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Abstract. We propose a unifying framework for polyhedral approximation in convex optimiza-
tion. It subsumes classical methods, such as cutting plane and simplicial decomposition, but also
includes new methods, and new versions/extensions of old methods, such as a simplicial decompo-
sition method for nondifferentiable optimization, and a new piecewise linear approximation method
for convex single commodity network flow problems. Our framework is based on an extended form
of monotropic programming, a broadly applicable model, which includes as special cases Fenchel du-
ality and Rockafellar’s monotropic programming, and is characterized by an elegant and symmetric
duality theory. Our algorithm combines flexibly outer and inner linearization of the cost function.
The linearization is progressively refined by using primal and dual differentiation, and the roles of
outer and inner linearization are reversed in a mathematically equivalent dual algorithm. We provide
convergence results for the general case where outer and inner linearization are combined in the same
algorithm.
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1. Introduction. We consider the problem

minimize

m∑

i=1

fi(xi) (1.1)

subject to (x1, . . . , xm) ∈ S,

where (x1, . . . , xm) is a vector in <n1+···+nm , with components xi ∈ <ni , i = 1, . . . ,m,
and

fi : <ni 7→ (−∞,∞] is a closed proper convex function for each i,1

S is a subspace of <n1+···+nm .

This problem has been studied recently by the first author in [Ber10], under the name
extended monotropic programming. It is an extension of Rockafellar’s monotropic
programming framework [Roc84], where each function fi is one-dimensional (ni = 1
for all i).
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1We will be using standard terminology of convex optimization, as given for example in textbooks
such as Rockafellar’s [Roc70], or the first author’s recent book [Ber09]. Thus a closed proper convex
function f : <n 7→ (−∞,∞] is one whose epigraph epi(f) = {(x,w) | f(x) ≤ w} is a nonempty closed
convex set. Its effective domain, dom(f) = {x | f(x) <∞}, is the nonempty projection of epi(f) on
the space of x. If epi(f) is a polyhedral set, then f is called polyhedral.
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Note that a variety of problems can be converted to the form (1.1). For example
the problem

minimize

m∑

i=1

fi(x)

subject to x ∈ X,

where fi : <n 7→ (−∞,∞] are closed proper convex functions, and X is a subspace of
<n, can be converted to the format (1.1). This can be done by introducing m copies
of x, i.e., auxiliary vectors zi ∈ <n that are constrained to be equal, and write the
problem as

minimize

m∑

i=1

fi(zi)

subject to (z1, . . . , zm) ∈ S,

where S =
{

(x, . . . , x) | x ∈ X
}
. A related case is the problem arising in the Fenchel

duality framework,

min
x∈<n

{
f1(x) + f2(Qx)

}
,

where Q is a matrix; it is equivalent to the following special case of problem (1.1):

min
(x1,x2)∈S

{
f1(x1) + f2(x2)

}
,

where S =
{

(x,Qx) | x ∈ <n
}
.

Generally, any problem involving linear constraints and a convex cost function
can be converted to a problem of the form (1.1). For example, the problem

minimize

m∑

i=1

fi(xi)

subject to Ax = b,

where A is a given matrix and b is a given vector, is equivalent to

minimize

m∑

i=1

fi(xi) + δZ(z)

subject to Ax− z = 0,

where z is a vector of artificial variables, and δZ is the indicator function of the set
Z = {z | z = b}. This is a problem of the form (1.1), where the constraint subspace is

S =
{

(x, z) | Ax− z = 0
}
.

Problems with nonlinear convex constraints, such as g(x) ≤ 0, may be converted
to the form (1.1) by introducing as additive terms in the cost corresponding indicator
functions, such as δ(x) = 0 for all x with g(x) ≤ 0 and δ(x) =∞ otherwise.

An important property of problem (1.1) is that it admits an elegant and symmetric
duality theory, an extension of Rockafellar’s monotropic programming duality (which
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in turn includes as special cases linear and quadratic programming duality). Our
purpose in this paper is to develop a polyhedral approximation framework for problem
(1.1), which is based on its favorable duality properties, as well as the generic duality
between outer and inner linearization. In particular, we develop a general algorithm
for problem (1.1) that contains as special cases the classical outer linearization (cutting
plane) and inner linearization (simplicial decomposition) methods, but also includes
new methods, and new versions/extensions of classical methods.

At a typical iteration, our algorithm solves an approximate version of problem
(1.1), where some of the functions fi are outer linearized, some are inner linearized,
and some are left intact. Thus, in our algorithm outer and inner linearization are
combined. Furthermore, their roles are reversed in the dual problem. At the end of
the iteration, the linearization is refined by using the duality properties of problem
(1.1).

There are several potential advantages of our method over classical cutting plane
and simplicial decomposition methods (as described for example in the books [BGL09,
Ber99, HiL93, Pol97]), depending on the problem’s structure:

(a) The refinement process may be faster, because at each iteration, multiple
cutting planes and break points are added (as many as one per function fi). As a
result, in a single iteration, a more refined approximation may result, compared with
classical methods where a single cutting plane or extreme point is added. Moreover,
when the component functions fi are one-dimensional, adding a cutting plane/break
point to the polyhedral approximation of fi can be very simple, as it requires a one-
dimensional differentiation or minimization for each fi.

(b) The approximation process may preserve some of the special structure of the
cost function and/or the constraint set. For example if the component functions fi
are one-dimensional, or have partially overlapping dependences, e.g.,

f(x1, . . . , xm) = f1(x1, x2) + f2(x2, x3) + · · ·+ fm−1(xm−1, xm) + fm(xm),

the minimization of f by the classical cutting plane method leads to general/unstru-
ctured linear programming problems. By contrast, using our algorithm with separate
outer or inner linearization of the component functions leads to linear programs with
special structure, which can be solved efficiently by specialized methods, such as
network flow algorithms (see Section 6.4), or interior point algorithms that can exploit
the sparsity structure of the problem.

In this paper, we place emphasis on the general conceptual framework for poly-
hedral approximation and its convergence analysis. We do not include computational
results, in part due to the fact that our algorithm contains several special cases of
interest in diverse problem settings, which must be tested separately for a thorough
algorithmic evaluation. However, it is clear that in at least two special cases, described
in detail in Section 6, our algorithm offers distinct advantages over existing methods.
These are:

(1) Simplicial decomposition methods for specially structured nondifferentiable
optimization problems, where simplicial decomposition can exploit well the problem’s
structure (e.g., multicommodity flow problems [CaG74, FlH95, PaY84, LaP92]).

(2) Nonlinear convex single-commodity network flow problems, where the ap-
proximating subproblems can be solved with extremely fast linear network flow algo-
rithms (see e.g., the textbooks [Roc84, AMO93, Ber98]), while the refinement of the
approximation involves one-dimensional differentiation, and can be carried out very
simply.
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The paper is organized as follows. In Section 2 we define outer and inner lineariza-
tions, and we review the conjugacy correspondence between them, in a form which is
suitable for our algorithmic purposes, while in Section 3 we review the duality the-
ory for our problem. In Sections 4 and 5 we describe our algorithm and analyze its
convergence properties, while in Section 6 we discuss various special cases, including
classical methods and some generalized versions, such as new simplicial decomposi-
tion methods for minimizing a convex extended real-valued and/or nondifferentiable
function f over a convex set C.

2. Outer and Inner Linearizations. In this section we define outer and inner
linearizations, and we formalize their conjugacy relation and other related properties.
An outer linearization of a closed proper convex function f : <n 7→ (−∞,∞] is defined
by a finite set of vectors Y such that for every ỹ ∈ Y , we have ỹ ∈ ∂f(xỹ) for some
xỹ ∈ <n.2 It is given by

f
Y

(x) = max
ỹ∈Y

{
f(xỹ) + (x− xỹ)′ỹ

}
, x ∈ <n, (2.1)

and it is illustrated in the left side of Fig. 2.1. The choices of xỹ such that ỹ ∈ ∂f(xỹ)
may not be unique, but result in the same function f

Y
(x): the epigraph of f

Y
is

determined by the supporting hyperplanes to the epigraph of f with normals defined
by ỹ ∈ Y , and the points of support xỹ are immaterial. In particular, the definition
(2.1) can be equivalently written as

f
Y

(x) = max
ỹ∈Y

{
ỹ′x− f?(ỹ)

}
, (2.2)

using the relation x′ỹ ỹ = f(xỹ) + f?(ỹ), which is implied by ỹ ∈ ∂f(xỹ).
Note that f

Y
(x) ≤ f(x) for all x, so, as is true for any outer approximation of

f , the conjugate (f
Y

)
?

satisfies (f
Y

)
?
(y) ≥ f?(y) for all y. Moreover, (f

Y
)
?

can be
described as an inner linearization of the conjugate f? of f , as illustrated in the right
side of Fig. 2.1. Indeed we have, using Eq. (2.2),

(f
Y

)
?
(y) = sup

x∈<n

{
y′x− f

Y
(x)
}

= sup
x∈<n

{
y′x−max

ỹ∈Y

{
ỹ′x− f?(ỹ)

}}

= sup
x∈<n, ξ∈<

ỹ′x−f?(ỹ)≤ξ, ỹ∈Y

{y′x− ξ}.

