminal node of some path. Since the number of possible contrac-
tions at i is bounded (Lemma 3.3) we conclude that the number of times that any
active path can extend to node i is bounded. Thus the number of extensions that
the algorithm can perform is bounded. Since the algorithm will not stop perform-
ing extensions prior to termination (Lemma 3.4), we conclude that the algorithm
terminates. []

We note an additional property that can be used to accelerate the algorithm.
Assume that at some time t the shortest path pk from origin s k to the destination
has been found. Then the prices of all the nodes on p k remain unchanged during
future iterations. Thus if an active path starting at another origin sk extends to a
node j ~ p k at a time ? > t, then the path P~(?) can become inactive and the
shortest path from sk to d can be found as the concatenation of Pk(?) and the
part of pk connecting node j and d.

4. Two-sided auction algorithms

In this section we discuss the two-sided auction algorithm and its parallelization.
In Section 4.1 we present the serial two-sided algorithm for the one origin-one
destination problem. In Section 4.2 we consider a naive parallel implementation
and discuss the changes needed so that it terminates. In Section 4.3 we propose a
scheme for the many origins-one destination problem and prove its validity. Finally
in section 4.4 we introduce a new serial scheme solving the many origins-many
destinations problem and discuss its parallelization.

4.1. The serial two-sided algori thm

It is easy to see that in the shortest path problem the role of the origin and the
destination can be reversed. The auction algorithm that we developed in Section 2
is easily changed to run in reverse, from the destination that is.

The algorithm maintains a path ending at the destination, i.e. P = (i 1, i 2 , ig,
d). In addition to the path, the algorithm also maintains a price vector p, which
together with P satisfies CS. The operations of extension and contraction in the
reverse algorithm are similar to those for the forward algorithm except that they
are conducted at the starting node of the path P rather than at the end node
(which is now the destination).

1232 L. C. Polymenakos, D.P. Bertsekas /Parallel Computing 20 (1994) 1221-1247

A typical iteration is as follows:

Typical iteration of the reverse algorithm.
• Step 0 (Scanning of predecessor nodes). Let j be the starting node of P. If

Pi > max {Pi -- aij},
{i I(i,J) ~,~¢}

go to Step 1; else go to Step 2.
• Step 1 (Contract path). Set

pj := m a x { p i - a i j } ,
{i I(i,j) ~.a¢}

and if j ~ d, contract P, that is, delete j from P.
• Step 2 (Extend path). Extend P by node i j, where

ii = arg m a x { p i - a i j } ,
{i i(i , j) ~,a¢}

that is, add i i as the starting node of P. If ij is the origin s, stop; P is the
desired shortest path.

The reverse algorithm proceeds by performing iterations until the origin be-
comes the terminal node of the reverse path. Note that we can implement a
parallel scheme for the one origin-many destinations problem by maintaining
reverse paths starting at the destinations as we did in Section 3 for the forward
algorithm.

It is possible to combine the forward and the reverse algorithms into a single
algorithm. Computational experience [4] has shown that this speeds up the solu-
tion. The combined algorithm maintains a common price vector p, and two paths
Pf and Pr satisfying CS. The forward path Pf starts at the origin and the reverse
path Pr ends at the destination. The algorithm will terminate when the two paths
have a common node.

Combined algorithm
• Step 1 (Run forward algorithm). Execute several iterations of the forward

algorithm (subject to the termination condition), at least one of which leads to
an increase of the price of the origin. Go to Step 2.

• Step 2 (Run reverse algorithm). Execute several iterations of the reverse
algorithm (subject to the termination condition), at least one of which leads to
a decrease of the price of the destination. Go to Step 1.

It is crucial for the validity of the combined algorithm that a price increase at
the origin or a price decrease at the destination occurs before the algorithm is
switched from one side to the other. Otherwise, examples can be constructed
showing that the algorithm may never terminate. The algorithm as described, is
justified for integer data in [4] and the computation results presented there show
that the combined algorithm runs faster that state-of-the-art Dijkstra codes (even

L.C. Polymenakos, D.P. Bertsekas /Parallel Computing 20 (1994) 1221-1247 1233

two-sided). In the analysis that follows we assume that the arc lengths are integers,
and that the problem is feasible.