By linear programming duality, the optimal value of the linear program in (x, ξ) of
the preceding equation can be replaced by the dual optimal value, and we have with
a straightforward calculation

(f
Y

)
?
(y) =





inf ∑
ỹ∈Y αỹỹ=y,

∑
ỹ∈Y αỹ=1

αỹ≥0, ỹ∈Y

∑
ỹ∈Y αỹf

?(ỹ) if y ∈ conv
(
Y
)
,

∞ otherwise,
(2.3)

2We denote by ∂f(x) the set of all subgradients of f at x. By convention, ∂f(x) = ∅ for
x /∈ dom(f). We also denote by f? and f?? the conjugate of f and its double conjugate (conjugate
of f?). Two facts for a closed proper convex function f : <n 7→ (−∞,∞] that we will use often are:
(a) f = f?? (the Conjugacy Theorem, see e.g., [Ber09], Prop. 1.6.1), and (b) the three conditions
y ∈ ∂f(x), x ∈ ∂f?(y), and x′y = f(x) + f?(y) are equivalent (the Conjugate Subgradient Theorem,
see e.g., [Ber09], Prop. 5.4.3).
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Polyhedral Convexity Template

x0 x1 x2 x3 x4 f(x) X x

f(x0) + (x − x0)′g0

f(x1) + (x − x1)′g1

αx + (1 − α)y, 0 ≤ α ≤ 1

< 90◦

Level set
{
x | f(x) ≤ f∗ + αc2/2

}
Optimal solution set x0

X

xk − αkgk

xk+1 = PX(xk − αkgk)

x∗

xk

1
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> 0 > 0

Outer linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m − n − 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q∗ ≤ w∗

minimize w

subject to (0, w) ∈ M,

1
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1
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(f̄2,Xk)�(−λ)

x̃0 x̃k i < k h(x) Hk(x) Hk+1(x)

Slope: x̃i, i < k Slope: x̃k

C Slope λ0 Slope λ1 Slope λ2 f(x) f�(λ) λ F (x) F �(λ)

Slopes λ̃ ∈ Λ Break points λ̃ ∈ Λ Points xλ̃ ∈ X
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New break point x̃i
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1 (λ) f�

2 (−y) f�
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2 (−y) q(y)
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w∗ = min
x

�
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Y

(x) Set of Slopes Y Set of Break Points Y

(f̄2,Xk)�(−λ)

x̃0 x̃k i < k h(x) Hk(x) Hk+1(x)

Slope: x̃i, i < k Slope: x̃k

C Slope λ0 Slope λ1 Slope λ2 f(x) f�(λ) λ F (x) F �(λ)

Slopes λ̃ ∈ Λ Break points λ̃ ∈ Λ Points xλ̃ ∈ X

New slope λ̃i

New break point x̃i

Outer linearization F of f

Inner linearization F � of conjugate f�

Slope λ∗ Slope y −f�
1 (λ) f�

2 (−y) f�
1 (y) + f�

2 (−y) q(y)

Primal description: Values f(x) Dual description: Crossing points f�(y)

w∗ = min
x

�
f1(x) + f2(x)

�
= max

y

�
f�
1 (y) + f�

2 (−y)
�

= q∗

fx(d) d

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n, i = 1, . . . ,m

If s ∈ conv(S) then s = s1 + · · · + sm where

si ∈ conv(Si) for all i = 1, . . . ,m,

si ∈ Si for at least m − n − 1 indices i.

The sum of a large number of convex sets is almost convex

Nonconvexity of the sum is caused by a small number (n + 1) of sets

1

−gk gk+1 gk ∈ ∂f(x̂k) x̃k+1 x̂k x̂k+1 x0

∇f(x0) ∇f(x̂k) ∇f(x̂2) ∇f(x̂3) x0 x̃0 x̃1 x̃2 x̃3 x̂4 = x∗ C

x̂k+1 x̂k x̂3 x0 x̃1 x̃2 x̃3 x̂4 = x∗

Slope −∇f(x̂k) xỹ f
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1

Fig. 2.1: Illustration of the conjugate (f
Y

)
?

of an outer linearization f
Y

of a convex
function f defined by a finite set of “slopes” ỹ ∈ Y and corresponding points xỹ such
that ỹ ∈ ∂f(xỹ) for all ỹ ∈ Y . It is an inner linearization of the conjugate f? of f , a
piecewise linear function whose break points are ỹ ∈ Y .

where αỹ is the dual variable of the constraint ỹ′x− f?(ỹ) ≤ ξ.
From this formula, it can be seen that (f

Y
)
?

is a piecewise linear approximation
of f? with domain

dom
(
(f
Y

)
?)

= conv
(
Y
)
,

and “break points” at ỹ ∈ Y with values equal to the corresponding values of f?. In
particular, as indicated in Fig. 2.1, the epigraph of (f

Y
)
?

is the convex hull of the
union of the vertical halflines corresponding to ỹ ∈ Y :

epi
(
(f
Y

)
?)

= conv
(
∪ỹ∈Y

{
(ỹ, w) | f?(ỹ) ≤ w

})
.

In what follows, by an outer linearization of a closed proper convex function f
defined by a finite set Y , we will mean the function f

Y
given by Eq. (2.1), while by

an inner linearization of its conjugate f?, we will mean the function (f
Y

)
?

given by
Eq. (2.3). Note that not all sets Y define conjugate pairs of outer and inner lineariza-
tions via Eqs. (2.1) and (2.3), respectively, within our framework: it is necessary that
for every ỹ there exists xỹ such that ỹ ∈ ∂f(xỹ), or equivalently that ∂f?(ỹ) 6= ∅ for
all ỹ ∈ Y . By exchanging the roles of f and f?, we also obtain dual definitions and
statements. For example, for a finite set X to define an inner linearization f̄X of a
closed proper convex function f as well as an outer linearization (f̄X)

?
= (f?)

X
of its

conjugate f?, it is necessary that ∂f(x̃) 6= ∅ for all x̃ ∈ X.

3. Duality. In this section we review some aspects of the duality theory asso-
ciated with problem (1.1). In particular, we will show that a dual problem has the
form

minimize

m∑

i=1

f?i (λi) (3.1)

subject to λ = (λ1, . . . , λm) ∈ S⊥,
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where f?i is the conjugate of fi, and S⊥ is the orthogonal subspace of S. Thus the
dual problem has the same form as the primal problem (1.1). Furthermore, since the
functions fi are assumed closed proper and convex, we have f??i = fi, where f??i is the
conjugate of f?i , so when the dual problem is dualized, it yields the primal problem,
and the duality is fully symmetric.

To derive the dual problem, we introduce auxiliary vectors zi ∈ <ni and we
convert problem (1.1) to the equivalent form

minimize

m∑

i=1

fi(zi) (3.2)

subject to zi = xi, i = 1, . . . ,m, (x1, . . . , xm) ∈ S.

We then assign a multiplier vector λi ∈ <ni to the constraint zi = xi, thereby obtain-
ing the Lagrangian function

L(x1, . . . , xm, z1, . . . , zm, λ1, . . . , λm) =

m∑

i=1

(
fi(zi) + λ′i(xi − zi)

)
.

The dual function is

q(λ) = inf
(x1,...,xm)∈S, zi∈<ni

L(x1, . . . , xm, z1, . . . , zm, λ1, . . . , λm)

= inf
(x1,...,xm)∈S

m∑

i=1

λ′ixi +

m∑

i=1

inf
zi∈<ni

{
fi(zi)− λ′izi

}

=

{
−∑m

i=1 f
?
i (λi) if λ = (λ1, . . . , λm) ∈ S⊥,

−∞ otherwise,
(3.3)

where

f?i (λi) = sup
zi∈<ni

{
λ′izi − fi(zi)

}

is the conjugate of fi. Thus the dual problem is to maximize q(λ) over λ ∈ S⊥, which,
with a change of sign to convert maximization to minimization, takes the form (3.1).

We denote by fopt the optimal value of the primal problem (1.1) and by f?opt the
optimal value of the dual problem (3.1). We assume that strong duality holds (−f?opt =
fopt). By viewing the equivalent problem (3.2) as a convex programming problem
with equality constraints, we may apply standard theory and obtain conditions that
guarantee that −f?opt = fopt [for conditions beyond the standard, that exploit the
special structure of problem (1.1), we refer to [Ber10], which shows among others that
strong duality holds if each function fi is either real-valued or is polyhedral]. Also,
xopt and λopt form an optimal primal and dual solution pair if and only if they satisfy
the standard primal feasibility, dual feasibility, and Lagrangian optimality conditions
(see e.g., Prop. 5.1.5 of [Ber99]). The latter condition is satisfied if and only if xopti

attains the infimum in the equation

−f?i (λopti ) = inf
xi∈<ni

{
fi(xi)− x′iλopti

}
, i = 1, . . . ,m;

cf. Eq. (3.3). We thus obtain the following.
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Proposition 3.1 (Optimality Conditions). We have −∞ < −f?opt = fopt <∞,

and xopt = (xopt1 , . . . , xoptm ) and λopt = (λopt1 , . . . , λoptm ) are optimal primal and dual
solutions, respectively, of problem (1.1) if and only if

xopt ∈ S, λopt ∈ S⊥, xopti ∈ arg min
xi∈<ni

{
fi(xi)− x′iλopti

}
, i = 1, . . . ,m. (3.4)

Note that by the Conjugate Subgradient Theorem (Prop. 5.4.3 in [Ber09]), the
condition xopti ∈ arg minxi∈<ni

{
fi(xi)−x′iλopti

}
of the preceding proposition is equiv-

alent to either one of the following two subgradient conditions:

λopti ∈ ∂fi(xopti ), xopti ∈ ∂f?i (λopti ). (3.5)

Our polyhedral approximation algorithm, to be introduced shortly, involves the
solution of problems of the form (1.1), where fi are either the original problem func-
tions or polyhedral approximations thereof, and may require the simultaneous de-
termination of both primal and dual optimal solutions xopt and λopt. This can be
done in a number of ways, depending on the convenience afforded by the problem’s
character. One way is to use a specialized algorithm that takes advantage of the
problem’s special structure to simultaneously find a primal solution of the equivalent
problem (3.2) as well as a dual solution/multiplier. An example is when the functions
fi are themselves polyhedral (possibly through linearization), in which case problem
(3.2) is a linear program whose primal and dual optimal solutions can be obtained
by linear programming algorithms such as the simplex method. Another example,
which involves a favorable special structure, is monotropic programming and network
optimization (see the discussion of Section 6.4).

If we use an algorithm that finds only an optimal primal solution xopt, we may still
be able to obtain an optimal dual solution through the optimality conditions of Prop.
3.1. In particular, given xopt = (xopt1 , . . . , xoptm ), we may find λopt = (λopt1 , . . . , λoptm ),
either through the differentiation λopti ∈ ∂fi(xopti ) [cf. Eq. (3.5)] or through the equiv-
alent optimization

λopti ∈ arg max
λi∈<ni

{
λ′ix

opt
i − f?i (λi)

}
.

However, neither of these two conditions are sufficient for optimality of λopt because
the condition λopt ∈ S⊥ must also be satisfied as per Prop. 3.1 (unless each fi is
differentiable at xopti , in which case λopt is unique). Thus, the effectiveness of this
approach may depend on the special structure of the problem at hand (see Section
6.2 for an example).

4. Generalized Polyhedral Approximation. We will now introduce our al-
gorithm, referred to as generalized polyhedral approximation or GPA, whereby problem
(1.1) is approximated by using inner and/or outer linearization of some of the func-
tions fi. The optimal primal and dual solution pair of the approximate problem is
then used to construct more refined inner and outer linearizations. The algorithm
uses a fixed partition of the index set {1, . . . ,m},

{1, . . . ,m} = I ∪ I ∪ Ī ,

which determines the functions fi that are outer approximated (set I) and the func-
tions fi that are inner approximated (set Ī). We assume that at least one of the sets
I and Ī is nonempty.
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For i ∈ I, given a finite set Λi such that ∂f?i (λ̃) 6= ∅ for all λ̃ ∈ Λi, we consider
the outer linearization of fi corresponding to Λi, and denote it by

f
i,Λi

(xi) = max
λ̃∈Λi

{
λ̃′xi − f?i (λ̃)

}
.

Equivalently, as noted in Section 2 [cf. Eqs. (2.1) and (2.2)], we have

f
i,Λi

(xi) = max
λ̃∈Λi

{
fi(xλ̃) + (xi − xλ̃)′λ̃

}
,

where for each λ̃ ∈ Λi, xλ̃ is such that λ̃ ∈ ∂fi(xλ̃).
For i ∈ Ī, given a finite set Xi such that ∂fi(x̃) 6= ∅ for all x̃ ∈ Xi, we consider

the inner linearization of fi corresponding to Xi, and denote it by f̄i,Xi(xi):

f̄i,Xi(xi) =

{
min{αx̃|x̃∈Xi}∈C(xi,Xi)

∑
x̃∈Xi αx̃fi(x̃) if xi ∈ conv(Xi),

∞ otherwise,

where C(xi, Xi) is the set of all vectors with components αx̃, x̃ ∈ Xi, satisfying

∑

x̃∈Xi
αx̃x̃ = xi,

∑

x̃∈Xi
αx̃ = 1, αx̃ ≥ 0, ∀ x̃ ∈ Xi,

[cf. Eq. (2.3)]. As noted in Section 2, this is the function whose epigraph is the convex
hull of the union of the halflines

{
(x̃, w) | fi(x̃) ≤ w

}
, x̃ ∈ Xi (cf. Fig. 2.1).

At the typical iteration of the algorithm, we have for each i ∈ I, a finite set Λi
such that ∂f?i (λ̃) 6= ∅ for all λ̃ ∈ Λi, and for each i ∈ Ī, a finite set Xi such that
∂fi(x̃) 6= ∅ for all x̃ ∈ Xi. The iteration is as follows.

Typical Iteration of GPA Algorithm:

Step 1: (Approximate Problem Solution) Find a primal and dual optimal

solution pair (x̂1, . . . , x̂m, λ̂1, . . . , λ̂m) of the problem

minimize
∑

i∈I
fi(xi) +

∑

i∈I
f
i,Λi

(xi) +
∑

i∈Ī
f̄i,Xi(xi) (4.1)

subject to (x1, . . . , xm) ∈ S,

where f
i,Λi

and f̄i,Xi are the outer and inner linearizations of fi corresponding to

Xi and Λi, respectively.

Step 2: (Enlargement and Test for Termination) Enlarge the sets Xi and
Λi using the following differentiation process (see Fig. 4.1):

(a) For i ∈ I, we add λ̃i to the corresponding set Λi, where λ̃i ∈ ∂fi(x̂i).
(b) For i ∈ Ī, we add x̃i to the corresponding set Xi, where x̃i ∈ ∂f?i (λ̂i).

If there is no strict enlargement, i.e., for all i ∈ I we have λ̃i ∈ Λi, and for all
i ∈ Ī we have x̃i ∈ Xi, the algorithm terminates. Otherwise, we proceed to the
next iteration, using the enlarged sets Λi and Xi.

We will show shortly that when the algorithm terminates, then

(x̂1, . . . , x̂m, λ̂1, . . . , λ̂m)
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h2(−y) h̄2(−y) − ŷk Const. − h1(y) − c ε2

2
conv(Xk)

x∗ x̂k x̃k+1 x̂k+1 gk gk+1

Slope: x̃k+1 Slope: x̃ i ≤ k xk+1 ∇f(xk) xk

X x0 x1 x2 x3 x̂4 x0 x̃1 x̃2 x̃3 x̃4 x4 = x∗ ∇f(x0) ∇f(x1) ∇f(x2) ∇f(x3)

Level sets of f

max∑
N

i=1
wixi≤W

xi=0 or 1

N∑

i=1

pixi

Subgradients Template

1

f(x0) + ỹ′
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fi(xi) ŷi x̂i f
i,Yi

(xi)

f(x0) + y′
0(x − x0)

f(x1) + y′
1(x − x1)

f(xy) + y′(x − xy)

f(x1) + (x − x1)′y1
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Fig. 4.1: Illustration of the enlargement step in the polyhedral approximation method,
after we obtain a primal and dual optimal solution pair (x̂1, . . . , x̂m, λ̂1, . . . , λ̂m). The
enlargement step on the left [finding λ̃i with λ̃i ∈ ∂fi(x̂i)] is also equivalent to finding
λ̃i satisfying x̂i ∈ ∂f?i (λ̃i) [cf. the Conjugate Subgradient Theorem, (Prop. 5.4.3 in

[Ber09])]. The enlargement step on the right [finding x̃i with x̃i ∈ ∂f?i (λ̂i)] is also

equivalent to finding x̃i satisfying λ̂i ∈ ∂fi(x̃i).

is a primal and dual optimal solution pair of the original problem. Note that we im-
plicitly assume that at each iteration, there exists a primal and dual optimal solution
pair of problem (4.1). Furthermore, we assume that the enlargement step can be

carried out, i.e., that ∂fi(x̂i) 6= ∅ for all i ∈ I and ∂f?i (λ̂i) 6= ∅ for all i ∈ Ī. Sufficient
assumptions may need to be imposed on the problem to guarantee that this is so.

There are two prerequisites for the method to be effective:

(1) The (partially) linearized problem (4.1) must be easier to solve than the
original problem (1.1). For example, problem (4.1) may be a linear program, while
the original may be nonlinear (cf. the cutting plane method, to be discussed in Sec-
tion 6.1); or it may effectively have much smaller dimension than the original (cf. the
simplicial decomposition method, to be discussed in Section 6.2).

(2) Finding the enlargement vectors (λ̃i for i ∈ I, and x̃i for i ∈ Ī) must not be

too difficult. Note that if the differentiation λ̃i ∈ ∂fi(x̂i) for i ∈ I, and x̃i ∈ ∂f?i (λ̂i)
for i ∈ Ī is not convenient for some of the functions (e.g., because some of the fi
or the f?i are not available in closed form), we may calculate λ̃i and/or x̃i via the
equivalent relations

x̂i ∈ ∂f?i (λ̃i), λ̂i ∈ ∂fi(x̃i);

(cf. Prop. 5.4.3 of [Ber09]). This amounts to solving optimization problems. For

example, finding x̃i such that λ̂i ∈ ∂fi(x̃i) is equivalent to solving the problem

maximize
{
λ̂′ixi − fi(xi)

}
(4.2)

subject to xi ∈ <ni ,

and may be nontrivial (cf. Fig. 4.1).

The facility of solving the linearized problem (4.1) and carrying out the subsequent
enlargement step may guide the choice of functions that are inner or outer linearized.
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We note that in view of the symmetry of duality, the GPA algorithm may be
applied to the dual of problem (1.1):

minimize

m∑

i=1

f?i (λi) (4.3)

subject to (λ1, . . . , λm) ∈ S⊥,

where f?i is the conjugate of fi. Then the inner (or outer) linearized index set Ī of the
primal becomes the outer (or inner, respectively) linearized index set of the dual. At
each iteration, the algorithm solves the dual of the approximate version of problem
(4.1),

minimize
∑

i∈I
f?i (λi) +

∑

i∈I

(
f
i,Λi

)?
(λi) +

∑

i∈Ī

(
f̄i,Xi

)?
(λi) (4.4)

subject to (λ1, . . . , λm) ∈ S⊥,

where the outer (or inner) linearization of f?i is the conjugate of the inner (or respec-
tively, outer) linearization of fi (cf. Section 2). The algorithm produces mathemat-
ically identical results when applied to the primal or the dual, as long as the roles
of outer and inner linearization are appropriately reversed. The choice of whether
to apply the algorithm in its primal or its dual form is simply a matter of whether
calculations with fi or with their conjugates f?i are more or less convenient. In fact,
when the algorithm makes use of both the primal solution (x̂1, . . . , x̂m) and the dual

solution (λ̂1, . . . , λ̂m) in the enlargement step, the question of whether the starting
point is the primal or the dual becomes moot: it is best to view the algorithm as ap-
plied to the pair of primal and dual problems, without designation of which is primal
and which is dual.