4.2. Naive parallel implementation

Let us consider a naive implementation whereby the forward and the reverse
algorithms are running on different processors and are updating a common price
vector. For simplicity assume that the processors execute iterations simultaneously.
It can be seen that a situation may arise where the terminal node of Pf and the
starting node of Pr are connected by one arc. Under such conditions CS may be
violated as shown in Fig. 1. A simple way to correct this problem is to use a priority
rule whereby we allow only one side to iterate if the terminal nodes of the paths
are one arc apart. In this way CS is guaranteed to be maintained throughout the
algorithm.

Even with this modification, however, the algorithm may not terminate. The
reason is that price increases at the origin and price decreases at the destination
may fail to occur.

The difficulty is that some nodes, which had been visited by the forward
algorithm and their price was increased, are then visited by the reverse and their
price is decreased to the level it was before being visited by the forward. The prices
of these nodes oscillate and the algorithm does not terminate.

We say that we have degeneracy if there are two nodes, i ~ Pf and j ~ Pr, such
that in all future iterations where i becomes the terminal node of Pf or j becomes
the starting node of Pr an extension follows. Thus the prices of i and j remain
unchanged and degeneracy occurs. Fig. 2 gives an example where we have
degeneracy with the corresponding nodes being the origin and the destination.
Degenerate iterations are what prevents the algorithm from terminating. There-
fore, an easy modification to our naive implementation would be to stop the
reverse side of the algorithm once we suspect degeneracy, until a contraction to
the origin with a price increase for the origin occurs, in which case we restart the
reverse side of the algorithm.

It is reasonable to suspect degeneracy if many successive extensions occur at
certain nodes. We thus introduce two counters for each node, which we shall call
the forward and the reverse counter respectively. The forward (reverse) counter
records how many successive times a forward (respectively, reverse) extension was
performed at a node without an intervening contraction. If a contraction is

aij

Fig. 1. This is an example where CS may not be maintained: Let i be the terminal node of the forward
path and j be the start ing node of the reverse path. Assume Pi = 0, pj = 0, aij > 0, and (i, j) is the only
arc outgoing f rom i and incoming to j. At time t both sides per form an iteration. The forward will set
Pi(t + 1) = aij and the reverse will set pj(t + 1) = - aij. As a result, CS is violated.

1234 L.C. Polymenakos, D.P. Bertsekas /Parallel Computing 20 (1994) 1221-1247

performed at a node, then its corresponding counter is reset to zero. If both the
forward counter of some node and the reverse counter of some (possibly different)
node exceed a threshold, then we declare that degeneracy has been detected and
we allow only one side of the algorithm to proceed as we explained above. It is also
possible to have different thresholds for each counter.

We may wish to detect degeneracy as soon as possible, so that time is not
wasted with the algorithm cycling. This can be done by having a low threshold for
the counters. However, iterations with a few consecutive extensions on the same
node are not necessarily degenerate. In particular, we may have more than one
paths originating from the same node and having the same length. In such a case
the algorithm is not cycling since new paths are being explored. Therefore, the
trade-off here is that we may allow a number of degenerate iterations with the
algorithm cycling, which is t ime-consuming, or else stop one side of the algorithm
before it is necessary. However, for all practical purposes the number of allowed
degenerate iterations can be set to be large (for example 10% of the number of
arcs), since the situation of the example in Fig. 2 is rare.

Terminal node

T s 1 2 3 d FOR REV

1 2 2 0 0 -i ,~

2 2 2 0 -3 -lj 2 d

3 2 2 0 -3 -i 3 1

4 2 1 0 0 -i 2 d

5 2 1 3 0 -i s 3

6 2 1 3 0 -i 1 2

7 2 2 0 0 -i s 3 Steps 1 and 7 are identical

the algorithm cycles

Fig. 2. An example of cycling of the naive two-sided algorithm. We record the following: in the column
labeled T the time index, in the columns labeled s, 1, 2, 3, t, the corresponding prices, and in the
columns labeled FOR and R E V the terminal and starting nodes of the forward and reverse paths,
respectively. One time unit corresponds to a full iteration of the forward and the reverse algorithms in
parallel. The sequence of events are recorded at the leftmost column. Step 7 is the same as step 1, so
the algorithm cycles. A similar but longer example can be constructed for the same graph when the
initial prices are all zero (see [12]).

L.C. Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247 1235

4.3. The many origins-one destination algorithm

We proceed now to discuss the model for the parallel two-sided algorithm. We
assume that we have r origins s~ ~ Jr', k = 1 r and one destination d. We shall
denote by P~(t) the path starting at origin s k, (k = 1 r), and by Pr(t) the path
ending at d. In the sequel, we will use the term forward paths to refer to paths
that start at an origin, and the term reverse path to refer to the path ending at d.
We also have, as before, a common price vector p(t), to which all paths have
access. We assume that the price vector p(t) and the paths P~(t), k ~ {1 r}
and PrO) can only change at integer times. Let T = {0, 1, . . .} denote the set of
these times.