Now let us show the optimality of the primal and dual solution pair obtained
upon termination of the algorithm. We will use two basic properties of outer approx-
imations. The first is that for a closed proper convex function f and any x,

f ≤ f, f(x) = f(x) =⇒ ∂f(x) ⊂ ∂f(x). (4.5)

The second is that for an outer linearization f
Λ

of f and any x,

λ̃ ∈ Λ, λ̃ ∈ ∂f(x) =⇒ f
Λ

(x) = f(x). (4.6)

The first property follows from the definition of subgradients, whereas the second
property follows from the definition of f

Λ
.

Proposition 4.1 (Optimality at Termination). If the GPA algorithm termi-
nates at some iteration, the corresponding primal and dual solutions, (x̂1, . . . , x̂m)

and (λ̂1, . . . , λ̂m), form a primal and dual optimal solution pair of problem (1.1).

Proof. From Prop. 3.1, and the definition of (x̂1, . . . , x̂m) and (λ̂1, . . . , λ̂m) as a
primal and dual optimal solution pair of the approximate problem (4.1), we have

(x̂1, . . . , x̂m) ∈ S, (λ̂1, . . . , λ̂m) ∈ S⊥.

We will show that upon termination, we have for all i

λ̂i ∈ ∂fi(x̂i), (4.7)
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which by Prop. 3.1 implies the desired conclusion. Since (x̂1, . . . , x̂m) and (λ̂1, . . . , λ̂m)
are a primal and dual optimal solution pair of problem (4.1), Eq. (4.7) holds for all
i /∈ I ∪ Ī (cf. Prop. 3.1). We will complete the proof by showing that it holds for all
i ∈ I (the proof for i ∈ Ī follows by a dual argument).

Indeed, let us fix i ∈ I and let λ̃i ∈ ∂fi(x̂i) be the vector generated by the
enlargement step upon termination. We must have λ̃i ∈ Λi, since there is no strict
enlargement upon termination. Since f

i,Λi
is an outer linearization of fi, by Eq. (4.6),

the fact λ̃i ∈ Λi, λ̃i ∈ ∂fi(x̂i) implies

f
i,Λi

(x̂i) = fi(x̂i),

which in turn implies by Eq. (4.5) that

∂f
i,Λi

(x̂i) ⊂ ∂fi(x̂i).

By Prop. 3.1, we also have λ̂i ∈ ∂f i,Λi(x̂i), so λ̂i ∈ ∂fi(x̂i).

5. Convergence Analysis. Generally, convergence results for polyhedral ap-
proximation methods, such as the classical cutting plane methods, are of two types:
finite convergence results that apply to cases where the original problem has polyhe-
dral structure, and asymptotic convergence results that apply to nonpolyhedral cases.
Our subsequent convergence results conform to these two types.

We first derive a finite convergence result, assuming that the problem has a certain
polyhedral structure, and care is taken to ensure that the corresponding enlargement
vectors λ̃i are chosen from a finite set of extreme points, so there can be at most a
finite number of strict enlargements. We assume that:

(a) All outer linearized functions fi are real-valued and polyhedral, i.e., for all
i ∈ I, fi is of the form

fi(xi) = max
`∈Li
{a′i`xi + bi`}

for some finite sets of vectors {ai` | ` ∈ Li} and scalars {bi` | ` ∈ Li}.
(b) The conjugates f?i of all inner linearized functions are real-valued and poly-

hedral, i.e., for all i ∈ Ī, f?i is of the form

f?i (λi) = max
`∈Mi

{c′i`λi + di`}

for some finite sets of vectors {ci` | ` ∈Mi} and scalars {di` | ` ∈Mi}. (This condition
is satisfied if and only if fi is a polyhedral function with compact effective domain.)

(c) The vectors λ̃i and x̃i added to the polyhedral approximations at each iter-
ation correspond to the hyperplanes defining the corresponding functions fi and f?i ,
i.e., λ̃i ∈ {ai` | ` ∈ Li} and x̃i ∈ {ci` | ` ∈Mi}.

Let us also recall that in addition to the preceding conditions, we have assumed
that the steps of the algorithm can be executed, and that in particular, a primal and
dual optimal solution pair of problem (4.1) can be found at each iteration.

Proposition 5.1 (Finite Termination in the Polyhedral Case). Under the pre-
ceding polyhedral assumptions the GPA algorithm terminates after a finite number of
iterations with a primal and dual optimal solution pair of problem (1.1).
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Proof. At each iteration there are two possibilities: either the algorithm termi-
nates and by Prop. 4.1, (x̂, λ̂) is an optimal primal and dual pair for problem (1.1),
or the approximation of one of the functions fi, i ∈ I ∪ Ī, will be refined/enlarged
strictly. Since the vectors added to Λi, i ∈ I, and Xi, i ∈ Ī, belong to the finite sets
{ai` | ` ∈ Li} and {ci` | ` ∈ Mi}, respectively, there can be only a finite number of
strict enlargements, and convergence in a finite number of iterations follows.

5.1. Asymptotic Convergence Analysis: Pure Cases. We will now derive
asymptotic convergence results for nonpolyhedral problem cases. We will first con-
sider the cases of pure outer linearization and pure inner linearization, which are
comparatively simple. We will subsequently discuss the mixed case, which is more
complex.

Proposition 5.2. Consider the pure outer linearization case of the GPA algo-
rithm (Ī = ∅), and let x̂k be the solution of the approximate primal problem at the kth
iteration, and λ̃ki , i ∈ I, be the vectors generated at the corresponding enlargement
step. Then if {x̂k}K is a convergent subsequence such that the sequences {λ̃ki }K, i ∈ I,
are bounded, the limit of {x̂k}K is primal optimal.

Proof. For i ∈ I, let f
i,Λki

be the outer linearization of fi at the kth iteration.

For all x ∈ S, and k, ` with ` < k, we have

∑

i/∈I
fi(x̂

k
i ) +

∑

i∈I

(
fi(x̂

`
i) + (x̂ki − x̂`i)′λ̃`i

)
≤
∑

i/∈I
fi(x̂

k
i ) +

∑

i∈I
f
i,Λki

(x̂ki ) ≤
∑̀

i=1

fi(xi),

where the first inequality follows from the definition of f
i,Λki

, and the second inequal-

ity follows from the optimality of x̂k for the kth approximate problem. Consider a
subsequence {x̂k}K that converges to x̄ ∈ S and is such that the sequences {λ̃ki }K,
i ∈ I, are bounded. We will show that x̄ is optimal. Indeed, taking limit as ` → ∞,
k ∈ K, ` ∈ K, ` < k, in the preceding relation, and using the closedness of fi, which
implies that

fi(x̄i) ≤ lim inf
k→∞, k∈K

fi(x̂
k
i ), ∀ i,

we obtain that
∑m
i=1 fi(x̄i) ≤

∑m
i=1 fi(xi) for all x ∈ S, so x̄ is optimal.

Exchanging the roles of primal and dual, we obtain a convergence result for the
pure inner linearization case.

Proposition 5.3. Consider the pure inner linearization case of the GPA algo-
rithm (I = ∅), and let λ̂k be the solution of the approximate dual problem at the kth
iteration, and x̃ki , i ∈ Ī, be the vectors generated at the corresponding enlargement

step. Then if {λ̂k}K is a convergent subsequence such that the sequences {x̃ki }K, i ∈ Ī,

are bounded, the limit of {λ̂k}K is dual optimal.

5.2. Asymptotic Convergence Analysis: Mixed Case. We will next con-
sider the mixed case, where some of the component functions are outer linearized
while some others are inner linearized. We will establish a convergence result for
GPA under some reasonable assumptions. We first show a general result about outer
approximations of convex functions.
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Proposition 5.4. Let g : <n 7→ (−∞,∞] be a closed proper convex function,
and let {x̂k} and {λ̃k} be sequences such that λ̃k ∈ ∂g(x̂k) for all k ≥ 0. Let gk, k ≥ 1,
be outer approximations of g such that

g(x) ≥ gk(x) ≥ max
i=0,...,k−1

{
g(x̂i) + (x− x̂i)′λ̃i

}
, ∀ x ∈ <n, k = 1, . . . . (5.1)

Then if {x̂k}K is a subsequence that converges to some x̄ with {λ̃k}K being bounded,
we have

g(x̄) = lim
k→∞, k∈K

g(x̂k) = lim
k→∞, k∈K

gk(x̂k).

Proof. Since λ̃k ∈ ∂g(x̂k), we have

g(x̂k) + (x̄− x̂k)′λ̃k ≤ g(x̄), k = 0, 1, . . . .

Taking limsup of the left-hand side along K, and using the boundedness of λ̃k, k ∈ K,
we have

lim sup
k→∞, k∈K

g(x̂k) ≤ g(x̄),

and since by the closedness of g, we also have

lim inf
k→∞, k∈K

g(x̂k) ≥ g(x̄),

it follows that

g(x̄) = lim
k→∞, k∈K

g(x̂k). (5.2)

Combining this equation with the fact gk ≤ g, we obtain

lim sup
k→∞, k∈K

gk(x̂k) ≤ lim sup
k→∞, k∈K

g(x̂k) = g(x̄). (5.3)

Using Eq. (5.1), we also have for any k, ` ∈ K such that k > `,

gk(x̂k) ≥ g(x̂`) + (x̂k − x̂`)′λ̃`.

By taking liminf of both sides along K and using the boundedness of λ̃`, ` ∈ K and
Eq. (5.2), we have

lim inf
k→∞, k∈K

gk(x̂k) ≥ lim inf
`→∞, `∈K

g(x̂`) = g(x̄). (5.4)

From Eqs. (5.3) and (5.4), we obtain g(x̄) = limk→∞, k∈K gk(x̂k).

We now relate the optimal value and the solutions of an inner and outer-approxi-
mated problem to those of the original problem, and we characterize these relations
in terms of the local function approximation errors of the approximate problem. This
result will then be combined with the preceding proposition to establish asymptotic
convergence of the GPA algorithm. For notational simplicity, let us consider just two
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component functions g1 and g2, with outer approximation of g1 and inner approxima-
tion of g2. We denote by v∗ the corresponding optimal value, and assume that there
is no duality gap:

v∗ = inf
(y1,y2)∈S

{
g1(y1) + g2(y2)

}
= sup

(µ1,µ2)∈S⊥

{
− g?1(µ1)− g?2(µ2)

}
.

The analysis covers the case with more than two component functions, as will be seen
shortly.

Proposition 5.5. Let v be the optimal value of an approximate problem

inf
(y1,y2)∈S

{
g

1
(y1) + ḡ2(y2)

}
,

where g
1

: <n1 7→ (−∞,∞] and ḡ2 : <n2 7→ (−∞,∞] are closed proper convex
functions such that g

1
(y1) ≤ g1(y1) for all y1 and g2(y2) ≤ ḡ2(y2) for all y2. Assume

that the approximate problem has no duality gap, and let (ŷ1, ŷ2, µ̂1, µ̂2) be a primal
and dual optimal solution pair. Then

ḡ?2(µ̂2)− g?2(µ̂2) ≤ v∗ − v ≤ g1(ŷ1)− g
1
(ŷ1), (5.5)

and (ŷ1, ŷ2) and (µ̂1, µ̂2) are ε-optimal for the original primal and dual problems,
respectively, with

ε =
(
g1(ŷ1)− g

1
(ŷ1)

)
+
(
g?2(µ̂2)− ḡ?2(µ̂2)

)
.

Proof. Since (ŷ1, ŷ2) ∈ S and (µ̂1, µ̂2) ∈ S⊥, we have

−g?1(µ̂1)− g?2(µ̂2) ≤ v∗ ≤ g1(ŷ1) + g2(ŷ2).

Using g2 ≤ ḡ2 and g?1 ≤ g?1 (since g
1
≤ g1) as well as the optimality of (ŷ1, ŷ2, µ̂1, µ̂2)

for the approximate problem, we also have

g1(ŷ1) + g2(ŷ2) ≤ g1(ŷ1) + ḡ2(ŷ2)

= g
1
(ŷ1) + ḡ2(ŷ2) + g1(ŷ1)− g

1
(ŷ1)

= v + g1(ŷ1)− g
1
(ŷ1),

−g?1(µ̂1)− g?2(µ̂2) ≥ −g?
1
(µ̂1)− g?2(µ̂2)

= −g?
1
(µ̂1)− ḡ?2(µ̂2) + ḡ?2(µ̂2)− g?2(µ̂2)

= v + ḡ?2(µ̂2)− g?2(µ̂2).

Combining the preceding three relations, we obtain Eq. (5.5). Combining Eq. (5.5)
with the last two relations, we obtain

g1(ŷ1) + g2(ŷ2) ≤ v∗ + v − v∗ + g1(ŷ1)− g
1
(ŷ1)

≤ v∗ +
(
g?2(µ̂2)− ḡ?2(µ̂2)

)
+
(
g1(ŷ1)− g

1
(ŷ1)

)
,

−g?1(µ̂1)− g?2(µ̂2) ≥ v∗ + v − v∗ + ḡ?2(µ̂2)− g?2(µ̂2)

≥ v∗ −
(
g1(ŷ1)− g

1
(ŷ1)

)
−
(
g?2(µ̂2)− ḡ?2(µ̂2)

)
,

which implies that (ŷ1, ŷ2) and (µ̂1, µ̂2) are ε-optimal for the original primal and dual
problems, respectively.
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We now specialize the preceding proposition to deal with the GPA algorithm in
the general case with multiple component functions, and with both inner and outer
linearization. Let y1 = (xi)i∈I , y2 = (xi)i∈I∪Ī , and

g1(y1) =
∑

i∈I
fi(xi), g2(y2) =

∑

i∈I
fi(xi) +

∑

i∈Ī
fi(xi). (5.6)

For the dual variables, let µ1 = (λi)i∈I , µ2 = (λi)i∈I∪Ī . Then the original primal
problem corresponds to inf(y1,y2)∈S

{
g1(y1) + g2(y2)

}
, and the dual problem corre-

sponds to inf(µ1,µ2)∈S⊥
{
g?1(µ1) + g?2(µ2)

}
.

Consider the approximate problem

inf
(x1,...,xm)∈S




∑

i∈I
f
i,Λki

(xi) +
∑

i∈Ī
f̄i,Xki (xi) +

∑

i∈I
fi(xi)





at the kth iteration of the GPA algorithm, where f
i,Λki

and f̄i,Xki are the outer and

inner linearizations of fi for i ∈ I and i ∈ Ī, respectively, at the kth iteration. We
can write this problem as

inf
(y1,y2)∈S

{
g

1,k
(y1) + ḡ2,k(y2)

}
,

where

g
1,k

(y1) =
∑

i∈I
f
i,Λki

(xi), ḡ2,k(y2) =
∑

i∈Ī
f̄i,Xki (xi) +

∑

i∈I
fi(xi) (5.7)

are outer and inner approximations of g1 and g2, respectively. Let (x̂k, λ̂k) be a primal
and dual optimal solution pair of the approximate problem, and (ŷk1 , ŷ

k
2 , µ̂

k
1 , µ̂

k
2) be

the same pair expressed in terms of the components yi, µi, i = 1, 2. Then,

g1(ŷk1 )− g
1,k

(ŷk1 ) =
∑

i∈I

(
fi(x̂

k
i )− f

i,Λki
(x̂ki )

)
, (5.8)

ḡ?2,k(µ̂k2)− g?2(µ̂k2) =
∑

i∈Ī

((
f̄i,Xki

)?
(λ̂ki )− f?i (λ̂ki )

)
. (5.9)

By Prop. 5.5, with vk being the optimal value of the kth approximate problem and
with v∗ = fopt, we have

ḡ?2,k(µ̂k2)− g?2(µ̂k2) ≤ fopt − vk ≤ g1(ŷk1 )− g
1,k

(ŷk1 ),

i.e.,

∑

i∈Ī

((
f̄i,Xki

)?
(λ̂ki )− f?i (λ̂ki )

)
≤ fopt − vk ≤

∑

i∈I

(
fi(x̂

k
i )− f

i,Λki
(x̂ki )

)
, (5.10)

and (ŷk1 , ŷ
k
2 ) and (µ̂k1 , µ̂

k
2) (equivalently, x̂k and λ̂k) are εk-optimal for the original

primal and dual problems, respectively, with

εk =
(
g1(ŷk1 )− g

1,k
(ŷk1 )

)
+
(
g?2(µ̂k2)− ḡ?2,k(µ̂k2)

)

=
∑

i∈I

(
fi(x̂

k
i )− f

i,Λki
(x̂ki )

)
+
∑

i∈Ī

(
f?i (λ̂ki )−

(
f̄i,Xki

)?
(λ̂ki )

)
. (5.11)
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Equations (5.10)-(5.11) show that for the approximate problem at an iteration of
the GPA algorithm, the suboptimality of its solutions and the difference between its
optimal value and fopt can be bounded in terms of the function approximation errors
at the solutions generated by the GPA algorithm.3

We will now derive an asymptotic convergence result for the GPA algorithm in the
general case, by combining Eqs. (5.10)-(5.11) with properties of outer approximations
and Prop. 5.4 in particular. Here we implicitly assume that primal and dual solutions
of the approximate problems exist, and that the enlargement steps can be carried out.

Proposition 5.6. Consider the GPA algorithm. Let (x̂k, λ̂k) be a primal and
dual optimal solution pair of the approximate problem at the kth iteration, and let
λ̃ki , i ∈ I and x̃ki , i ∈ Ī be the vectors generated at the corresponding enlargement step.

Suppose that there exist convergent subsequences
{
x̂ki
}
K, i ∈ I,

{
λ̂ki
}
K, i ∈ Ī, such

that the sequences
{
λ̃ki
}
K, i ∈ I,

{
x̃ki
}
K, i ∈ Ī, are bounded. Then:

(a) The subsequence
{

(x̂k, λ̂k)
}
K is asymptotically optimal in the sense that

lim
k→∞, k∈K

m∑

i=1

fi(x̂
k
i ) = fopt, lim

k→∞, k∈K

m∑

i=1

f?i (λ̂ki ) = −fopt.

In particular, any limit point of the sequence
{

(x̂k, λ̂k)
}
K is a primal and dual optimal

solution pair of the original problem.
(b) The sequence of optimal values vk of the approximate problems converges to

the optimal value fopt as k →∞.