Throughout the analysis, we assume that the arc lengths are integers and that
the problem is feasible, that is, there exists at least one path from each origin to
the destination. If the shortest path from an origin s k to d has not been found, we
say that the path Pf~ is active and otherwise we say that P~ is inactive. The
reverse path is active throughout the algorithm. Let S(t) denote the set of active
forward paths. A forward path may also become idle if degeneracy has been
detected. An idle path does not iterate but may become active again if certain
conditions apply.

Let t[, (t r) be the largest time prior to t that the k th forward path (the reverse
path) started its auction iteration at its current terminal node i~(t), (starting node
ir(t)). Then the calculations are based on price information p('ri~j(t)) and p(riA(t))
of some earlier times ~-i[j(t) and zirj(t) where:

t~ <_~'i[i(t) < t , and tr <~'iry(t) < t (4.1)

Let R(t) denote the subset of active paths (forward or reverse) for which there
will be an iteration (an at tempt for an extension or a contraction) at time t. We
introduce counters of successive forward and reverse extensions.
FCi(t): The forward counter of node i at time t.
RCi(t): The reverse counter of node i at time t.
We also introduce a threshold parameter NUM for the allowed number of
successive extensions per node. All counters are initialized to zero. Analogously to
Assumptions 1 and 2 we assume the following:

Assumption 3. For all t, if S(t) is not empty, then at least one of the following holds:
(1) Pr ~ R(t'), for some t' >1 t.
(2) Each path P~ ~ S(t) will be in R(t k) for some t k >__ t.

Assumption 4. For all i, j, t we have:

lim~-ij(t) ~ ~.

1236 L.C, Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247

Initially, the common price vector paired with any of the initial paths must
satisfy the CS conditions. Furthermore, all initial paths are node disjoint. The
algorithm proceeds as follows:
• The forward active paths perform auction iterations according to a parallel

scheme similar to the one we described in Section 3 (maintaining the forward
active and idle paths disjoint) and using the prices from some earlier time. If the
terminal node of a forward path is one arc apart from the terminal node of the
reverse path, then the forward path restarts its auction iteration at its current
terminal node. Each time a node i is terminal node of a path and a contraction
is made, its forward counter F C i is reset to zero. Each time a node i is terminal
node of a path and an extension is made, its forward counter F C i is incre-
mented; if F C i > N U M and there is some node j such that RCj > N U M , then
the forward path containing node i becomes idle. If a forward path extends to a
node belonging to the reverse path, then the forward path becomes inactive.

• The reverse path performs auction iterations. It never becomes idle. Each time a
node i is the starting node of the reverse path and a contraction is made, its
reverse counter RCi is reset to zero; if the contraction is made at the destina-
tion, then all idle forward paths become active and the forward counters of their
nodes are reset to zero. Each time a node i is the starting node of the reverse
path and an extension is made, its reverse counter RCg is incremented. If the
reverse path extends to a node belonging to an active or idle forward path, then
the forward path becomes inactive.
We say that the algorithm terminates when all forward paths become inactive.

Note that the reverse path is always active; only forward paths can become idle
during the algorithm. The termination of the algorithm follows similar lines as the
one of the forward algorithm of Section 3, with appropriate modifications to deal
with degeneracy and idle paths. In summary:

First we establish that the active and idle paths paired with the price vector
satisfy CS throughout the algorithm. This will be a result of the forward paths
being node-disjoint, the constraints on how outdated the prices can be, and the
way the price vector is updated. The proof is similar to the one of Section 3. CS
guarantees that each time a forward path becomes inactive, the shortest path from
the corresponding origin to the destination has been found. To prove that the
algorithm terminates we need to establish that the number of extensions per-
formed, before a contraction at the origin or a contraction at the destination
occurs is finite. This is evident from the fact that we have set an upper bound on
the number of successive extensions that can be performed when any node of the
graph is the terminal node of a forward path or the starting node of the reverse
path. Since the arc lengths are integers and the prices of the origin and the
destination can be shown to be bounded, the algorithm terminates.

4.4. The many origins - many destinations problem

In this section we present a serial scheme for the many origins-many destina-
tions problem and then parallelize it.

L C. Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247 1237

4.4.1. The serial algorithm
Let us assume that we have r 1 origins and r 2 destinations. For each origin node

we maintain a path starting at that origin and for each destination we maintain a
path ending at that destination. We also maintain, as before, a common price
vector. In the sequel, we will use the term forward paths to refer to paths starting
at an origin and the term reverse paths to refer to paths ending at a destination.

A forward path is active if the shortest paths from the corresponding origin to
all destinations have not been found. Similarly a reverse path is active if the
shortest paths from the corresponding destination to all origins have not been
found. Otherwise, a path is inactive. An active reverse path may also become idle
in the course of the algorithm. An idle path does not perform any auction
iterations, but may become active again if certain conditions apply. We use idle
paths in order to be able to concentrate once in a while on one of the many
origins-one destination problems. In this way, we guarantee that the algorithm
makes some irreversible progress once in a while. The criterion for a path to
become idle is as follows:

Idle reverse path criterion. Each time a shortest path from an origin to a
destination is found, the corresponding reverse path becomes idle unless it is the
only reverse path that is active.

We consider an algorithm which proceeds in phases. At the beginning of each
phase idle paths become active again. Thus at the beginning or each phase paths
are either active or inactive. Each phase consists of two subphases:

• Subphase 1. All active paths are allowed to perform auction iterations in any
sequence subject to the following constraint: We perform auction iterations with
the same forward or reverse path until either the price of the corresponding
origin or destination, respectively, changes, or some new shortest path is ob-
tained. Reverse paths become idle according to the criterion we stated above.
Paths may also become inactive. When there is only one active reverse path left,
the algorithm enters subphase 2.

• Subphase 2. The corresponding many origins-one destination problem is solved
to completion. All active paths are allowed to perform auction iterations in any
sequence subject to the following constraint: We perform auction iterations with
the same forward or reverse path until either the price of the corresponding
origin or destination, respectively, changes, or a new shortest path between one
of the origins and the destination is obtained. When the reverse path becomes
inactive, subphase 2 ends and we proceed to a new phase of the algorithm.

The scheme is demonstrated in Fig. 3. In order to prove the termination of the
scheme we reason as follows. First we must establish that the scheme does not
oscillate indefinitely without any origin finding the path to any destination. This
follows directly from the fact a forward or reverse path continues to perform
auction iterations until a price change to the corresponding origin or destination,

1238 L.C. Polymenakos, D.P. Bertsekas /Parallel Computing 20 (1994) 1221-1247

path sl-d3 is found
initially all S and d path Sl-dl is found path s2-d2 is found sl is marked (one

are iterating dl is marked d2 is marked dest. iteratingl

© @ @'
© © © © ©. ,,

© © © © ok..,/@ o

path s2-dl is found
dl remains marked

o

path s3-d3 is found
s3 is marked

are revived

path s2-d3 is found path $3-dl is found
d3,s2 are stopped dl is stopped

All marked s and d The scheme reduces to
m a n y o r i g i n - o n e d e s t .

Fig. 3. A demonstration of the many origin-many destination serial auction. A node with I on its side is
marked idle. A node with S on its side has become inactive.

respectively, occurs. Also the prices of the origins (destinations) corresponding to
active paths can only increase (decrease). Thus under the feasibility assumption
(i.e. shortest paths for all origin-destination pairs exist), in finite time only one
destination will be left iterating and then our scheme is equivalent to the one for
the many-origins one-destination problem, which is known to terminate. Once that
destination becomes inactive, again a many origins-many destinations scheme is
obtained with at least one destination less. Thus we deduce that under the
feasibility assumption the algorithm terminates. Further discussion of the proposed
scheme can be found in [12].

4.4.2. Parallel many origins - many destination problems
The many origins-one destination scheme that we developed in Section 4.3 can

be easily extended to the many origins - many destinations problem. Assume as in
Section 4.4.1 that we have r 1 origins and r 2 destinations. A straightforward
parallel scheme is to break up the problem into r 2 many origins - one destination
problems. We pick a destination from which we run the reverse algorithm. Once
all paths to that destination have been found then we pick a new destination. The
advantage is that we can use the same price vector generated by the previous run
with a different destination.