Proof. (a) We use the definitions of (y1, y2, µ1, µ2), (ŷk1 , ŷ
k
2 , µ̂

k
1 , µ̂

k
2), and g1, g2,

ḡ1,k, g2,k
as given in the discussion preceding the proposition. Let vk be the opti-

mal value of the kth approximate problem and let v∗ = fopt. As shown earlier, by
Prop. 5.5, we have

ḡ?2,k(µ̂k2)− g?2(µ̂k2) ≤ v∗ − vk ≤ g1(ŷk1 )− g
1,k

(ŷk1 ), k = 0, 1, . . . , (5.12)

and (ŷk1 , ŷ
k
2 ) and (µ̂k1 , µ̂

k
2) are εk-optimal for the original primal and dual problems,

respectively, with

εk =
(
g1(ŷk1 )− g

1,k
(ŷk1 )

)
+
(
g?2(µ̂k2)− ḡ?2,k(µ̂k2)

)
. (5.13)

3It is also insightful to express the error in approximating the conjugates, f?i (λ̂ki )−
(
f̄i,Xki

)?
(λ̂ki ),

i ∈ Ī, as the error in approximating the respective functions fi. We have for i ∈ Ī,

f̄i,Xki
(x̂ki ) +

(
f̄i,Xki

)?
(λ̂ki ) = λ̂k

′
i x̂

k
i , fi(x̃

k
i ) + f?i (λ̂ki ) = λ̂k

′
i x̃

k
i ,

where x̃ki is the enlargement vector at the kth iteration, so by subtracting the first relation from the
second,

f?i (λ̂ki )−
(
f̄i,Xki

)?
(λ̂ki ) = f̄i,Xki

(x̂ki )−
(
fi(x̃

k
i ) + (x̂ki − x̃ki )′λ̂ki

)
=

(
f̄i,Xki

(x̂ki )− fi(x̂ki )
)

+
(
fi(x̂

k
i )− fi(x̃ki )− (x̂ki − x̃ki )′λ̂ki

)
.

The right-hand side involves the sum of two function approximation error terms at x̂ki : the first
term is the inner linearization error, and the second term is the linearization error obtained by using
fi(x̃

k
i ) and the single subgradient λ̂ki ∈ ∂fi(x̃ki ). Thus the estimates of fopt and εk in Eqs. (5.10)

and (5.11) can be expressed solely in terms of the inner/outer approximation errors of fi as well as
the linearization errors at various points.
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Under the stated assumptions, we have by Prop. 5.4,

lim
k→∞, k∈K

f
i,Λki

(x̂ki ) = lim
k→∞, k∈K

fi(x̂
k
i ), i ∈ I,

lim
k→∞, k∈K

(
f̄i,Xki

)?
(λ̂ki ) = lim

k→∞, k∈K
f?i (λ̂ki ), i ∈ Ī ,

where we obtained the first relation by applying Prop. 5.4 to fi and its outer lin-
earizations f

i,Λki
, and the second relation by applying Prop. 5.4 to f?i and its outer

linearizations
(
f̄i,Xki

)?
. Using the definitions of g1, g2, ḡ1,k, g2,k

[cf. Eqs. (5.6)-(5.9)],

this implies

lim
k→∞, k∈K

(
g1(ŷk1 )− g

1,k
(ŷk1 )

)
= lim
k→∞, k∈K

∑

i∈I

(
fi(x̂

k
i )− f

i,Λki
(x̂ki )

)
= 0,

lim
k→∞, k∈K

(
g?2(µ̂k2)− ḡ?2,k(µ̂k2)

)
= lim
k→∞, k∈K

∑

i∈Ī

(
f?i (λ̂ki )−

(
f̄i,Xki

)?
(λ̂ki )

)
= 0,

so from Eqs. (5.12) and (5.13),

lim
k→∞, k∈K

vk = v∗, lim
k→∞, k∈K

εk = 0,

proving the first statement in part (a). This, combined with the closedness of the sets
S, S⊥ and the functions fi, f

?
i , implies the second statement in part (a).

(b) The preceding argument has shown that {vk}K converges to v∗, so there remains
to show that the entire sequence {vk} converges to v∗. For any ` sufficiently large, let
k be such that k < ` and k ∈ K. We can view the approximate problem at the kth
iteration as an approximate problem for the problem at the `th iteration with ḡ2,k

being an inner approximation of ḡ2,` and g
1,k

being an outer approximation of g
1,`

.

Then, by Prop. 5.5,

ḡ?2,k(µ̂k2)− ḡ?2,`(µ̂k2) ≤ v` − vk ≤ g1,`
(ŷk1 )− g

1,k
(ŷk1 ).

Since limk→∞, k∈K vk = v∗, to show that lim`→∞ v` = v∗, it is sufficient to show that

lim
k,`→∞,
k<`, k∈K

(
ḡ?2,`(µ̂

k
2)− ḡ?2,k(µ̂k2)

)
= 0, lim

k,`→∞,
k<`, k∈K

(
g

1,`
(ŷk1 )− g

1,k
(ŷk1 )

)
= 0. (5.14)

Indeed, since ḡ?2,k ≤ ḡ?2,` ≤ g?2 for all k, ` with k < `, we have

0 ≤ ḡ?2,`(µ̂k2)− ḡ?2,k(µ̂k2) ≤ g?2(µ̂k2)− ḡ?2,k(µ̂k2),

and as shown earlier, by Prop. 5.4 we have under our assumptions

lim
k→∞, k∈K

(
g?2(µ̂k2)− ḡ?2,k(µ̂k2)

)
= 0.

Thus we obtain

lim
k,`→∞,
k<`, k∈K

(
ḡ?2,`(µ̂

k
2)− ḡ?2,k(µ̂k2)

)
= 0,

which is the first relation in Eq. (5.14). The second relation in Eq. (5.14) follows with
a similar argument. The proof is complete.
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Proposition 5.6 implies in particular that if the sequences of generated cutting
planes (or break points) for the outer (or inner, respectively) linearized functions are
bounded, then every limit point of the generated sequence of the primal and dual
optimal solution pairs of the approximate problems is an optimal primal and dual
solution pair of the original problem.

Proposition 5.6 also implies that in the pure inner linearization case (I = ∅), under
the assumptions of the proposition, the sequence {x̂k} is asymptotically optimal for
the original primal problem, and in particular, any limit point of {x̂k} is a primal
optimal solution of the original problem. This is because by part (b) of the preceding
proposition and the property of inner approximations:

∑

i∈I
fi(x̂

k
i ) +

∑

i∈Ī
fi(x̂

k
i ) ≤

∑

i∈I
fi(x̂

k
i ) +

∑

i∈Ī
f̄i(x̂

k
i ) = vk → fopt, as k →∞.

This strengthens the conclusion of Prop. 5.3. The conclusion of Prop. 5.2 can be
similarly strengthened.

6. Special Cases. In this section we apply the GPA algorithm to various types
of problems, and we show that when properly specialized, it yields the classical cut-
ting plane and simplicial decomposition methods, as well as new nondifferentiable
versions of simplicial decomposition. We will also indicate how in the special case of
a monotropic programming problem, the GPA algorithm can offer substantial advan-
tages over the classical methods.

6.1. Application to Classical Cutting Plane Methods. Consider the prob-
lem

minimize f(x) (6.1)

subject to x ∈ C,
where f : <n 7→ < is a real-valued convex function, and C is a closed convex set. It
can be converted to the problem

minimize f1(x1) + f2(x2) (6.2)

subject to (x1, x2) ∈ S,
where

f1 = f, f2 = δC , S =
{

(x1, x2) | x1 = x2

}
, (6.3)

with δC being the indicator function of C. Note that both the original and the
approximate problems have primal and dual solution pairs of the form (x̂, x̂, λ̂,−λ̂)
[to satisfy the constraints (x1, x2) ∈ S and (λ1, λ2) ∈ S⊥].

One possibility is to apply the GPA algorithm to this formulation with outer
linearization of f1 and no inner linearization:

I = {1}, Ī = ∅.
Using the notation of the original problem (6.1), at the typical iteration, we have a
finite set of subgradients Λ of f and corresponding points xλ̃ such that λ̃ ∈ ∂f(xλ̃)

for each λ̃ ∈ Λ. The approximate problem is equivalent to

minimize f
Λ

(x) (6.4)

subject to x ∈ C,
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where

f
Λ

(x) = max
λ̃∈Λ

{
f(xλ̃) + λ̃′(x− xλ̃)

}
. (6.5)

According to the GPA algorithm, if x̂ is an optimal solution of problem (6.4) [so that
(x̂, x̂) is an optimal solution of the approximate problem], we enlarge Λ by adding any
λ̃ with λ̃ ∈ ∂f(x̂). The vector x̂ can also serve as the primal vector xλ̃ that corresponds

to the new dual vector λ̃ in the new outer linearization (6.5). We recognize this as
the classical cutting plane method (see e.g., [Ber99], Section 6.3.3). Note that in this

method it is not necessary to find a dual optimal solution (λ̂,−λ̂) of the approximate
problem.

Another possibility that is useful when C either is nonpolyhedral, or is a com-
plicated polyhedral set, can be obtained by outer-linearizing f and either outer- or
inner-linearizing δC . For example, suppose we apply the GPA algorithm to the for-
mulation (6.2)-(6.3) with

I = {1}, Ī = {2}.

Then, using the notation of problem (6.1), at the typical iteration we have a finite set
Λ of subgradients of f , corresponding points xλ̃ such that λ̃ ∈ ∂f(xλ̃) for each λ̃ ∈ Λ,
and a finite set X ⊂ C. We then solve the polyhedral program

minimize f
Λ

(x) (6.6)

subject to x ∈ conv(X),

where f
Λ

(x) is given by Eq. (6.5). The set Λ is enlarged by adding any λ̃ with

λ̃ ∈ ∂f(x̂), where x̂ solves the polyhedral problem (6.6) [and can also serve as the
primal vector that corresponds to the new dual vector λ̃ in the new outer linearization
(6.5)]. The set X is enlarged by finding a dual optimal solution (λ̂,−λ̂), and by adding

to X a vector x̃ that satisfies x̃ ∈ ∂f?2 (−λ̂), or equivalently, solves the problem

minimize λ̂′x

subject to x ∈ C,

[cf. Eq. (4.2)]. By Prop. 3.1, the vector λ̂ must be such that λ̂ ∈ ∂f
Λ

(x̂) and −λ̂ ∈
∂f̄2,X(x̂) [equivalently −λ̂ must belong to the normal cone of the set conv(X) at x̂;

see [Ber09], p. 185]. It can be shown that one may find such λ̂ while solving the
polyhedral program (6.6) by using standard methods, e.g., the simplex method.