A more interesting scheme arises when we parallelize the serial scheme of
Section 4.4.1. The parallel scheme is similar to the one in Section 4.3. The only
differences are that now we maintain many disjoint reverse paths, we switch
between subphases 1 and 2 as described in Section 4.4.1, and we allow only one
side to set the price of its terminal (starting) node when an active forward and an
active reverse path are one arc apart (as discussed in Section 4.1). In particular:

L.C. Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247 1239

• We have r 1 forward paths, each starting at one of the r I origins, which change
according to the scheme in Section 4.3. Furthermore, if a reverse path is
intersected by a forward path then the reverse path is marked idle unless it is the
only active reverse path. A path becomes inactive if the shortest paths from its
origin to all destination nodes have been found.

• We have r 2 reverse paths, each ending at one of the r 2 destinations, which
change according to the equivalent reverse parallel auction with disjoint reverse
paths. Furthermore, if a reverse path is intersected by a forward path then the
reverse path is marked idle unless it is the only active reverse path. A reverse
path becomes inactive if the shortest paths between its destination and all origin
nodes have been found.

• When there is only one active reverse path, the corresponding many origins-one
destination problem is solved (in parallel). Upon completion, the idle reverse
paths become active again. The algorithm terminates when all paths are inactive.

We observe that this scheme is a composite of all the schemes that we have
analyzed so far. Its validity follows from the validity of the constituent schemes and
the fact that the corresponding serial algorithm terminates.

5. Implementations and computational results

In this section we describe the implementation and performance of the schemes
developed above on the Encore Multimax which is a shared memory machine. We
used a maximum of 20 processors. We implemented the following algorithms:
(1) Asynchronous Forward Algorithm for the all origins - one destination prob-

lem.
(2) Asynchronous Two-Sided Algorithm for the all origins - one destination

problem.
(3) Asynchronous Two-Sided Algorithm for the many origins - many destinations

problem.
We express special thanks to Professor David Castanon of Boston University for
providing a sample parallel auct ion/assignment code for the Encore Multimax,
which became the basis for the development of the parallel implementation of our
algorithms, as well as for his valuable insights and assistance in our implementa-
tions.

5.1. Asynchronous forward algorithm

We start with a list containing all the origins and our goal is to find their
distance to a particular node. Origins are taken out of that list as their paths
become inactive. The algorithm is implemented so as to reduce the synchroniza-
tion overhead by allowing each processor to compute prices without waiting for
other processors to complete their price updates. Some synchronization is needed
to ensure that prices are monotonically increasing and CS is maintained. Synchro-
nization occurs when a processor attempts an extension. In order to ensure that CS

1240 L. C. Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247

1 ooo7./oo

Fig. 4. Flow diagram of the parallel forward-only auction shortest paths algorithm for the all origin-one
destination problem.

is maintained, we must check whether the desired node is not part of another path
and that CS holds with equality with the current prices (rather than the out-of-date
prices that the bid was calculated with). This is done with the use of a lock on the
memory location containing the price of the node. When a path P extends to a
node i, the memory location of the price of i is locked by the path. Thus no other
path can extend to i or change the contents of that memory location. To reduce
contention for the locks, if a processor is unsuccessful in locking of the price of a
node, while working with a path P, it resets P to consist of just the origin, adds
the origin to the bottom of the list of active origins and picks another origin from
the list to work on. If the shortest distance from an origin to the destination is
found, the origin is taken out of the list of active origins permanently. Further-
more, a processor switches to a new origin after a certain number of iterations has
been performed on the current origin and the shortest path has not been found.
This is done because, heuristically, it is better to allow short paths to be found
first, facilitating the search for longer paths. The design of the asynchronous
forward algorithm is illustrated in Fig. 4.

5.2. Asynchronous two-sided algorithms

The implementation here also attempts to minimize the synchronization over-
head. The forward part of the algorithm is similar to the one above. However, we

Fig. 5 (facing page). Computational results for NETGEN graphs with 5000 nodes and 10000, 35000 and
50000 arcs respectively. The arc lengths range from 1 to 1000. We see that as the density of the graph
increases the factor of superiority of the forward-only auction over the two-sided algorithm increases.
The auction schemes are much faster than the parallel two-sided Dijkstra algorithm.

L.C. Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247 1241

4

c~
, -3 .=
cn

8 .

6,

2

o
0

NETGEN: 5000 nodes. 10000 arcs. arclengths (1-1000)

30-

4 - Two*Sided Auction

Fij°ks ~ TAUCs idned
~ 20

Two-Sided O
Aucbon
Forwarcl
Auction ~ 1 o

NUMBER OF PROCESSORS

i i = =
1 n ~n 30 0 1 0 2 0 ,u~En oF p~oc=__x_qo_ ~s

NETGEN: 5000 nodes. 35000 arcs. arclengths (1-1000)

40-

2 0 '
AuCtion

U .4- FORW~qO I= I0,

• 0
10 20 30

NUMBER OF PROCESSORS

NETGEN: 5000 nodes, 50000 arcs, arclengths (1-1000)

30

4- Two-Sided Auction
• 4- Forward Auction

Dijkstra Two-Sided

10 20 3 0

NUMBER OF PROCESSORS

12 40

10

4- Fonmdr¢l Auction

= K o,j,.t. ,wo- i ed
Auction

t"WO-81DF..D 11

0 0 20 30 0 10 20 30
NUMBER OF PROCESSORs

NUMBER OF PROCESSORS

1242 L. C. Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247

have additional synchronization, which arises from checking if the forward path is
one arc apart from the starting node of the reverse path. This is achieved by
locking the memory location that contains the price of the starting node of the
reverse path. When a forward path performs an auction iteration, it locks succes-
sively the prices of the nodes neighboring its terminal node. If the price of some
node is already locked, by the reverse path, the node enters a left-over list and its
price is checked once the reverse path has released the locked memory location.

5.3. Computational results

The algorithms were implemented and tested extensively. Three types of graphs
were used: Connected randomly generated graphs, pure grid graphs, and hybrid
graphs with a grid structure and additional randomly generated arcs satisfying the
Euclidean triangle inequality. The connected randomly generated graphs were
created with a public domain program called NETGEN [8]. The speedup was
measured against the running time of the fastest serial auction algorithm. We also
compared the running times of our algorithms with those of a parallel two-sided
binary heap Dijkstra algorithm which we also implemented. The serial two-sided
Dijkstra algorithm due to [9] is described in [5], p. 86, and the one-sided binary
heap implementation of the Dijkstra algorithm is described in [6] and [7]. We
implemented the two-sided Dijkstra algorithm based on the state-of-the-art binary
heap shortest path code given in [7]. Our implementation is straightforward: We
have r processors each running the two-sided serial binary heap Dijkstra algorithm
from a different origin. We also maintain a common list of origins as we did for the
action algorithms. Each time a shortest path is found, a new origin is picked and
the labels set by the reverse side of the Dijkstra algorithm are used to initialize the
algorithm. This is done in order to use information from previous runs of the
algorithm thus improving its efficiency.

The results of our testing are summarized as follows:
• For the randomly generated (NETGEN) graphs, the forward-only parallel algo-

rithm achieves an average maximum speedup of 5.5 for sparse graphs (see the
top graphs in Fig. 5 and 6), which progressively increases with the density of the
graph (middle graphs of Fig. 5 and 6) to reach an average speedup of 10 for
dense graphs (bottom graphs of Figs. 5 and 6). The maximum speedup is
achieved for 15 to 18 processors. The running time deteriorates as the number of
processors increases beyond a certain number, because of increased synchroniza-
tion overhead (more paths compete to acquire locks for the nodes). The
two-sided auction algorithm has an average maximum speedup of 5.3, which
varies little with the density of the graph and is achieved for 20 processors (Figs.

.Fig. 6 (facing page). Computat ional results for N E T G E N graphs with 2000 nodes and 4000, 7000 and
20000 arcs respectively. The arc lengths range from 1 to 100. We see that as the density of the graph
increases the factor of superiority of the forward-only auction over the two-sided algorithm increases.
The auction schemes are much faster than the parallel two-sided Dijkstra algorithm.

SUOSSBOOUd dO H381flRN
SUOSS3~OUd dO u31nnN

OC 0;~ 0 L OC O~ 0 ~. 0

• ~ ~ uo!lonv

pap!s.o~l p.j~S)t[) ~ "o
uo!~onv mP-~O.-I -e- \ ~ --

UOllOn V iDap!s..oMj. 4- I ~

/- OL

(00 L-L) sq~,fuaioJe 's=Je O000Z 'sapou O00Z :N:IgJ.3N
SlBOSSaOOUd=IOHaOI~IN SHO~;3OOtid dO U381WlN

0£ 0¢ OL 0 0£ O~ O~ 0
' ' ' 0 ' 0

P~P!S-OM.L P'J;S)I'i" ~
UOll",nv pJIl~J(3; ,.e. \

uo!~.::)nv pap!s-oM1 4- q \

L

-£

g

9

abVMUO~
O'-JalS.OM.l

uo!;onv

OC
SUOb'~330Ud dO U381~N

O~ OL
J

(0 0 L- L) sq~,fUelaJe 'soJe O00Z 'sepou O 0 0 Z :hBD I : IN

~lO~l~lOOUd dO klllllRrtN

pap!s_OM / ej].$~l!!O ~ 1 ~ ~

uoi],3n V pJIP, MJO-~
uo!~,onv pap!S-OM.L 4-

0
0

!