6.2. Generalized Simplicial Decomposition. We will now describe the ap-
plication of the GPA algorithm with inner linearization to the problem

minimize f(x) + h(x) (6.7)

subject to x ∈ <n,

where f : <n 7→ (−∞,∞] and h : <n 7→ (−∞,∞] are closed proper convex functions.
This is a simplicial decomposition approach that descends from the original proposal
of Holloway [Hol74] (see also [Hoh77]), where the function f is required to be real-
valued and differentiable, and h is the indicator function of the closed convex set C.
In addition to our standing assumption of no duality gap, we assume that dom(h)
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contains a point in the relative interior of dom(f); this guarantees that the problem
is feasible and also ensures that some of the steps of the algorithm (to be described
later) can be carried out.

A straightforward simplicial decomposition method that can deal with nondiffer-
entiable cost functions is to apply the GPA algorithm with

f1 = f, f2 = h, S =
{

(x, x) | x ∈ <n
}
,

while inner linearizing both functions f and h. The linearized approximating sub-
problem to be solved at each GPA iteration is a linear program whose primal and
dual optimal solutions may be found by several alternative methods, including the
simplex method. Let us also note that the case of a nondifferentiable real-valued
convex function f and a polyhedral set C has been dealt with an approach differ-
ent from ours, using concepts of ergodic sequences of subgradients and a conditional
subgradient method by Larsson, Patriksson, and Stromberg (see [Str97, LPS98]).

In this section we will focus on the GPA algorithm for the case where the function
h is inner linearized, while the function f is left intact. This is the case where simplicial
decomposition has traditionally found important specialized applications, particularly
with h being the indicator function of a closed convex set. As in Section 6.1, the primal
and dual optimal solution pairs have the form (x̂, x̂, λ̂,−λ̂). We start with some finite
set X0 ⊂ dom(h) such that X0 contains a point in the relative interior of dom(f),
and ∂h(x̃) 6= ∅ for all x̃ ∈ X0. After k iterations, we have a finite set Xk such that
∂h(x̃) 6= ∅ for all x̃ ∈ Xk, and we use the following three steps to compute vectors
x̃k and an enlarged set Xk+1 = Xk ∪ {x̃k} to start the next iteration (assuming the
algorithm does not terminate):

(1) Solution of approximate primal problem: We obtain

x̂k ∈ arg min
x∈<n

{
f(x) +Hk(x)

}
, (6.8)

where Hk is the polyhedral/inner linearization function whose epigraph is the convex
hull of the union of the halflines

{
(x̃, w) | h(x̃) ≤ w

}
, x̃ ∈ Xk. The existence

of a solution x̂k of problem (6.8) is guaranteed by a variant of Weierstrass’ Theorem
([Ber09], Prop. 3.2.1; the minimum of a closed proper convex function whose domain is
bounded is attained), because dom(Hk) is the convex hull of a finite set. The latter fact
provides also the main motivation for simplicial decomposition: the vector x admits
a relatively low-dimensional representation, which can be exploited to simplify the
solution of problem (6.8). This is particularly so if f is real-valued and differentiable,
but there are interesting cases where f is extended real-valued and nondifferentiable,
as will be discussed later in this section.

(2) Solution of approximate dual problem: We obtain a subgradient λ̂k ∈
∂f(x̂k) such that

−λ̂k ∈ ∂Hk(x̂k). (6.9)

The existence of such a subgradient is guaranteed by standard optimality conditions,
applied to the minimization in Eq. (6.8), since Hk is polyhedral and its domain, Xk,
contains a point in the relative interior of the domain of f ; cf. [Ber09], Prop. 5.4.7(3).

Note that by the optimality conditions (3.4)-(3.5) of Prop. 3.1, (λ̂k,−λ̂k) is an optimal
solution of the dual approximate problem.
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(3) Enlargement: We obtain x̃k such that

−λ̂k ∈ ∂h(x̃k),

and form Xk+1 = Xk ∪ {x̃k}.
Our earlier assumptions guarantee that steps (1) and (2) can be carried out.

Regarding the enlargement step (3), we note that it is equivalent to finding

x̃k ∈ arg min
x∈<n

{
x′λ̂k + h(x)

}
, (6.10)

and that this is a linear program in the important special case where h is polyhe-
dral. The existence of its solution must be guaranteed by some assumption, such as
coercivity of h.

Let us first assume that f is real-valued and differentiable, and discuss a few
special cases:

(a) When h is the indicator function of a bounded polyhedral set C and X0 =
{x0}, we can show that the method reduces to the classical simplicial decomposi-
tion method [Hol74, Hoh77], which finds wide application in specialized problem set-
tings, such as optimization of multicommodity flows (see e.g., [CaG74, FlH95, PaY84,
LaP92]). At the typical iteration of the GPA algorithm, we have a finite set of points
X ⊂ C. We then solve the problem

minimize f(x) (6.11)

subject to x ∈ conv(X),

[cf. step (1)]. If (x̂, x̂, λ̂,−λ̂) is a corresponding optimal primal and dual solution pair,

we enlarge X by adding to X any x̃ with −λ̂ in the normal cone of C at x̃ [cf. step
(3)]. This is equivalent to finding x̃ that solves the optimization problem

minimize λ̂′x (6.12)

subject to x ∈ C,

[cf. Eqs. (4.2) and (6.10); we assume that this problem has a solution, which is guar-
anteed if C is bounded]. The resulting method, illustrated in Fig. 6.1, is identical to
the classical simplicial decomposition method, and terminates in a finite number of
iterations.

(b) When h is a general closed proper convex function, the method is illustrated

in Fig. 6.2. Since f is assumed differentiable, step (2) yields λ̂k = ∇f(x̂k). The
method is closely related to the preceding/classical simplicial decomposition method
(6.11)-(6.12) applied to the problem of minimizing f(x)+w subject to (x,w) ∈ epi(h).
In the special case where h is a polyhedral function, it can be shown that the method
terminates finitely, assuming that the vectors

(
x̃k, h(x̃k)

)
obtained by solving the

corresponding linear program (6.10) are extreme points of epi(h).

Generalized Simplicial Decomposition - Extended Real-Valued/Nondif-
ferentiable Case. Let us now consider the general case of problem (6.7) where f
is extended real-valued and nondifferentiable, and apply our simplicial decomposi-
tion algorithm, thereby obtaining a new method. Recall that the optimal primal and
dual solution pair (x̂k, x̂k, λ̂k,−λ̂k) of problem (6.8) must satisfy λ̂k ∈ ∂f(x̂k) and
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Y

(x) (f
Y

)∗(y) Set of Slopes Y Set of Break Points Y

(f̄2,Xk)�(−λ)

x̃0 x̃k i < k h(x) Hk(x) Hk+1(x)

Slope: x̃i, i < k Slope: x̃k

C Slope λ0 Slope λ1 Slope λ2 f(x) f�(λ) λ F (x) F �(λ)

Slopes λ̃ ∈ Λ Break points λ̃ ∈ Λ Points xλ̃ ∈ X

New slope λ̃i

New break point x̃i

Outer linearization F of f

Inner linearization F � of conjugate f�

Slope λ∗ Slope y −f�
1 (λ) f�

2 (−y) f�
1 (y) + f�

2 (−y) q(y)

Primal description: Values f(x) Dual description: Crossing points f�(y)

w∗ = min
x

�
f1(x) + f2(x)

�
= max

y

�
f�
1 (y) + f�

2 (−y)
�

= q∗

fx(d) d

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n, i = 1, . . . ,m

If s ∈ conv(S) then s = s1 + · · · + sm where

1

∇f(x0) ∇f(x̂1) ∇f(x̂2) ∇f(x̂3) x0 x̃0 x̃1 x̃2 x̃3 x̂4 = x∗ C

x̂1 x̂2 x̂3 x0 x̃1 x̃2 x̃3 x̂4 = x∗

Slope ỹ xỹ f
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Fig. 6.1: Successive iterates of the classical simplicial decomposition method in the
case where f is differentiable and C is polyhedral. For example, the figure shows how
given the initial point x0 and the calculated extreme points x̃0, x̃1, we determine the
next iterate x̂2 as a minimizing point of f over the convex hull of {x0, x̃0, x̃1}. At each
iteration, a new extreme point of C is added, and after four iterations, the optimal
solution is obtained.

−λ̂k ∈ ∂Hk(x̂k) [cf. condition (6.9) of step (2)]. When h is the indicator function of a

set C, the latter condition is equivalent to −λ̂k being in the normal cone of conv(Xk)
at x̂k (cf. [Ber09], p. 185); see Fig. 6.3. If in addition C is polydedral, the method
terminates finitely, assuming that the vector x̃k obtained by solving the linear pro-
gram (6.10) is an extreme point of C (cf. Fig. 6.3). The reason is that in view of
Eq. (6.9), the vector x̃k does not belong to Xk (unless x̂k is optimal), so Xk+1 is a
strict enlargement of Xk. In the more general case where h is a closed proper convex
function, the convergence of the method is covered by Prop. 5.3.

Let us now address the calculation of a subgradient λ̂k ∈ ∂f(x̂k) such that −λ̂k ∈
∂Hk(x̂k) [cf. Eq. (6.9)]. This may be a difficult problem when f is nondifferentiable
at x̂k, as it may require knowledge of ∂f(x̂k) as well as ∂Hk(x̂k). However, in special

cases, λ̂k may be obtained simply as a byproduct of the minimization (6.8). We discuss
cases where h is the indicator of a closed convex set C, and the nondifferentiability
and/or the domain of f are expressed in terms of differentiable functions.