OC O~ OL

u o ! ~ : :) n ~

(00 L-L) sq16ualoJe 'soJe O00t~ 's;)pou O00Z :N:I~)I:IN

rn m
e-

• "0

~t'

• 0 e..
. C "a

f~e?. [Z P g l - l gg I (P66 I) Og gu?~nduto D lallVaV d / SV~laStaag "d'G 'SO~lVuaru~od "D "7

60-

Q .

e~
t u
t u

L.C. Polymenakos, D.P. Bertsekas /Parallel Computing 20 (1994) 1221-1247

NETGEN: 7000 nodes,1 ZOO0 arcs, arclengths (1-1000)

Two-sided AuctLon

FonNar0 Auct ion

"" n l Two-Sided

50,

40-
UI
a
Z

3 0 -

v • u l

I! 20-

S. 22 o

i i !

1 0 20 30
NUMBER OF PROCESSORS

1244

0 i i i

0 10 20 30

NUMBER OF PROCESSORS

Fig. 7. Computational results for a sparse NETGEN graph with 7000 nodes and 12000 arcs. The
arc-lengths range from 1 to 1000. This example shows clearly that for sparse graphs the two-sided
auction can outperform the forward-only. The auction schemes are much faster than the parallel
two-sided Dijkstra algorithm.

5 and 6). The synchronization overhead for the two-sided algorithm increases for
dense graphs since now the forward and the reverse paths are one arc apart
more often. This is why the forward-only algorithm has the edge for dense
graphs. For very sparse graphs, however, the two-sided algorithm performs
equally well or better (see the top graphs of Figs. 5 and 6; also Fig. 7). In all
cases the auction algorithms are about 5 times faster than the two-sided Dijkstra
algorithm.

• The pure grid graphs are among the most unfavorable for the auction algorithm
because of their large diameter. Parallelization, however, leads to great improve-
ment in performance. The forward-only parallel algorithm achieved maximum
speedup of around 9 and the two-sided parallel algorithm achieved maximum
speedup of around 7 (see Fig. 8). The two-sided Dijkstra algorithm is faster than
the parallel algorithms in all cases by a factor of 2 to 3 (Fig. 8, for 20 processors).
Parallelization does not seem to improve the running time of the Dijkstra
algorithm considerably whereas parallelization is very effective for the auction
algorithms.

• For the hybrid graphs we note that as we increase the number of additional
randomly generated arcs, the performance of the auction algorithms improves
(see Fig. 9). We also observe that although the serial algorithms have a poor
performance when compared to the two-sided Dijkstra algorithm, parallelization
is very effective and for 20 processors the auction schemes are 2 to 3 times faster
than the parallel two-sided Dijkstra.

The above results are illustrated in the figures that follow. Additional testing was
performed over different graphs of the same size in order to ensure that the

10

a. 6
D
C= u~
tu
O.

4-

2-

0

0

L.C. Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247 1245

SQUARE GRID: 2500 nodes, 7301 arcs, arclengths (1-100)

4 0 -

~ T 30'

20

~d ~ "~" Forward Auction 10

= l 0

10 20 3O 0
NUMBER OF PROCF.S,~RS

-1- Two-Sided Auction
.~. ForwarO Auction
-1- Oijkstra Two-Sided

i i i

1 0 2 0 30

NUMBER OF PROCESSORS

SQUARE GRID: 4900 nodes, 14421 arcs, arclengths (1-100)

10 - 140

8 ~ 120

100

6 4 ~ 80

~- Two-Sided
/ ~" -m- Auction

-e- Forwaro Auction 40 ,,

0 20-

~0 20 30 0

NUMBER OF PROCESSORS

-m- Two-Sided Auction
• 4- Forward Auction

, 4- Oijkstra Two-Sided

, i i

1 0 20 3O

NUMBER OF PROCESSORS

Fig. 8. Computational results for purely grid graphs with 50 nodes in each dimension (top) and 70 nodes
in each dimension (bottom). Each node has at most 3 outgoing arcs: one to each of the neighboring
nodes on the grid in each dimension and one across the diagonal on the grid. The total number of arcs
is 7301 (top) and 14421 (bottom) and the arc lengths range between 1 and 100. We see that
parallelization improves dramatically the performance of the auction algorithms.

speedups d e p e n d only on the size of the graph and not on a par t icular instance.

F u r t h e r m o r e the t imes r eco rded are the average of 3 runs since asynchronism

leads to var ia t ions in the running times. These variat ions were less than 10% of the
average running times.

1246 L.C. Polymenakos, D.P. Bertsekas /Parallel Computing 20 (1994) 1221-1247

SQUARE GRID: 1089 nodes, 6428 arcs, arclengths (1-1000)

4 ¸

4 I

3 '

|

Two-Sided Auction 1
Forward Auction

0 0] i
10 2O 3 0

NUMBER OF PROCESSORS

B. Two-Sided Auction

| e i

10 2 0 3O
NUMBER OF PROCESSORS

SQUARE GRID: 1089 nodes, 14538 arcs, arclengths (1-1000)

8 .Q. Two-Sided Auction
3 "~ A I. -e- Forward Auction

=6 =-

2 Two-Sided Auction

10 30 0 10 30
NUMBER OF PROCESSORS

NUMBER OF PROCESSORS

Fig. 9. Computational results for Euclidean grid graphs with additional arcs. For the problem on top we
have 2000 randomly generated additional arcs whereas for the problem on the bottom we have 10000
additional arcs. We see that parallelization improves dramatically the performance of the auction
algorithms and for 20 processors they outperform the two-sided parallel Dijkstra algorithm.

Finally we tested the many origin-many destinations scheme. We compared it to
the serial algorithm where we break up the problem in many single destination
subproblems maintaining the same price vector. For 10 origins - 10 destinations
problems, we achieved a maximum speedup of about 3 for N E T G E N graphs. The

L. C. Polymenakos, D.P. Bertsekas / Parallel Computing 20 (1994) 1221-1247 1247

reason the obse rved s p e e d u p is small is that the n u m b e r of o r ig in -des t ina t ion pa i rs
in our tes ts was small , which d id not al low tak ing full advan tage of the para l le l iza-
t ion.

In conclusion, the para l l e l vers ions of the auc t ion shor tes t pa th a lgor i thms
p roved very effect ive and seem to o u t p e r f o r m eff icient label se t t ing a lgor i thms.
T h e schemes tha t we deve loped are asynchronous and easy to implement . The
many origin - many des t ina t ions p rob l e m achieved reasonab ly good s p e e d u p when
para l l e l i zed .

References

[1] D.P. Bertsekas and D.A. Castanon, Parallel asynchronous implementations of the auction algo-
rithm, Parallel Comput. 1 (1991) 707-732.

[2] D.P. Bertsekas, S. Pallotino and M.G. ScuteUa, Polynomial auction algorithms for shortest paths,
Lab. for Information and Decision Systems Report LIDS-P-2107, May 1992, Mass. Inst. of Tech.,
Computat. Optimization and Applications, to appear.

[3] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods
(Prentice-Hall, Englewood Cliffs, NJ, 1989).

[4] D.P. Bertsekas, The auction algorithm for shortest paths, SIAM J. Optimization 1 (1991) 425-447.
[5] D.P. Bertsekas, Linear Network Optimization: Algorithms and Codes (M.I.T. Press, Cambridge,

MA, 1991).
[6] G. Gallo and S. Pallotino, Shortest path methods: A unified approach, Math. Programming Study

26 (1986) 38.
[7] G. Gallo and S. Pallotino, Shortest path algorithms, Annals Operat. Res. 7 (1988) 3-79.
[8] D. Klingman, A. Napier and J. Stutz, NETGEN - A program for generating large scale

(un)capacitated assignment, transportation and minimum cost flow network problems, Manage-
ment Sci. 20 (1974) 814-822.

[9] T. Nicholson, Finding the shortest route between two points in a network, Comput. J. 9 (1966)
275-280.

[10] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity
(Prentice-Hall, Englewood Cliffs, NJ, 1982).

[11] S. Pallotino and M.G, Scutella', Strongly polynomial algorithms for shortest paths, Dipartimento di
Informatica Report TR-19/91, University of Pisa, Italy, 1991.

[12] L.C. Polymenakos, Analysis of parallel asynchronous schemes for the auction shortest path
algorithm, Master Thesis, Lab. for Information and Decision Systems Report LIDS-TH-2048, July
1991, Mass. Inst. of Tech.