Consider first the case where

f(x) = max
{
f1(x), . . . , fr(x)

}
,

where f1, . . . , fr are convex differentiable functions. Then the minimization (6.8)
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Fig. 6.2: Illustration of successive iterates of the generalized simplicial decomposition
method in the case where f is differentiable. Given the inner linearization Hk of h,
we minimize f + Hk to obtain x̂k (graphically, we move the graph of −f vertically
until it touches the graph of Hk). We then compute x̃k as a point at which −∇f(x̂k)
is a subgradient of h, and we use it to form the improved inner linearization Hk+1 of
h. Finally, we minimize f +Hk+1 to obtain x̂k+1 (graphically, we move the graph of
−f vertically until it touches the graph of Hk+1).

takes the form

minimize z (6.13)

subject to fj (x) ≤ z, j = 1, . . . , r, x ∈ conv(Xk).

According to standard optimality conditions, the optimal solution (x̂k, z∗) together
with dual optimal variables µ∗j ≥ 0, satisfies the Lagrangian optimality condition

(x̂k, z∗) ∈ arg min
x∈conv(Xk), z∈<




(

1−
r∑

j=1

µ∗j
)
z +

r∑

j=1

µ∗jfj(x)



 ,

and the complementary slackness conditions fj(x̂
k) = z∗ if µ∗j > 0. Thus, since

z∗ = f(x̂k), we must have

r∑

j=1

µ∗j = 1, µ∗j ≥ 0, and µ∗j > 0 =⇒ fj(x̂
k) = f(x̂k), j = 1, . . . , r, (6.14)

and



r∑

j=1

µ∗j∇fj(x̂k)



′

(x− x̂k) ≥ 0, ∀ x ∈ conv(Xk). (6.15)

From Eq. (6.14) it follows that the vector

λ̂k =

r∑

j=1

µ∗j∇fj(x̂k) (6.16)
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1

Fig. 6.3: Illustration of the generalized simplicial decomposition method for the case
where f is nondifferentiable and h is the indicator function of a polyhedral set C. For
each k, we compute a subgradient λ̂k ∈ ∂f(x̂k) such that −λ̂k lies in the normal cone
of conv(Xk) at x̂k, and we use it to generate a new extreme point x̃k of C.

is a subgradient of f at x̂k (cf. [Ber09], p. 199). Furthermore, from Eq. (6.15), it

follows that −λ̂k is in the normal cone of conv(Xk) at x̂k, so −λ̂k ∈ ∂Hk(x̂k) as
required by Eq. (6.9).

In conclusion, λ̂k as given by Eq. (6.16), is such that (x̂k, x̂k, λ̂k,−λ̂k) is an optimal
primal and dual solution pair of the approximating problem (6.8), and furthermore,
it is a suitable subgradient of f at x̂k for determining a new extreme point x̃k via
problem (6.10) or equivalently problem (6.12).

We next consider a more general problem where there are additional inequality
constraints defining the domain of f . This is the case where f is of the form

f(x) =

{
max

{
f1(x), . . . , fr(x)

}
, if gi(x) ≤ 0, i = 1, . . . , p,

∞ otherwise,
(6.17)

with fj and gi being convex differentiable functions. Applications of this type include
multicommodity flow problems with side constraints (the inequalities gi(x) ≤ 0, which
are separate from the network flow constraints that comprise the set C; cf. [Ber98],
Chapter 8, [LaP99]). The case where r = 1 and there are no side constraints is im-
portant in a variety of communication, transportation, and other resource allocation
problems, and is one of the principal successful applications of simplicial decomposi-
tion; see e.g., [FlH95]. Side constraints and nondifferentiabilities in this context are
often eliminated using barrier, penalty, or augmented Lagrangian functions, but this
can be awkward and restrictive. Our approach allows a more direct treatment.

As in the preceding case, we introduce additional dual variables ν∗i ≥ 0 for the
constraints gi(x) ≤ 0, and we write the Lagrangian optimality and complementary
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slackness conditions. Then Eq. (6.15) takes the form




r∑

j=1

µ∗j∇fj(x̂k) +

p∑

i=1

ν∗i∇gi(x̂k)



′

(x− x̂k) ≥ 0, ∀ x ∈ conv(Xk),

and it can be shown that the vector λ̂k =
∑r
j=1 µ

∗
j∇fj(x̂k) +

∑p
i=1 ν

∗
i∇gi(x̂k) is a

subgradient of f at x̂k, while −λ̂k ∈ ∂Hk(x̂k) as required by Eq. (6.9).
Note an important advantage that our method has over potential competitors

in the case where C is polyhedral: it involves a solution of linear programs of the
form (6.10), to generate new extreme points of C, and a solution of typically low-
dimensional nonlinear programs, such as (6.13) and its more general version for the
case (6.17). The latter programs have low dimension as long as the set Xk has
a relatively small number of points. When all the functions fj and gi are twice
differentiable, these programs can be solved by fast Newton-like methods, such as
sequential quadratic programming (see e.g., [Ber82, Ber99, NoW99]). We finally note
that as k increases, it is natural to apply schemes for dropping points of Xk to bound
its cardinality, similar to the restricted simplicial decomposition method [HLV87,
VeH93]. Such extensions of the algorithm are currently under investigation.

6.3. Dual/Cutting Plane Implementation. We now provide a dual imple-
mentation of the preceding generalized simplicial decomposition method, as applied to
problem (6.7). It yields an outer linearization/cutting plane-type of method, which is
mathematically equivalent to generalized simplicial decomposition. The dual problem
is

minimize f?1 (λ) + f?2 (−λ)

subject to λ ∈ <n,

where f?1 and f?2 are the conjugates of f and h, respectively. The generalized simplicial
decomposition algorithm (6.8)-(6.10) can alternatively be implemented by replacing
f?2 by a piecewise linear/cutting plane outer linearization, while leaving f?1 unchanged,
i.e., by solving at iteration k the problem

minimize f?1 (λ) +
(
f̄2,Xk

)?
(−λ) (6.18)

subject to λ ∈ <n,

where
(
f̄2,Xk

)?
is an outer linearization of f?2 (the conjugate of Hk).

Note that if λ̂k is a solution of problem (6.18), the vector x̃k generated by the

enlargement step (6.10) is a subgradient of f?2 (·) at −λ̂k, or equivalently −x̃k is a

subgradient of the function f?2 (− ·) at λ̂k, as shown in Fig. 6.4. The ordinary cutting
plane method, described in the beginning of Section 6.1, is obtained as the special
case where f?2 (− ·) is the function to be outer linearized, and f?1 (·) is the indicator
function of C [so f?1 (λ) ≡ 0 if C = <n].

Whether the primal implementation, based on solution of problem (6.8), or the
dual implementation, based on solution of problem (6.18), is preferable depends on
the structure of the functions f and h. When f (and hence also f?1 ) is not poly-
hedral, the dual implementation may not be attractive, because it requires the n-
dimensional nonlinear optimization (6.18) at each iteration, as opposed to the typi-
cally low-dimensional optimization (6.8). In the alternative case where f is polyhedral,
both methods require the solution of linear programs.
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Fig. 6.4: Illustration of the cutting plane implementation of the generalized simplicial
decomposition method.

6.4. Network Optimization and Monotropic Programming. Consider a
directed graph with set of nodes N and set of arcs A. The single commodity network
flow problem is to minimize a cost function

∑

a∈A
fa(xa),

where fa is a scalar closed proper convex function, and xa is the flow of arc a ∈ A. The
minimization is over all flow vectors x =

{
xa | a ∈ A

}
that belong to the circulation

subspace S of the graph (sum of all incoming arc flows at each node is equal to the
sum of all outgoing arc flows). This is a monotropic program that has been studied
in many works, including the textbooks [Roc84] and [Ber98].

The GPA method that uses inner linearization of all the functions fa that are
nonlinear is attractive relative to the classical cutting plane and simplicial decompo-
sition methods, because of the favorable structure of the corresponding approximate
problem:

minimize
∑

a∈A
f̄a,Xa(xa)

subject to x ∈ S,

where for each arc a, f̄a,Xa is the inner approximation of fa, corresponding to a finite
set of break points Xa ⊂ dom(fa). By suitably introducing multiple arcs in place of
each arc, we can recast this problem as a linear minimum cost network flow problem
that can be solved using very fast polynomial algorithms. These algorithms, simulta-
neously with an optimal primal (flow) vector, yield a dual optimal (price differential)
vector (see e.g., [Ber98], Chapters 5-7). Furthermore, because the functions fa are
scalar, the enlargement step is very simple.

Some of the preceding advantages of GPA method with inner linearization carry
over to general monotropic programming problems (ni = 1 for all i), the key idea being
that the enlargement step is typically very simple. Furthermore, there are effective
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algorithms for solving the associated approximate primal and dual problems, such as
out-of-kilter methods [Roc84, Tse01], and ε-relaxation methods [Ber98, TsB00].

7. Conclusions. We have presented a unifying framework for polyhedral ap-
proximation in convex optimization. From a theoretical point of view, the framework
allows the coexistence of inner and outer approximation as dual operations within
the approximation process. From a practical point of view, the framework allows
flexibility in adapting the approximation process to the special structure of the prob-
lem. Several specially-structured classes of problems have been identified where our
methodology extends substantially the classical polyhedral approximation approxima-
tion algorithms, including simplicial decomposition methods for extended real-valued
and/or nondifferentiable cost functions, and nonlinear convex single-commodity net-
work flow problems. In our methods, there is no provision for dropping cutting planes
and break points from the current approximation. Schemes that can do this efficiently
have been proposed for classical methods (see, e.g., [GoP79, Mey79, HLV87, VeH93]),
and their extensions to our framework is an important subject for further research.
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